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THE GEOMETRY OF UNIFORM, QUASICIRCLE,
AND CIRCLE DOMAINS

DAVID A. HERRON

Abstract. We introduce a class of collared domains. We solve the Kreis-
normierungsproblem for collared quasicircle domains in R2 Then we give geometric
conditions which ensure that a quasicircle domain be collared and in fact be uni-
form. Finally, we state our results in terms of hyperbolic geometry.

1. Introduction

Throughout this paper D denotes a domain in euclidean n-space R*. We are
primarily interested in the plane R2, which we identify with C, so except where
explicitly noted otherwise we always have n=2.

We call D uniform if there is a constant ¢ such that each pair of points z,, z, in
D can be joined by an arc « in D satisfying

¢Y) [(®) = clzy -z
and
)] jn;inz l(a;) = cd(z,0D) forall z€a.

Here /() is the euclidean length of o, d(-, -) is euclidean distance, and o,, o, are
the components of a— {z}. Condition (1) says that /(x) is comparable to |z,—z,);
condition (2) says that away from z,, z, « stays away from dD. Martio and Sarvas
first introduced uniform domains [MS] and since then they have appeared quite
naturally throughout function theory. Gehring has a recent survey article [G3]
which lists many of the properties of uniform domains and has an extensive bibliog-
raphy.

There are numerous alternative descriptions of uniform domains, however, with
all of these it is often a non-trivial task to verify that a domain is uniform. In Theorem
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1.2 we give sufficient conditions for a domain to be uniform. These are geometric
conditions in terms of the domain’s boundary components and often can easily be
verified. As a byproduct of the proof of Theorem 1.2 we solve a special case of the
Kreisnormierungsproblem; see Theorem 2.6.

As the following result indicates, the complementary regions determined by a
uniform domain in the plane must satisfy certain geometric conditions. It is not
hard to see that the boundary components of a uniform domain must be linearly
locally connected and hence are quasicircles [MS, Corollary 2.33], [G1, Theorem
4.1]. We call D a K-quasicircle domain if each of its boundary components is either
a point or a K-quasicircle.

1.1. Theorem. Suppose D is uniform. Then D is a K-quasicircle domain,
K=K(c), and there exists a constant a=a(c) such that

3) jn:li’n2 dia (B;) = ad(B,, B,)

for any two components B,, B, of C—D.

Condition (3) says that any two complementary regions determined by a uni-
form domain cannot be too close together unless one of them is small [G2, Theorem
2 and Lemma 3]; this condition can be derived directly from conditions (1) and (2).

Thus a simply connected proper subdomain of the plane is uniform if and only
if it is a quasidisk, and in general a uniform domain is a quasicircle domain. In fact,
a quasicircle domain is quasiconformally equivalent to a uniform domain if and
only if it itself is uniform [GM, Corollary 3.17]. So whether or not a plane domain
is uniform depends on two criteria: First, its boundary components must have the
right shape; they must be quasicircles or points. Second, its boundary components
must be in the right position with respect to each other; the internal moduli of the
domain must satisfy appropriate conditions.

It is easily seen that condition (3) is not strong enough to guarantee that D be
uniform, e.g., consider the quasicircle domain C—Z. However, we do have the
following result.

1.2. Theorem. Let B, be the component of C—D which contains . Suppose
D is a K-quasicircle domain and there exist constants a, b such that

@ dia (B,) = ad(B;, By)
and
) ,ril%nz d(Bjs By) = bd(B,, By)

for any two components By, B, of C—D—B,. Then D isuniform with c=c(a, b, K).

Condition (4) is a weak-version of (3) and thus is necessary for D to be uniform.
Condition (5) says that B,# {>} and that any two bounded complementary regions
determined by D cannot be too close together unless they are close to B, (and hence
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by (4) small). It is easy to see that there are uniform D which do not satisfy (5);
e.g. D={zeC: Re(2)=0}—{2",2"+1: n=1,2, ...}.

We prove Theorem 1.2 in Section 3. It turns out that we need only consider
the special case of circle domains which have points and circles for boundary com-
ponents. The general case follows from a result on quasiconformal mappings,
Theorem 2.6, together with the quasi-invariance of the hypotheses.

In Section 2 we state and prove Theorem 2.6. In particular, this theorem gives
sufficient conditions for the existence of a conformal mapping of a quasicircle domain
onto a circle domain.

In Section 4 we conclude by stating our results in terms of hyperbolic geometry.

The author wishes to thank Professor F. W. Gehring for suggesting this problem
and for many helpful conversations. The author also thanks the referee for nume-
rous helpful comments.

2. Extension of quasiconformal mappings

Our ultimate result here, Theorem 2.6, is that certain quasicircle domains can
be mapped conformally onto circle domains via quasiconformal self-homeo-
morphisms of C.

2.1. Notation. We use the following standard notation. Let I' be a nonempty
family of curves. We call ¢ admissible for I', denoted g€adm (I'), if ¢ is non-nega-
tive and Borel measurable and if f , 0(@|dz]=1 for each locally rectifiable yer.
The modulus of I' is M(I')=inf, [ [ ¢(2)?dx dy, where the infimum is taken over
all p€adm (I).

A ring is a doubly connected domain; thus every ring has exactly two boundary
components. The modulus of a ring R is defined by

mod (R) = 2nM(I'y) = 2r/M(T,),

where I'y, I', are the families of curves in R which respectively separate, join the
boundaries of R. The extremal ring of Grétzsch is {z€C: |z]<1}—[0,r] and its
modulus is denoted by u(r), O<r<1. See [LV].

Two lemmas, each of independent interest, are required for the proof of Theo-
rem 2.6. For each of these lemmas we use the following notation: R is a ring with
boundary components Cy and C, C is a Jordan curve, and D and D, are respectively
the components of C—C and C—C, containing R.

2.2. Lemma. Let « and f be disjoint arcsin C andlet 'y, I'}, be the families
of curves in R, D respectively which join o and B. Then

M(T'g) = M(I'p) = 9 (mod R)M(Ig),
where ¢(1)=[1-+exp (7*/20)}/2.
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Proof. As TI'ycl,, M([Rp)=M('p) and we need only prove the second
inequality.

Map D conformally onto a rectangle D, so that « and § are sent onto the vertical
sides [—a—i, —a+i] and [a—i, a+i]. Let Ry, C;, I'y, I'p be the images of
R, Cy, I'y, I';, respectively. Note that M(I'p))=M (I )=1/a.

Let [iyy, iys]c[—i,i] be the projection of C, onto the imaginary axis. For
each ye(—1,1)—[» yals v,={x+iy:—a<x<a}€ly , so for each ecadm(I'y)

1= (f, @) = (7, 0+ d) =2a [ o(x+ip)dx,
whence g

Jfe@raxdy = ([ +[, ) driQa) = 2~ (2 =129,

Taking the infimum over all g€adm (I'z) yields M(I'g)=[1—(y,— »)[21M(T'p),
whence
M(Ip) = cM(I'g), ¢ = 1/[1-(y.—y1)/2].
Let R, be the Steiner symmetrization of R, with respect to the imaginary axis
[H], let R, be the ring with boundary components C,=[iy;, iy,] and {xti: x€R},
and let R,=yop(R;) where

.vl

. . T .
m iv; = @(iy;) = itan (_y,_) (G =1L.2).

0@ = tanh (Z2), yw) = !

Then
m = mod (R) = mod (R,) = mod (R;) = mod (R;) = mod (R,) = u(?),

where it=y (ivy). Next,
tan s, —tan sy

“m) =t =
u=(m) 1—tans; tans,

= sin ($3—53),

where s;=(n/4)y; (j=1,2). Thus

= (y.—y1)/2 = sin(ny/2) = p~'(m),
so [LV, (2.9), p. 61]

1+y _ (l—y]_ v
log3=5 = M55 ) = 2u0) = 2m
Finally,
c=1/1-y)= (1+11 /2< [1+exp (7%/2m)]/2.

2.3. Lemma. Suppose that C is a K-quasicircle. Let f be a Ky-quasiconformal
mapping of R, and suppose that the boundary component C’ of R'=f(R) which
corresponds to C under f is a K'-quasicircle. Then f extends to a quasiconformal
mapping of D, with maximal dilatation bounded above by a constant which depends
only on Ky, K, K’ and M(R)=2n/mod (R).
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Proof. Let g,g’: C—~C be K, K’-quasiconformal mappings of C, C’ onto
the real axis with g(R), g’(R’) lying in the upper half plane. To get the desired ex-
tension of f it suffices to extend g’ofog~! to the lower half plane. Thus we may
assume that R and R’ are rings in the upper half plane D=D’ each having the
real axis as a boundary component and that f: R—R’ is K,-quasiconformal
with f: dD-0D’. To extend f to the lower half plane we need only show
[LV, Theorem IL.6.1] that there exists a constant a>0, which depends only on
K, and M(R), such that for all x¢R and for all =0 we have

©6) lla=MTp) = a,

where I'p, is the family of curves in D’ joining the intervals [f(x—t2), f(x)];
LfGx+0), f()]

So fix x€R and ¢=>0. Let o and B be the intervals [f(x—1), f(x)] and
[f(x+1), f(e)]. Then let I'y, and I';, be the families of curves in R’ and D’ respec-
tively which join «, § and let I'; and I';, be the corresponding families of curves
in R and D. By Lemma 2.2 1=M(I'y)=¢(mod R) M(I'y), and thus, letting a=
Koo (2n/M(R)), we get

l/a = (1/K)M(T'x) = M(I'g) = M([p),
which gives the first inequality in (6). The second inequality follows by symmetry.

2.4. Corollary. If the boundary components of a ring are quasicircles, then
the ring is a quasiannulus, i.e., the image of an annulus under a quasiconformal self-
homeomorphism of C.

Proof. Let R be a ring with boundary components the K-quasicircles C, and C.
Let D be the component of C—C containing R. Choose a conformal mapping
S of R onto an annulus 4. Using Lemma 2.3 we extend f to a K’-quasiconformal
mapping g of D where K’=K’(K, M(R)). We extend g by reflection to a K2K’-
quasiconformal mapping # of C. Then R=h"1(4) is a K2K’-quasiannulus.

2.5. Collars. A component B of C—D is said to have a collar of modulus m
in D if there exists a ring in D with modulus at least m and having dB as a bound-
ary component. Let B, be a fixed component of C—D. We say that D is m-collared
relative to B, if each component B of C—D—B, has a collar of modulus m in
D such that the collars are pairwise disjoint.

2.6. Theorem. Let D be a K-quasicircle domain. Let B, be a component of
C—D with 0B, a quasicircle. Suppose that D is m-collared relative to B, with
m=>0. Then there exists a K’-quasiconformal self-homeomorphism of C which
maps D conformally onto a circle domain, where K’'=K’(K, m).

Proof. We assume that B, is the lower half-plane C—U and that i€D. Let
By, B,, ... denote the other components of C—D. For n=1,2,... let D,=
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U—Jj_, B; and choose a conformal mapping f,: D,~D,=U— Uj_, B of
D, onto a circle domain D). Here each B} is a closed disk or a point and (9U 0B;,
zcorrespond to oU, BB(") i. See Goluzin’s text [G, Theorem 2, p. 237] or the original
work of Koebe for the existence of the mappings f;.
Next, for j=1,2,...,n let R(”)—f,,(R ), where R; is the collar associated
wrth B;. By Lemma 2.3 there exists a K’-quasmonformal extension FP: R;u
>R§")UB§") of f|R;, K’=K’(K, m). Then

{F") in R;UB;
Ja elsewhere

defines a K’-quasiconformal self-homeomorphism of U with. F,|D,=f,.

Thus we have a sequence of K’-quasiconformal mappings F,: U-~U with
F,|D conformal, F,(i)=i, F,: @U~0U. By normality [LV, Theorem IL5.1] there
exists a subsequence, which we continue to call {F,}, which converges uniformly
on compact subsets of U to some function F. Since F(i)=i, F must be a K’-quasi-
conformal self-homeomorphism of U [LV, Theorem IL.5.5].

We extend F to C by reflection. It remains to show that F(D) is a circle domain.
Write

FD)=D = U—U°.°= B}, B; = F(B)).

Fix a B and assume it is not a point. Fix wy, w,, ws, w4eaB For k=1,2,3,4
choose zkeaB so that w,=F(z) and let w{®=F,(z,). Since dB{” is a circle,
it follows that the cross ratio

W1y Wo, Wy, Wyl = hm [, W, wim, win]

must be real. Thus 8B is a circle, and D’ is a circle domain.

3. Proof of Theorem 1.2

The simplest geometric situation to consider is when D is a circle domain.
We prove Theorem 1.2 for such domains and then appeal to Theorem 2.6 for the
general case. The success of this strategy depends on showing that Theorem 2.6
applies and that the hypotheses of Theorem 1.2 are quasi-invariant with respect
to quasiconformal self-homeomorphisms of C.

The following result is useful [GO, Lemma 3].

3.1. Lemma. There exists a constant B=pn, K) such that for any K-quasi-
conformal f: R"-R"

|f(x)—f (xo)l |25 — Xo
PG~ T (e
for all x4, x7, x.€R"

1/x
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The next two results show that the hypotheses of Theorem 1.2 are quasi-in-
variant with respect to quasiconformal self-homeomorphisms of R".

3.2. Lemma. Let B,, B;CR" be closed. Suppose condition (4) holds. Then
there exists a constant b=>b{a, n, K) such that

dia (fBy) = bd(fB,, fBy)
for any K-quasiconformal f: R"—R".
Proof. Choose points yy=f(x;), y.=f(x)€f(B1) and yy=f(x)cf(By) so
that |y;—yel =d(fBy,fBy), 2|y1—y.l=d(fB,). Then by Lemma 3.1
dia (fBy) |v1 =2l [ (Jxl—le ]’ ]
=2 =2|pl——+1) -1} =2 DY« —1].
7B, 7B = 2 rimrol ~ =l [Bla+1y"~1]

3.3. Lemma. Let By, B;, B,CR" be closed. Suppose conditions (4) and (5)
hold. Then there exists a constant c=c(a, b, n, K) such that

min d(fB;, fBy) = cd(fBy, /By)

Jfor any K-quasiconformal f: R"—~R".

Proof. For j=1, 2 choose points y;=f(x,)€f(B;) so that d(fBy, fB;)=|y,—|-
Assume that d(B,, B)=d(B,, By). Choose x,¢B, with d(B;, By)=d(B;, xo).
Then using (4) and (5) we obtain

|, — x| = dia (By)+d(By, By) = (a+ 1)d(By, By) = b(a+ 1)d(By, By).
Thus by Lemma 3.1

n}lﬂ d(fBj, fBo) Iy —f(X )[ I\_ —x l 1/e
i=1,2 — 1 0 = V1T A 1 = 1/x
= = +1) 1= @D e

g — x|
The corollary of the next lemma ensures that Theorem 2.6 can be applied;
the lemma is also needed in the proof of Theorem 1.2 for a circle domain.

3.4. Lemma. Let By, B;, B,CR" be closed. Suppose conditions (4) and (5)
hold. Then
max d(B;, By) = (1 +ab+b)d(B,, B.).
J=1,

Proof. Suppose that d(B;, By)=d(B,, By). Then by (4), (5) and the triangle
inequality
d(By, By) = d(By, B,) +dia (By,) +d(By, B,)

= (1+a)d(B,, B)+d(By, B,) = (1+a)b+1)d(By, By).

3.5. Corollary. Assume the hypotheses of Theorem 1.2. Then D is m-collared
relative to B,, where m=m(a, b)=0.
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Proof. To each component B of C—D— B, we associate the ring
R = {z¢C—B: d(z, B) < (B, B,)},

where 2e=1/(1+ab+b). By Lemma 3.4 these rings are contained in D and are
pairwise disjoint. We claim that mod (R)=2/(1 +a/¢)2
Let r=dia (B), s=ed(B, By). Note that r/s=afe. Fix z,¢ B. Define

1/s in B(zy,r+5)
0@) = {0 elsewhere.

Then g¢adm (I) where I' is the family of curves in R joining its boundary com-
ponents. Thus M(IN = f f 0?=n(l+r/s)?, whence mod (R)=2n/M(I')=2/(1 +ale)?.

We require the following two results about annuli whose proofs are left for
the reader. We remark that the necessary curves can be obtained by using straight
line segments together with arcs of circles.

3.6. Lemma. An annulus A is uniform with ¢=0(1), 0((1—e~™)"1) as m=
mod (4) -, 0 respectively.

3.7. Lemma. Let A be an annulus with inner, outer boundary circles C,, C,
respectively. Then points z,€ A, z,€C, can be joined by an arc o in AUC, such that

Jor every z€a
I(6(z1,2)) = min {c,|z; — z|, bod(z, Cy)},

where ¢y,=2(1+n), by=0(1), 0(e™) as m=mod (4)—~, 0 respectively.

Here, and below in 3.8, we use the notation y(z, w) to denote the subarc between
z and w of an arc y.

3.8. Proof of Theorem 1.2. By appealing to Theorem 2.6 and the quasi-invariance
of our hypothesis with respect to quasiconformal self-homeomorphisms of C, we
may assume that B,=C—U and that D=U~Jj_, B;. Here each B; is a closed
euclidean disk or a point in U and either U is the open upper half-plane if «¢0dB,
or U is the open unit disk if « is an interior point of B,.

Set r;=dia (B,), d;j=d(B;, By) and let A;={zcC—B;: d(z, B))<ed;} where
4e=1/(1 +ab+b). Then as in the proof of Corollary 3.5 we find that we have disjoint
annuli 4; in D with d4;=0B;uC; and mod (4;)=m=m(a, b)=0. Also, we see
that if z€A4;, then d(z, 0D)=d(z, B;). Moreover, if z¢D and d(z, dD)=d(z, B),
then z¢ A;.

Fix z,z,¢D. We must exhibit an arc « in D which joins z, z, and satisfies
(1), (2). By Lemma 3.6 we may assume that z,, z, do not both lie in some annulus
A;. By relabeling, if necessary, we may assume that d(z;, dD—Bg)=d(z, By) for
k=1,2. Let B be the subarc of the circle through z,, z, which is orthogonal to dU.

If z,€4,, choose w¢BnC, and let o, be the curve given by Lemma 3.7 which
joins z, and w; in A4,UC;; otherwise set w,=z, and o,={z}. Next, letJ denote
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the set of all j for which B meets C; twice, and for each jcJ: let {y;,{,; be the
points of BNC; with {,; the point first encountered as B is traversed from z, let
B;=B(y;,Ls;), and let y; be the component of C;— {{y;, {5;} with minimal euclidean
length. Finally, let

@ = 0,0 [(B(ws, wo)—Us Bi) v Usvi]U 02

We show that o satisfies (1) and (2).
By Lemma 3.7 for k=1,2

l(o) = colze—wi| = Col(ﬂ(zk, Wk)),
and by geometry for all jeJ
1(y;) = n/2 (15— o5l = 7/2 1(B;).
Since c,=n/2, we conclude that
(@) = cl(f) = 11z, — 2,
where c¢;=c,n/2. Thus condition (1) is satisfied.
We note that the same reasoning shows that
@) Na(z, w)) = col(B(z,w)) if z,weanp.
Fix z€a. First, suppose d(z, 0D)=d(z, dU). Then z€f and using (7)

jlilglz I(x)) = ¢,d(z, 0D),

so in this case (2) is satisfied. Next, suppose d(z, dD)=d(z, B,) for some k=1,2, ....
We consider the possibilities z€ 4, z¢ A4, separately.
Suppose z€A,. Then ke{l,2}uJ. If ke{l,2}, then «,=0y(z,2) and by

Lemma 3.7
() = c2d(z, By) = ¢, d(z, 0D),

where c;=c,(a, b). So (2) holds. On the other hand, suppose k€J—{1,2}. Then
z€y, and d(z, d0D)=d(Cy, By)=ed,. Now for any (€C,

d(, By = edy+r,+d, = (1+a+¢)d,

whence by (7)
,‘E{nz I(a(z;, () = c3d(z, OD),

where c3=c;(1+a+e)/e=c3(a, b). Since [(y)=nr/2=(na/2e)d(z, D), (2) holds.
Finally, suppose z¢A4,. Then z€B and d(z, 0D)=d(z, B,)>¢d,. If

d(Z, .Bo) = 2h, h = rk+dk,
then by (7)
}2%}12 I() = ¢ jn:{g I(B(zj, 2)) = 2¢,h = 2¢,(1+ a)/e d(z, OD),

while if
nh = d(z, B,) = (n+1)h for some n=2,
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then since d(z, 0D)=d(z, By)=d(z, By)—h=(n—1)h, we conclude that
Jril}nz l(a;) = ¢1d(z, By) = ¢;(n+1)h = 3¢,d(z, OD).

Thus in all cases (2) holds, so D is uniform.

3.9. Corollary. Let D’=D—E where D is uniform. Suppose there exists
a positive constant d such that

113}112 d((;, 0D) = d|{— (| for all distinct points  {y, (€ E.

Then D’ is uniform with ¢’=c’(c, d).

Proof. Fix zy,z,¢D. By [GO, Theorem 5] there exists a K-quasidisk D, D
with z;, z,€D,, K=K(c). Since d({, 0Dy)=d({,dD) for (€D, it is easy to see
that conditions (4) and (5) hold for the quasicircle domain D;=D,—E. Hence
there exists an arc « in DycD’ joining z,z, with [(®)=c’|z;—z,|, and
min;_, , /() =c’d(z, 0Dg)=c’d(z, 0D’) for all z€a, where ¢’=c'(c, d).

4. Hyperbolic geometry

The euclidean conditions given in Theorems 1.1, 1.2 and in Corollary 3.9 can
be stated in terms of the hyperbolic, or Poincaré, metric. The hyperbolic distance
between two points z;, z, in a domain DcC with more than two boundary points
is given by

hp(z1, z2) = hp(n(z1)s 7 (z2))
where 7: B—D is a holomorphic projection, B={weC: |w|<1} and hg(wy, wy)=
log (|1 —wy W, +|wy—Wy|)/(|1 —wy Wyl — |wy—W,|). If D has at most two boundary
points, then h,=0.

4.1. Theorem. Suppose D is uniform. Then there exists a constant a=a(c)
such that
®) h—dia(B) =a

for any two components By, By of C—D, where h=hg_ By
Proof. Conditions (3) and (8) are equivalent.

4.2. Theorem. Let B, be any nondegenerate component of C—D. Suppose
D is a K-quasicircle domain and there exist constants a, b such that

) h—dia(B) = a< +
and
(10) h(B,,B,) =b =0

for any two components By, B, of C—D—B,, where h=hg_ B, Then D is uni-
Jorm with c¢=c(a, b, K).
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Proof. Conditions (4), (5) and (9), (10) are equivalent.

4.3. Corollary. Let D’=D—E where D is uniform. Suppose there exists
a constant d such that

hp(81, 8o) =d =0 for all distinct points {1, {,€E.

Then D’ is uniform with ¢’=c’(c, d).
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