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TIIE GEOVIETRY OF UNIFORM, QUASICIRCLE,
AND CIRCLE DOMAINS

DAVID A. HERRON

Åbstract. We introduce a class of collared domains. We solve the Kreis-
normierungsproblem for collared quasicircle domains in R2. Then we give geometric
conditions which ensure that a quasicircle domain be collared and in fact be uni-
form. Finally, we state our results in terms of hyperbolic geometry.

1. Introduction

Throughout this paper D denotes a domain in euclidean n-space R . We are
primarily interested in the plane R2, which we identify with C, so except where
explicitly noted otherwise we always have n:2.

We call D uniform if there is a constant c such that each pair of points 21, z2 itt
D can be joined by an arc a in D satisfying

(1)

and
(2)

l(a) = clzt- zzl

,giå t(ai) < cd(r,0D) for all z€.a.

Here /(a) is the euclidean length of u, d(., .) is euclidean distance, and otrr, d,aare
the components of a-{r}. Condition (1) says that l(u) is comparable to lzr-z2l;
condition (2) says that away from zr, z2 a stays away from åD. Martio and Sarvas
first introduced uniform domains [MS] and since then they have appeared quite
naturally throughout function theory. Gehring has a recent survey article [G3]
which lists many of the properties of uniform domains and has an extensive bibliog-
raphy.

There are numerous alternative descriptions of uniforrr domains, however, with
all of these it is often a non-trivial task to verify that a domain is uniform. In Theorem
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1.2 we give sufficient conditions for a domain to be uniform. These are geometric

conditions in terms of the domain's boundary components and often can easily be

verified. As a byproduct of the proof of Theorem 1.2 we solve a special case of the

Kreisnormierungsproblem ; see Theorem 2.6.

As the following result indicates, the complementary regions determined by a
uniform domain in the plane must satisfy certain geometric conditions. It is not
hard to see that the boundary components of a uniform domain must be linearly
locally connected and hence are quasicircles [MS, Corollary 2.33], [Gl, Theorem
4.11. We call D a K-quasicircle domain if each of its boundary components is either
a point or a K-quasicircle.

1.1. Theorem. Suppose D is uniform. Then D is a K-quasicircle domain,

R:K(c), and there exists a constant a:a(c) such that

(3) giq dia (B) =- ad(Br, Br)

for any two components Br,Bz of e-».
Condition (3) says that any two complementary regions determined by a uni-

form domain cannot be too close together unless one of them is small [G2, Theorem
2 and Lemma 3l; this condition can be derived directly from conditions (l) and Q).

Thus a simply connected proper subdomain of the plane is uniform if and only
if it is a quasidisk, and in general a uniform domain is a quasicircle domain. In fact,
a quasicircle domain is quasiconformally equivalent to a uniform domain if and
only if it itself is uniform [GM, Corollary 3.17). So whether or not a plane domain
is uniform depends on two criteria: First, its boundary components must have the
right shape; they must be quasicircles or points. Second, its boundary components

must be in the right position with respect to each other; the internal moduli of the

domain must satisfy appropriate conditions.
It is easily seen that condition (3) is not strong enough to guarantee that D be

uniform, e.g., consider the quasicircle domain C-2. However, we do have the
following result.

1.2. Theorem. Let Bs be the component of e-» which contains *. Suppose

D is a K-quasicircle domain and there exist constants a, b such that

(4)

and

(s)

dia (Br) = ad(BL, Bo)

pi3 d(Bi, Bo) = b d(Br, Br)

foranytwocomponents ByB, of C-D-Bo. Then D isuniform with c:c(a,b,K).

Condition (4) is a weak-version of (3) and thus is necessary for D to be uniform.
Condition (5) says that Bo#{-} and that any two bounded complementary regions

determined by D cannot be too close together unless they are close to Bo (and hence
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by (a) small). It is easy to see that there are uniform D which do not satisfy (5);
e.g. D : {z(C : Re (z) =0}- P, T +l; n:1, 2, . ..}.

We prove Theorem 1.2 in Section 3. It turns out that we need only consider
the special case of circle domains which have points and circles for boundary com-
ponents. The general case follows from a result on quasiconformal mappings,
Theorem 2.6, together with the quasi-invariance of the hypotheses.

In Section 2 we state and prove Theorem 2.6. In particular, this theorem gives

sufficient conditions for the existence of a conformal mapping of a quasicircle domain
onto a circle domain.

In Section 4 we conclude by stating our results in terms of hyperbolic geometry.

The author wishes to thank Professor F. W. Gehring for suggesting this problem
and for many helpful conversations. The author also thanks the referee for nume-
rous helpful comments.

2. Extension of quasiconformal mappings

Our ultimate result here, Theorem 2.6, is that certain quasicircle domains can
be mapped conformally onto circle domains via quasiconformal self-homeo-

morphisms of e.

2.1. Notation We use the following standard notation. Let .t' be a nonempty
family of curves. We call q admissible for -l', denoted q€adm (f), if g is non-nega-
tive and Borel measurable and if IreQ)ldzl>l for each locally rectifiable y€.1'.

The modulus of I is M(l):ilrlnll e@)'dxdy, where the infimum is taken over
all q€adm (,r).

A rW is a doubly connected domain; thus every ring has exactly two boundary
components. The modulus of a ring R is defined by

mod (R) : 2nM (f t) : 2nl M (f ),
where .l'r, l, are the families of curves in R which respectively separate, join the
boundaries of R. The extremal ring of Grötzsch is {z€C: lzl<l}-[0,r] and its
modulus is denoted by p{r), 0<r=1. See [LVJ.

Two lemmas, each of independent interest, are required for the proof of Theo-
rem 2.6. For each of these lemmas we use the following notation: -R is a ring with
boundary components Co and C, C is a Jordan curve, and D and Do are respectively

the components of e -C ana e -G containing R.

2.2.Lemma. Let u and p bedisjointarcsin C andlet /-R,f D bethefamilies
of curues in R, D respectiuely which join a and §. Then

M(t-*) = MQo) < p(mod R)M(ril,
where E(t):[ +exp (r'zl2t)112.
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Proof. As f*cfp, M(fi=M(fD) and we need only prove the second

inequality.
Map D conformally onto a rectangle D, so that a and B are sent onto the vertical

sides [-a-i,-ati] and la-i,a*il. Let Rr, Ct, T*,, lo, be the images of
R,Co, f a, Tp respectively. Note that M(f 11:t1417r):11a.

Let liyl,iyf,cf-i,ll be the projection of C1 onto the imaginary axis. For
each y€(- l,l)-lyryr), Tr:{x*iy1-4=7=al€I*., so for each q€adm(.I'*,)

1 = (/, s(z)ldzl)'z : (l'-,a@ + i» d*)' = h l"-"q(x*iv)z dx,

whence 'Y

il e@)'dx dY =
Taking the inflmum over all
whence

MQi = cM(f 
^), 

c: UIL-(Yr-Y)12).

Let.R, be the Steiner symmetrization of R, with respect to the imaginary axis

[tI], let "R, be the ring with boundary components Cs:lilt, iyrf and {xti: x€R},
and let Rn:ry'og(.R) where

EQ) : ""o(+), t@) : ffi, iu1 : E$v1) : irr"{ff) U : r,2).

Then

tn: trrod(A) : mod(Rr) = mod(Rr) < mod(Rr) : mod(Ra) : tt(t),

where it :rlr(l'u). Next,

p*t(m) 4 t :
tan s2 - tan st F sin (s, - §r),

1 - tan s1 tan s2

(/: + [:,) arXza) : l2-(y,-y,)ll(2a).

q(adm (I^,) yields M(r n,) =[ -(yr- il127M(r o,),

where s;:(z/4)y1 (i:1,2). Thus

so [LV, (2.9), p. 6l] 
y : (y'-y')12 = sin(nyl2) = tt-'(m)'

"r#=,(#):h=*
Finally,

c : t l(t - y) : (,. W, ) I 
2 = 

g + exp (nz 12m)112.

2.3. Lemma . Suppose that C is a K'quasicircle. I*t f be a K;'quasiconformal

ffiapptng of R, and suppose that the boundary component C' of p:f (R) which

corresponds to C under f is a K'-quasicircle, Then f extends to a quasiconformal

mapptng af Do with maxirual dilatation bounded aboue by 4 constant which depends

only on Ko, K, K' and M(R):2n1*od (R).
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Proof. Let g,g': e*e be K, K'-qttasiconformal mappings of. C, C' onto
the real axis with s(Å), d(Å) $ng in the upper half plane. To get the desired ex-
tension of f it suffices to extend {ofo{t to the lower half plane. Thus we may
assnme that R and R' are rings in the upper half plane D:D' each having the
real axis as a boundary component and that f : JR*R' is Ko-quasiconformal
with /:0D*0D'. To extend f to the lower half plane we need only show
pV, Theorem II.6.1l that there exists a constant a=0, which depends only on
Ko and M(R), such that for all x€R and for all />0 we have

(6) lla= MVo,) 4 a,

where .l'o is the family of curves in D' joining the intervals lJ'@-t), f (x));
lf (x*t), "f(-)1.

So fix rc€R and l>0. Let a and B be the intervals [f(x-t), /(x)] and
lf (x*t), "f(*)]. Then let .l-*, and f , be the families of curves in JY and D, respec-
tively which join a, p and let i"* and l-, be the corresponding famities of curves
in R and D. By Lemma 2.2 l:M(f »\<q(mod R) M(f il, and thus, letting a:
Ifie(2nlM(R)), we get

tla < (ll lfi) M ( *) = M (r 
",) = M (r »,),

which gives the first inequality in (O. The second inequality follows by symmetry.

2.4. Corollary. If the boundary cornponents of a ring are quasicircles, then
the ring is a quasiannulus, i,e., the image of an annulus under a quasiconformal self-
homeomorphism of e.

Proof. Let R be a ring with boundary components the K-quasicircles Co and C.
Let D be the component of e-C containing R. Choose a conformal mapping
/of .rR onto an annulus l. Using Lemma 2.3 we extend f to a K'-quasiconformal
mapping g of D y,rhere K':K'(K,M(R)). W" extend g by reflection to a KzK,-
quasiconformal mapping h of e. Then "R:å-l(l) is a KzK'-quasiannulus.

2.5. Collars. A component B of e -D is said to have a collar of modulus nt
in D if there exists a ring in D with modulus at least m and having 0B as a bound-
ary component. Let Bo be a fixed component of e-». We say that D is m-collared
relative to Bo if each component B of e -D-Bo has a collar of modulus z in
D such that the collars are pairwise disjoint.

2.6. Theorem. Let D be a K-quasicircle domain. Let Bo be a component of
e-O wtth LBs a quasicircle. Suppose that D is m-collared relatioe to Bo with
m>L Then there exists a K'-quasiconformal self-homeomorphism of e which
maps D conformally onto a circle domain, where K':K'(K, m).

Proof. We assume that Bo is the lower half-plane e-U and that i(D. Let
8r,82,,... denote the other components of e-D. For r:1,2,... let Do:
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U-U\=rB; and choose a conformal mapping fn: Dn*p'-t'-U]-1Bt')^,of
Dn onio a circle domain D'*. Here each B!) is a closed disk or a point and 0U,\Bi,
i correspond to 0U,08|{D, i. See Goluzin's text [G, Theorem 2, p. 23\ or the original

work of Koebe for the existence of the mappitgs f,.
Next, for j:1,2,...,n let Äy):Å(R), where Å.; is the collar associated

with Br. By Lemma 2.3 therc exists a 1('-quasiconformal extension Ff;): JR;u

Br*Rjr)uB!') of f,l\, K':K'(K,m). Then

_ [ Fli\ in Rtv Bt

'": \fo elsewhere

defines 2 6/-quasiconformal self-homeomorphism of U with F,lDn--f,.
Thus we have a sequence oi K'-quasiconformal mappings Fn:. U*U with

F,fD conformal, Fn(i):i, Fn: 0tJ*0U. By normality [LV, Theorem II.5.1] there

exists a subsequence, which we continue to call {4}, which converges uniformly

on compact subsets of tl to some function F. Since F(i):i, F must be a K'-quasi-

conformal self-homeomorphism of U [LV, Theorem II.5'5].
We extend F be by reflection. It remains to show lhat F(D) is a circle domain.

Write
F(D) : A : IJ -U7:,,8i, Bi : F@).

Fixa Bj and assume it is not a point. Fix 't!r_,.wr,wr,wn€|Vj. For k:1,2,3,4
choose 21,€.08i so that we:F(ze) and let vS):F,(z). Since åBjI) is a circle,

it follows that the cross ratio

lwr, wr, wz, w47 :,lg lwt), w[n), wY), w[n)f

must be real. Thus 08" is a circle, and D' is a circle domain.

3. Proof of Theorem 1.2

The simplest geometric situation to consider is when D is a circle domain.

We prove Theorem t.2 for such domains and then appeal to Theorem 2.6 for the
general case. The success of this strategy depends on showing that Theorem 2.6

applies and that the hypotheses of Theorem 1.2 are quasi-invariant with lespect

to quasiconformal self-homeomorphisms of C.

The following result is useful [GO, Lemma 3].

3.1. Lemma. There exists a constant B:BQI,K\ such that for any K-quasi-

conformal /: R'*R'

lf tx,) -.f (xill
l.f txr) -,f(*n)l

for all xo, xr , §2€ Rn.

+1 lr[.{ä+n')". ' &: K'\tl-n)
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The next two results show that the hypotheses of Theorem 1.2 are quasi-in-

variant with respect to quasiconformal self-homeomorphisms of Rn.

3.2.Lemma. Let Bo,BrcR' be closed. Suppose condition (4) holds. Then

there exists a constant b:b(a, n, K) such that

dia(fBr) = bd(fBr, fBo)

for any K-quasiconformal f : R.'*R".

Proof. Choose points yt:f (x), yz:f @z\€f(B) and y.{(xJ€/(BJ so

that I 
y, - v ol : d ( fB r, fB o), 2l y, - v rl= d ( fBr). Then by Lemma 3. 1

ffi = 2m='z [e(iä -#*')".-'J ='w@ * l)tt' -',
3.3. Lemma. Let Bo, Br, BrcR.' be closed. Suppose conditions $) and (5)

hold. Then there exists a constant c:c(a,b, n, K) such that

Pl},d(fB,, fBi = cd(fB,' fB,)

for any K-quasiconformal f : Ro*R'.

Proof. For j: l, 2 choose points y j:.f (xj)€f(B;) so that d(fBr,fBr):lyr-yrl.
Assume that d(BL, B)<d(Br, Bo). Choose x6(Bo with d(By B):f,(Br, xo).

Then using (4) and (5) we obtain

lxr-xol = dia (,8)+ d(BL, Bi = @*l)d(h, B) = b(a+l)d(BL, B).

Thus by Lemma 3.1

piq. d(fBi, "fBo)j:1,2ffi = ffi = §täffio lJ - I = $(b(a*l) + 1)'i

The corollary of the next lemma ensures that Theorem 2.6 can be applied;
the lemma is also needed in the proof of Theorem 1.2 for a circle domain.

3.4. Lemma, Let Bo,Br, BrcR' be closed. Suppose conditions @) and (5)

hold. Then

P1\d(Bi,Bo) = (1 +ab+b)d(81, B2)'

Proof. Suppose that d(Br,Bo)<d(Bz,Bo). Then by (4), (5) and the triangle
inequality

d(Bz, Bi = d(Br, &)+dia (B)+d(h, Bz)

= (l + a)d(Br, BJ + d(&, B,) = ((1+ a)b + l) d(&, B).

3.5. Corollary. Assume the hypotheses of Theorem 1.2. Then D is m-collared

relatioe to Bs, where m:m(a, b)>0.
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Proof. To each component B of e-D-Bo we associate the ring

3 : {z(e - B; d(2, B) < ed(B, Bi),

where 2e:U(l+ab+b\ By Lemma 3.4 these rings are contained in D and are
pairwise disjoint. We claim that mod (.R)=2/(1 *ale)z.

Let r:dia (B), s:ed(B, Bs). Note that rfs=ala. Fix zs(B. Define

q(z) -

Then g€adm (,1') where I is the family of curyes in R joining its boundary com-
ponents. Thus M(I) < [ I q'z : n (l + r I s)2, whence mod (R) : 27i M (D >-4 (l * al e\2.

We require the following two results about annuli whose proofs are left for
the reader. We remark that the nec€ssary curves can be obtained by using straight
line segments together with arcs of circles.

3.6. Lemma. An annulus A is uniform with c:O(l),O((l-e-^1-t) as m:
mod (l)* -, O respectively.

3.7. Lemma. Let Å be an annulus with inner, outer boundary circles Cr,Cz
respectiuely. Then points z1QA, z2QC2 cm be joined by an arc o in AvC, such that

for euery z€o
I(o(zy,z)) = min {cslz1-zl, brd(z,C$,

where cr:)(l +fi), bo:O(l), O(e\ as m:mod (A)* *,0 respectiuely.

Here, and belowin 3.8, we use the notation y(z,w) to denote the subarc between

z and w of an arc y.

3.8. Proof of Theorem 1.2. By appealing to Theorem 2.6 andthe quasi-invariance

of our hypothesis with respect to quasiconformal self-homeomorphisms of C, we
mayassumethat Bu:f,-U atdthat D:U-UirBi. Here each 81 is aclosed
euclidean disk or a point in U and either U is the open upper half-plane if -€åBo
or U is the open unit disk if * is an interior point of Br.

Set rr:fi3 (Br), d1:d(Bi,86) and let At:{z(C-Bi: d(z,B)=ed;} where
4e:l l0 + ab +b). Then as in the proof of Corollary 3.5 we find that we have disjoint
annuli A; in D with |At:DBruC; and mod(A)>m:rfl(a,å)>0. Also, we see

thatif z€Äi, then d(2,0D):d(2,.Bi). Moreover, if z(D arLd d(z,DD):d(2,3),
then z$Ät.

Fix z1,zs€D. We must exhibit an arca in D which joins 21,22 afid satisfies

(1), (2). By Lemma 3.6 we may assume that 21, z, do not both lie in some annulus
Ai. By relabeling, if necessary, we may assume that d(zy,0D-no1:6(zp,By) for
k:1,2. Let pbe the subarc of the circle through zr,zrwlich is orthogonalto 0U.

If zeQ.Ay, choose w1,(PaCp and let o1 be the curve given by Lemma 3.7 which
joins z1 andwoin ArvC*; otherwise set wo-zr and o2:{zo}. Next,let"T denote

I Ut in B(zo, r * s)

t o elsewhere.
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t&e set of all j for which p meets C; twice, and for each i€l: let(1i,(r.; be the
points of BnCt with (&., the point first encountered as p is traversed from z1,,let

fr;:§(ht,h), and let y; be the componefi of C; $ri,Cril with minimal euclidean

length. Finally,let
d : ot\) L(fi @r,we) - U., B;) u [Jy y;] u ar.

We show that a satisfies (1) and (2).

By Lemma 3.7 for k:1,2
l(o) = colzx- wyl = col(B@y, w)),

and by geometry for all l€"I
t(y) =- nl2l(ri-hil = nl2 l(B).

Since cr=n12, we conclude that

l(a) = col(§) = cylzl - z2l,

where cr:con/2. Thus condition (1) is satisfied.
We note that the same reasoning shows that

(7) l(a(2, w)) = col(BQ, w)) if z, w(u n B.

Fix z€u. First,suppose d(2,0D7:41r,åU). Then z€B andusing(7)

pi:r lf.rl = crd(2,0D),

so in this case (2) is satisfied. Next, suppose d(2, 0D1:61r, Bo) for some /g:1, 2, ... .

We consider the possibilities z€Ä*, z{Ä7 separately.

Suppose zeÄl. Ther. ke{l,2lvl. If k€{1,2}, then dy:o1,(21,2) and by
Lemma 3.7

l(a) = c2d(2, 81) : czd(2,0D),

where cr:sr(a,ä). So (2) holds. On the other hand, suppose kel-{1,2}. Then
z(y1, and d(2,lD):d(go,B):edr. Now for any (€.Ck

d((,8) = ed1,+ry*dy= (l+a+e)dk,
whence by (7)

pi,n l(a(z;,(;o)) = crd(2, AD),

where cr:cr(l+a+e)1e:cr(a,b). Since /(ye)<nrrl2=(nal2e)d(2,0D), (2) holds.
Finally,suppose z{Äo. Then z€§ and d(2,0O):d12,B)>edk. lf

d(2, B) = 2h, h: r**dx,
then by (7)

PiS 
t(.rl = co 

rTll, 
t(F@t, ) = 2crh = 2c,(L * a)le d(2, 0D),

while if
nh = d(2, Br) = (n+l)h for some fl > 2,
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then since d(2,0O1:47s, Bk)=d(z, Bo\-h=(n-l)h, we conclude that

4in /(ay) = crd(2, B) = q(n* l)h = 3qd(2, 0D).j:1' s '

Thus in all cases (2) holds, so D is uniform.

3.9. Corollary. Let D':D-E where D is unifurm. Suppose there exists

a positioe constant d such that

PJlrdGt,0D) = dlh-Crl for all distinct points h,G€E'

Then D' is uniformwith c':c'(c,d).

Proof. Fix 21, z2(D. By [GO, Theorem 5] there exists a K-quasidisk DocD
with zr,z2€Do, K:K(c). Since d((,lDr)=d((,äD) for (<Do, it is easy to see

that conditions (4) and (5) hold for the quasicircle domain D[:D,-E. Hence

there exists an arc a in D'ocD' joining zr,z, with l(a'1=c'lzr-zrl, and

mini=l,2 l(u)=c'd(z,ADA=c'd(z,0D') for all z€a, where c':c'(c,d).

4. Hyperbolic geometry

The euclidean conditions given in Theorems l.l,l.2 and in Corollary 3.9 can

be stated in terms of the hyperbolic, or Poincar6, metric. The hyperbolic distance

between two points zy, zrin a domain Dce with more than two boundary points

is given by
h p(21, z2) : h r(n-' (zr), n-' (rr))

where z: B*D is aholomorphic projection, B:{tueC:. lwl=1} and hr(wr,wr):
log(11-4ilr|+lwr-wrl)l(ll-wrfrrl-lwr-wrl). If D has at most two boundary
points, then år=0.

4.1. Theorem. Suppose D is uniform. Then there exists a conslant a:u(c)
such that

(8) h-dia(Br) = a

for any two components Br, B, of e-D, where h:he-r,,

Proof. Conditions (3) and (8) are equivalent.

A.2.Theotem. Let Bo be any nondegenerate component of e-D. Suppose

D is a K-quasicircle domain and there exist constants a, b such that

(9) h-dia(8r) = a< **
and.

(10) h(BL,B)>b>o

for any two components Br,Bz of e-D-Bo, where h:he-no. Then D is uni-

form with c:c(a,b, K).
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Proof. Conditions (4), (5) and (9), (10) are equivalent.

4.3. Corollary. Let D':D-E where D is tmiform. Suppose there exists

a constant d such that

hr((r", C) > d > O for all distinct points (r, h€.8.

Then D' is uniform with c':c'(c, d).
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