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ON THE DIFFEREIYCE QUOTIENTS
OF AN AI\ALYTIC FUI{CTION

JULIAN GEVIRTZ

Abstract. For domains D, "RcC we define

E(D, R) : {(f (b)-f (a))l(b-a): f'(D)gR, a,beD}.

The set E(D, R) is determined for certain classes of convex domains D (including
disks) and thin convex ring domains .R. As a special case we obtain sharp bounds
for the global deformation effected by conformal quasi-isometric mappings with
small strain in such convex domains.

Introduction

If / is a real-valued differentiable function on an open interval "7e R and

f U)e E, then by the mean value theorem ftb,al:(f(b)-f(a))l(b-a)€E for
any pair a, b of points of "I. As is well known, this is not the case for analytic func-
tions. Indeed, if R=C is any nonconvex domain, then there exist functions /
analytic on the unit disk / for which f @)e_R, but for which f{b, al is not in
-R for some b, a in /. For any such nonconvex region -R it is therefore reasonable
to ask what values the difference quotients f lb, al of an analytic function / on
Ä can take when the values of f'(z) are constrained to lie in R. More generally,
one can consider

E(D, R) : {"flb, al: f (D) e R, a, b<Dl,

for any two regions D and -R. In this paper we determine E(D, R) for certain classes

of convex D and thin ring-shaped R, but before explaining in detail exactly which
regions we consider we motivate what is to follow with some heuristic considerations,
and in the course of doing so set down some of the notation to be used in subsequent
sections of this paper. The author hopes that the index of notation to be found at
the very end will be ofhelp to the reader.
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As will be seen later on, for the regions R we deal with, there is no essential

difference between what happens in the general case of bounded convex D with
smooth boundary of positive curvature and the particular case of D:/, so that
in this initial discussion we restrict ourselves to the latter; for convenience we abbre-

wate E(/,.R) by ,E(R). In addition, the reader might find this introduction easier

to follow if he keeps in mind the special and perhaps most significant case in which

R: Au: {z: I <. lzl <. Ml, M > l.
It is easy to see that .E(Å)Sconv(R), so that the interesting points of åE(rR) are
those not on åconv(iR). For example, when .R:l*, and M is not too large, one
expects \E(AÅ to consist of the circle lzl:M and an interior circle of radius
smaller than l. (For M sufficiently large E(A*) is the entire disk lzl=M; in fact
this is the case for any M greater than the so-called John constant, the numerical
value of which is not known.) Since for nonconstant f', flb,a)is a nonconstant
analytic function in each variable, the extreme behavior of this expression is to be

expected for a,b(O/. However, it appears that for the regions JR that we consider
extreme behavior is in addition only manifested as lb- al *0, so that one is naturally
Ied to a corresponding problem for functions in the upper half-plane H. Since the
set of values {f[B,Aj: f'(H)q_R] does not depend on which points A*B on
0H are chosen we are motivated to study the functional

(0- 1) + {'_rh(z) dz, for h(H) q R.

Function-theoretic intuition suggests that the extreme values of this functional
are attained when å is a one-to-one mapping of ä onto the universal covering surface
.ft of R, even though purely geometric intuition might suggest otherwise, as we
point out below. Let §:{z: 0=Re z=l}, and let ( be the one-to-one mapping
of äonto Sunderwhichthepoints -l,0and I of 0H correspondto *-i,0 and

- -i of å^S, respectively; ( is given analytically by

t@): infi+r,
where we understand the branch of ln (z- ll@+l) to be the one which is single-
valued outside [-1, U and tends to 0 as z tends to inflnity. Let g:g" be any fixed
one-to-one mapping of ,S onto ,R. then all the one-to-one mappings of 11 onto fi
are given by S(«pz+d+ia), where p=g and q,a€R. After a simple change
of variable we see that the values of the functional in (0-1) as å ranges over the
family of one-to-one mappings of .FI onto ,R are given by

c(A'B'o): *Iis(ce)*ia)dz A< B' a(R'

Naturally, only certain values of Ä, B and a can be expected to yield points
on the boundary of E(.R). Assuming that å,8(R) is a smooth curve and that co:
c(As, Br, ao)€ää(rR), the three partial derivatives of c(A, B, a) at (Ao, Bo, cr) must
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all have the direction of the tangent to äE(R) at co. One is thus led to seek functions
A:A(q), B:B(u) defined implicitly by the condition that the three expressions

* t : s (t @\ + ia) dz - s (KA) + ia), - * ['^ s G @l + ia) dz + g (E @) + iu)

and

s' (((r) + ia) dz

imple manipulations show that this condition is

oB
iJo

all be real multiples of each other. S

equivalent to

(0-2)

provided, of course, tUat !)S'(«4+t)dz*0. I believe that in a great number
of cases the part of äE(rR) not on åÅnå conv (R) consists of a union of curves
parametrized by Z(a):c(a@), B(a), a), where A(a) and B(a) are defined irnplicitly
by (0-2), and I expect that if complex analysts become interested in this question,
a very general theorem to this effect will ultimately be established. In this paper
this conjecture is verified for a certain class of thin ring domains R which we now
describe.

Let -R, be a ring domain bounded on the inside and outside by Ce and Cr,
respectively. As is well known, for some M>l there is a one-to-one conformal
mapping F of A* onto.R, such that the circles lzl:l and lzl:M correspond to
Co and Cr, respectively. We shall assume that

C6 is a conoex curue which has strictly positiue curuature and F"' is bounded
in A^for some m>|.
The function G(z):p(r(tnM)21 maps § onto "Rr; more precisely, it maps §
onto the universal covering surface of År. Also, G is periodic with period 2rilln M.
The function g(z):g"(z):G(e4 consequently maps .S onto the universal covering
surface of the ring domain R, bounded by Co and the curve C" parametrized by
G(e+it), O<t=2rlln M. We shall prove that

0-3. Forany Rt as aborse there exists ee:e6(År)>0 such that f Q=e=eo(Rr),
then there arefunctions A:A(a)=-l and B:B(a)>l such that

t S 
a G' (e€(z) * iu) 

o,r JJ" z-llml
t [:o'b€@)*ia)dz l:,-{ :0,

and which furthermore have the property that

0-4. If .R, is as aboue and D is a bounded conuex domain such that 0D has
strictly positiue curuature and such that the third derioatioe of any one-to-one mapping
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of / onto D isbounded,thenthereexists er(D, Rr)=O suchthatfor 0=e<er(D, J?.),

E(D, R) is bounded on the outside by C, and on the inside by the curoe C! para-

metrized by

z(a) : #16 I'il, of*<r»*ia)dz, 0 < a = 2nfinM.

We point out that although the equations of (0-3) alone do not uniquely determine

A and B, in Section I we give intervals in which ourfunctions l(a) and -B(a) are

defined in a unique fashion by these equations, so that the tbrmula for Z(a) in (0- )
is quite explicit.
When (0-4) is specialized to the case in which Rr:An one has the following, after
the symmetry of A.is taken into account:

Let D be as in (0-4). Then for all sufficiently small e>0, l=lf'(z)l=e" in
D implies that

d =- lflb, at = $ 
ilreel(,) dz for alt a,be D,

where B>t is the largest number for which

,^ll,_,*a,\: o.

Moreouer, these bounds are sharp.

Thus this special case of (0-4) yields sharp bounds for the global deformation effected

by conformal quasi-isometric mappings with small strain in any convex domain
of the type described. (The reader is referred to [3] for a discussion of quasi-isometric

mappings.) It is of interest that the extremal mapping for the lower bound, f(-z):
I;eeE(odL maps äonto a domain whose boundary contains two spirals, the ap-

pearence of which might run counter to geometric intuition since they seem to
imply a wasteful use of the limited stretching imposed by the condition | =l f (2)l= ee .

In the hope of making the subsequent sections easier to follow, we now explain
the basic idea of how (0-a) is to be proved. First of all, it is clear that for sufficiently
small e the curve C" is convex so that for such e it forms part of the boundary of
E(R"). The difficulty lies in showing that the rest of the boundary is made up of
C]. We begin in Section 1 by identifying intervals for A(a) and B(a) in which they
are well defined by the equations in (0-3) and in the course ofdoing so we show that

-l-A(a) and B(a)-l are of the form exp(-n1/2lv(u)(t+O(6))), where

r(a):p" {G'(ia)lG'(ia)}. Among other things, this allows us to conclude that, as

one would expect, the curve C] is convex. The core of the proof of (0-4) consists

of showing that

* {iot*tk)+iu)ctz, (A - A(a),8 - B(a)}
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lies outside of C] for any function 4 on H which satisfies 0=Re fu(z)\=l and

Im {a (i )}: O. Since, as is shown in Section I , the direction of the outward pointing
normal to C! at Z(a) is that of l\G'(e((z)+ia)dz, we can do this by showing
that

*{ {: o?q@) + iu) dz - (B - A) z(u)
0,>(0-5) G(q, a) :

I:o'G'rQ)+iu)dz
unless 4:(, in which case the value of this expression is obviously 0. To prove
(0-5), we wnte q as (+ä, so that by the definition of €, ö is given by the Poisson

integral formula,

ö(z) : Pr (a) : + I:_P@, t)u(t)dt,

for some u satisfying

0=u(t)=l a.e. on (-1, 1) and -1=u(t)=0 a.e. on (--,-l)u(l,-),
where

P(r, t) : l+zt 1t
I

--r-

It follows from our assumption about F that G"'(z) is bounded in {z: 0= Re z= p}

for any q<1, so that

G (ea Q) + iu) : 6 7rg 1"1 + iu) + G (e( (z) + ia) eå (z)

+ f, c" (161r) + ia)ez ö2(z) + e3 o(å3(z)),

rvhere the constant implied by the big-O depends only on .Rr. Hence the left-hand
side of (0-5) is given by

(0-6) G\t,a):rf]*v

t2*7 Re

where

, ^ I i Iic,(,rtz)+ia)p(2,)dzl ^ [* t:9ry:9 *I
v(t, a) : ""1;-17q*;q_ l: ""161.

(fhe denominator has not been written explicitly in the eB term since, as follows
from the results of Section l, it is bounded away from 0, and consequently may be

implicitly included in the integrand O(ö3(z)).) It is relatively easy to show thatV(t, q.)

has the necessary sign (positive on (-1, l) and negative outside [-1, 1]), but since

it vanishes at t I and moreover is of order e outside of any neighborhood of lA, Bl,
the proof of (0a) based on (0-6) is not straightforward and requires a fairly careful

(t, u)u(t) dt

I: o" ('€(r) + ia) ö2 (z) dz
* eB t: o (6s (z)) ctz,

{unG'(r((z) + ia)dz
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analysis of the properties of Y(t, a), to be given in Section 2, and considerable
manipulation of the integral in the e2 term. Fortunately, the eB term can be dispensed
with relative ease. In Section 3 we derive from (0-6) a lower bound for G(4, a) which
is strictly positive when z is not 0 a.e. on R. Finally, in Section 4 we use this lower
bound for functions in the half-plane ä to prove (0-4).

The method used in Section 3 to establish the lower bound for G(4, a) represents
a refinement of that used in [1, Section 2] to obtain a lower bound for a similar but
simpler functional. The arguments presented at the end of that paper can easily be
modified to show how the determination of \E(D,.R,) yields sharp first order uni-
valence criteria for functions in D.

In what is to follow we use the big-O and big-g notation in the following sense.

If X and Y arc two expressions, then the statement X:O(Y') (X:O(f)) shall
mean that there are positive constants e, and 7 which depend only on ,R, and D
such that lXl=TlYl (X=TY) for all e((0, er). (Actually, in Sections l, 2 and 3
these constants only depend on -Rr.) Thus, for example, by our assumption about
R1, G'(e((z)+w), c"(e1127*ia) and G"'(e((z)+ia) are all o(1) and le'@«r)+to)l
is O(1). The reader should take note of these facts since they are used many times
in the sequel without further comment.

The reader is advised that throughout x and / are used to denote real variables,
so that in particular integration with respect to either of these variables is to be
understood as being performed over the relevant subset of R.

Existence of and estimates for A(a) and .B(a)

First of all, we observe that the assumption that the curvature of Co be strictly
positive simply means that

(1-1)

To facilitate the analysis we employ the following notation:

D(A, B, q : I: c @{z) * ia) dz,

N-(A,B,u)- [iffiPrr,
N*(A,B,a)- I:WOr,

In order to establish the existence of A(a) and B(a) which satisfy the equations of
(0-3) and for which (0-4) is true we need to analyze D, N- lD and N+/D in the
vicinity of where it turns out A(a) and B(a) must lie. Let A:-|-e-otG and

B:l+e*rtli, where nl21/rr=a,b<2n1fi, with r.:p4x{r(a): a(R} and ro as
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in (l-l). Since Re{((x)} is 0 on (-1, l) and is I on R\t-l, ll, and since

Im {((x)}:(lln)ln(lx-ll/lx+ll) is an odd function, we have that

(r-2) Iic4la*: o (l:-"''E m*a*)

- n( e-"tz{41 
- ,: ,t-7;-): o(r"), for any n = o.

Since B-l:2*O(ez), we have

(l-3) D(A, B,*> : [iG $a)+G"(ia)e((x\*o(ez('z(x))dx

: 2G (ia)*G"(iq, [: {$dx+o(ez) : 2G'(ia)(t+ O(e)).

Throughout the paper we shall repeatedly have need to integrate over the contour
E defined by

(14) E : l-2, Alv{z: lzl : 2, lm z>}lvlB,2l, oriented from ,4 to B.

Now' 
2rm {N- (A, B, a)lD(A, B, a)}

:mflffi t" o4

:r*{1,**##*.r(W4
If we take into account that ((z') and (z- 1)-t are bounded on the semicircular

portion of ,E and that ((x):O(t//ä) on R\[,4, B], we have that the O-term of
this integral contributes O(e ln (B- 1)):O(/ä). Since Re {(1x1}:1 on R\[,4, B],
we see that e R" {/, ((z)l@-l)d4:O(1/;) ako. Using these observations to-
gether with the fact that I-{/, (z-l)-tdz}:-n, we conclude that

(t-5) Zlm {N- (A, B, a)lD(A, B, u)l

[ ,-lx-ll I

: - z -rm b ffi + [,_,,n u,,,,,# 14+ o U;)

: -n-"!:) /;r# dx+o({e)- -"+*-b'z+o(t/;).
In the same fashion one shows that

(l-6) 2lm lN+ (A, B, a)lD(A, B, a)| : -n*'g]:' +O(l/;).
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In addition, we have

*r^ {N- (A, B, a)lD(A, B, a)}

_ r,, 1 @ - l) N- 9!, B, a) G (e€ (B) + ia) _ G'=(et @) + ta) 
1 .- ""1 -TD@,*§) l

Since N-(A,B,a):611n(B-l»:O(1/y'ä), from (l-3) it follows thar this last
expression is

m1-9§9!91+o(fe)
But

ffi# : fr * /; ffi «q + o (esr, (, (B)).

Since ((B): O(tl{i), and Re {((r)}:1, we have

#t^ {N- (A, B, a)lD(A, B, a)\

: -l;*rn(,8- r)+o(t/;): *b+o0/;).
Very similar arguments show that

*r* {N* (A, B, a)lD(A, B, a)} : ff r* o(r/;),

a

#r^ {N* (A, B, u)lD(A, B, a)} : 97s21,

a_-d;r* {N- (A, B, a)lD(A, B, u)\ : 91621,

By the formulas (l-5) and (l-6) and these estimates of the partial derivatives of
Im {N-/D} and Im {N*/D} with respect to a and b, it follows that the image of
the square rl2fi=q,b=2nl1lro ulder the mapping

F(a, b) : (Im{N- (1, B, a) I D (A, B, q,)}, Im {N 
+ (A, B, a) I D (A, B, a)})

covers (0,0) exactly once, so that the equations in (0-3) have exactly one solution
there; that is,

l-7. For sfficiently small e=O there exist solutions A(a) and B(a) of the
equations of (0-3). Furthermore, A(q) and B(u) are continuous and periodic
I 2nt
lof 

period t"M) 
qnd -l-Ala) and B(u)-l arebothof theform
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In what follows we shall frequently abbreviate A(a) and B(a) simply by a a,ld B,

respectively. This should cause no confusion.
A routine but tedious calculation using implicit differentiation on the defining

relations for A(u) and B(a) given in (0-3), together with the differentiability prop-

erties of G shows that A'(u), B'(a), A"(a) and B"(a) are all O(exp (-"12ffi)).
From this it follows that the parametrization Z(a) for Cj of (0-4) satisfies

(r-8) z(u): ## I:c${z)*ia)dz

*E (t e(eqal + ia)- a' G(e((A) +ra) + t I:G', @((z) * n) az)

: id(ia)(l*O(e)),

where we have used the fact that G'(e((z)*ru):G'QA+o@((z)). In the same

way one sees that Z" (u)= - G" (ro) + O(e). Thus lm {2" (a)l Z'(a)}:r(a)(l +O(e)),
so that

l-9. C: is conuexfor e>0 sfficiently small.

Finally, we estimate Z(a) itself. We have, by (l-2)

Z(a) : * t: G (e( (z) + ia) d,z

: u, I' (o 1*1 * G' (ia)e((x) * 
gP" r(')) dx * o (ez)

:G(iu)_ffiI,-,,,,ffi,,*o(r*{,^,_,,,.,,,,,,',ffi,"),
so that
(1-10) Z(a): G(ia)-e2G"(iu)L+O(es),
where

t:#['_, rnrffiar.
We end this section by showing that

l-ll. The direction of D(A(a), B(a), a) is that of the outward pointing normal to

Q at Z(u).

To show this we must prove that iD(Å, B, a) is the direction of the tangent to C!
(in the positive sense) at Z(a). From the formula (t -8) for Z'(a) thrs will follow if
we can show that

(l-12) and
l: rb{4 + ia)dz - (B - A)G (e((A)+ ra)

l:o(t((r) + ia) dz - (B - A)G('((B) + ra)
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are real multiples of |D(A,B,a). However, since iN+(A,B,c) and iN-(A,B,a)
are real multiples of this number, so is

| {u * tn, B, u) * N- (A, B, u)) : I i c 1rq 1r1 * ia) ez (' (z) dz

: BG (€(B) + ta) - aG (€ (A) + ic,) - [ i o @ra + ia) dz,

similarlY' 

*w-(A,B,a)-N+(A,B,a))

: [ ) e 1uq 1r1 * ia) e(' (z) dz : G (e€ (B) + ia) - G (e€ (Å) + ia)

is a real multiple of iD(A, B, a). since this immediately implies the same for the
two expressions in (l-12), (l-ll) is proved.

2. Properties oIV (t, a)

We begin by looking at \V(t, u)10t. For t*A, B we have

ryL:*"{;il:s.a f^%9,,1
:""1*WilWP*l,

by (l-3). For A<t<B we can perform the integration over the contour E of (l-4),
so that

(2-t) %*: n,{aYr,'»- ,,'*'w?1!.)*ou'r' o,l.

Since /l (z-t1-'6, is real, and ((z) and(z-t)-, are bounded on the semicircular
part of E, and since by (l-7), ((x):O(tl() for x€R\lA, Bl, we have

Y*L: *" {#/, -2, A,u(8,21 
- ## g + f,$ a.}*'u,

er(a) 1 '^ 
lx- ll

: -ff l r-2, Atu (8, 2t # * * o (l 
r- r, rru <r, r> 1x!' a*) * o 61'

From this it follows that

2-2, There exists a constant K:K(RJ, 0<K=1, such that for e>g s11fi-
ciently small and all a,\V(t, a)l|t is negatiue on lK, B) and positiae on (A, -Kl.
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Furthermore, we have that

2-3. For sfficiently small e>0 and all a,-0Y(t,a)1fu:a(1/il@-l\) for
It-tl<(B-r)t? and 0V(t,a)l0t:o(-lilU+t)) fo, lr+tl: -@+t)12.

To see that Q-3) is true, let lt- 1l=(B- l)/2. Then

I r-r, n urr,rrqfu :' (E:)'
and

er(a) 1 '- 
lx- 1l

- T J t-z,A)u(B.zt # n. - - #- tiffi- *.'(ri)
For fr-11=(B-l)12 and x€(8,21, lx-tl=3lx-1112, sothat

- "'9t y ffia. = - 
oYr-S) 

fiff$-.dx : e(,$),
which proves the flrst lower bound of (2-3). The lower bound for the interval around

t: -l is established in exactly the same fashion.

We now examine Y(t,a) itself. For rQ(A,B) we proceed as we did in dealing

with |V(t,a)l|t and obtain

(2-4) Y(t, a): *, {4H,# f^fr *9* "l
: R" {,(r 

+-9G)) I,(* *, ffi I + o (ru))d,l

,- lx- ll
: * * # I r-,, n u*,'4* dx * o (l 

r-,, o,u,,,,,fi *) * o @)'

where we have used the fact that Im {l'^tr-t)-rdz}:-n for t in (A,B). Thus,

2-5. If Me(O,l) is any constant, then for all sfficiently small e>O and all
a, V(t,a):O(1) on f-M,Ml.
Since y(+l,a):0 by equations (0-3), facts Q'2) and (2-5) imply that V(t,a)
has the correct sign in (A, B), that is,

2-6. For s>O sfficiently small and all a, V(t,a)>g on (-l'l) and

V(t, a)-0 on (A,B)\[- 1, l].

To finish the analysis of V(t, a) for tQ(A,8) we note that from (2-3) and the fact

that V(tl,a):O it follows that lv(4d:A(li) for lr-ll:(B-l)12 and for
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lr+11: -(A+1)12, so that we conclude from {2-Z) and (2-5) that

(2-7) lv(t, a)l - lfilq

for t in {,rU,B): lr-lt =+ and lr+11 =- +l .

Lastly, we analyze the behavior of V(t, a) for /€R\[,,4, B]. Since for
,€R\[,4, A, l'^k-t7-r6, is real, from the second expression for V(t,a) in(24)
it follows that for such / we have

t/(t, a) : 
""{+ tG ffi * * ff * o 6'1 fl * o (": f' !'t \d,l

On the contour lA,A+ilvlA*i,B*ilvlB+i,B), ((z):O(tl1fe), so that, if we
integrate over this contour, the contribution of the last three terms of the integrand
is O(e(ltn U-ell+ltn 1l-41)). Upon taking into account the boundedness of
Re {((z)} we have that

r, l'- 1l

(2-8) v(t,a) - -#- t:rydx+o(e(ltntt- Atl+ lrn 1r-r1l)).

Let

r, l,'- l! ,r, !'- ll(2-s) x(t) : f_,-#ax: z li ;u'Ii" o*.

We shall show that

2-10. For all sfficiently small e>0 and all u; V(t,a)<-9er(c)x(t)120n2, for
,€R\[], B].

First of all, it follows from (2-8) that there exists an so > I such that for sufficiently
small e>0 the inequality of (2-10) holds for t€[-so, §r]\H, Bl. Now, for lrl=so
we have

y (t, a) : *" {* {.--, ffi * a*l * o (.1,,, -rro,,, 
e r 

( (x)r dx + e2)

er(a): _jffx(t)+o(tz),

since 6(x) is pure imaginary on [-1, l]. Because x(t)>O for lrl=1, it follows
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that (2-10) is true for so=lrl<,s1, for any fixed sr. Finally, we note that for lrl=so

v (t, a) : *" {ad:eo I 
u 

c' 1rl1,'.1 + *1(Z;=,$)arl

: ""{dqa l)c 1,as1+iu)zdz}t-,

+ Z;=,""{q I'^$+o(e(1x1r)(r + o@'a))* dxlr",

where we have taken into account the definition of D(A, B, a) given at the beginning

of Section 1 and (l-3). However,

* {;/: 0 + o (ec(x);)(r + o1e1) * a*l

: o (e {,^rca»x, dx) :, 
[(o,j-, )' 

,),

since lll,lBl=(s0+l)f2, for e sufficiently small. Also,

""{;#m [' n (,c@+a),a,\: S I'-,*nffid,-to(ez).
Thus, for lrl=so

v(t, a) : (# f-, , rnli# dx+ o(e\)rz + o(st-s).

Since

,4(t) :- (/:, *nffi a*),-, * o (t-'),

by appropriately choosing §1 we see that the desired bound holds for lfl=sr and

all sufficiently small e. This finishes the proof of (2-10). It is to be noted that (2-10)

implies that V(t, a) has the correct sign (negative) outside of fÄ, Bi.

3. A lower bounil for G(rl, a)

This section is devoted to deriving a positive lower bound for the expression

GQt, a) deflned in (0-5) based on (0-6), as outlined in the introduction. To accomplish

this end it is necessary initially to break u up into three parts u:ut+uz+us, where

ui:ufi; l=i<3, Xi, Xz, and 1, being the characteristic functions of the sets

x, : 
{te{,t. 

B): lt - U = }and lr+ 1l = -'i'\,
'Xz:(l,B)\Xr,

trs : R\H, B],
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respectively. We shall denote PI(a) by ä;. For a bounded measurable function a
on R we define

1,il : /I_ ffia,.
We shall show that

(3-1) G(n, a) : g(sstz(y(e) llarll'+ llrzrll) * es llzsll),

where we are using the abbreviation

?(e): T@,a)- exp ("{Trrr;
We begin by decomposing the right hand side of (0-Q into five parts as follows:

GQr, a) : e(Gr + G2 + Gs) + e'(G4 + Gu),

where the Gi:Gi(4, u) are given by

6,, : I *,Y(t, a)ur(t) dt,

gr: I *rv(t, d)uz|) dt,

6, : 
"1,, 

v(t, a)u,(t) dt ++*. {/: 
gffi 

ö!e) dzl,

c : ne {/ : w (ö,(z) + 6,(z)) ö,(z) dzl,

Go : Re u:(w + eo (ös(4)) dzl'

First of all, we note that by (l-7), (2-3) and Q-6) it follows that

(3-2) e,: o(lit(e)lla,ll'),

and that by Q-A and Q-7) it follows that

(3-3) G,: a(rfi11u,11).

Next we establish a few estimates that we will need for the analysis of the other
terms. In the first place, it follows from the translation to ^FI of the well known
theorem of Riesz on the p-nonn of the conjugate of a harmonic function in Å that

3-4. If lu(r)l=l a.e. on R and ä:PI(u), rhen l'_r1d1x1yax:O(llz'll):
O(llulD for each n=2.

We observe that

3-5. If lu(r)l=l a.e. on R and ä:PI(a), then frlap\ypzl:O(llul} for
each n=2.
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To see this, we note that [r-r,oturr,rrlä(x)l' dx:O(llulD by (3-a). That the part of
the integral corresponding to the semicircular portion is also O(llulD, follows from
the translation to .F/ of the fact that for a function feHt(Å), ['-r171x11Ax=
Ql2) I3"lf @'\ldo (see p,pase 1,221).

We also have

(3-6) I r_r,n urr,rrlör(x)l 
dx: oft,(s)llarll') for each n> 2.

To justify this we observe that for xe(8,21

rö,(x)r :l* [ .,## atl: o(t .,*W at) : o(#)
so that

!io,r*)r a* : o (tu,n l:#;:, (d%) : o (y'-' (e)ra.u").

In the same manner one sees tnat !!rl6t@)l"dx:O(y'-'(r)llarll'). Since llrz.ll=
B-Å-2:o(1/y(r)), we have (3-6).

We can now derive an upper bound for the term Gu. If we perform the integ-
ration over the contour E, we have

lGul : o ([ ,lö,@)|', + lä,(z)l'+ e (lä,(e)l'+ lö,(z)l'+ l6g(z)f)ldzl)

: o (llu,ll* e ll a, ll + t rla:_ {4r * e p {z)18 ld.zl),

by (3-5). However, ö{z):g711urll) on the semicircular part of E by the Poisson

integral formula. We therefore conclude from (3-6) that

(3'7) a: o(v(e)llurll'*llurll+ellu'll).

Now we turn to G, which is by far the most troublesome of the five terms.

Since e((z): O([e) onE, we have by (1'3) that

"" {t,W 6's(4 dzl: *" {I# [,tc" tio) + o (/;))6lk) d4

: *"ffi |iula>al+o(G I,tös(z)f tdzt).

Using the fact that ä3(x) is pure imaginary on(Ä, B) and the case n:2 of the bound
(3-5), we then conclude that

(3-8) t""U:gW ö?@) d4 : * t: ö3(x) dx + o(estz lu,y).

We examine the integral appearing on the right hand side of this last formula and

begin with the part corresponding to [-1, 1]. To do this we express uras o*8,

251,
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where o and B have support on R\p, Bl and are even and odd, respectively. Since

- 1=as(x)=0 a.e. on R\H, Bl, we have

(3-9) -l = o(x) = 0 and lf(x)l = min{lo(x)l,tl2}.

From the parity of o arrd P and the fact that Å=-l and B>1 it follows that
outside of R\[-1, 1], the functions ä,:PI(o) and är:Pl(p) are given by

ö,(z) : * t: å% r, and öp(z) : * t; ffp$ o,

Since ä, and ä, are therefore odd and even, respectiveln we see that

/1, ,3rrl a, : I'-,ä?(x)+ öfi(x)dx.

For fxf =1 and l>1 the expressions 1/(x2-12) and t(xz+l)f((xL-lr)(lf /2)) are
both negative, so that for lxl= I we have by (3-9) that

and

we have that

(3- 10)

From this we conclude that

l/', uår,r *l = + f x(t)to(t)t.. + fl1',W o.lrrr, r,,
where (3-9) has been used again and r is the function defined in (2-9). Since n3(.r)=0
a.e., it follows from (2-10) that

[ *,v(t,u)ur(t)dt =_ X{l[ *,x(t)ur(t)dl

: Wll *,x(t1(o(t1+ §Q))dtl: W I: xg)lo(t)ldt,

the last equality following from the evenness of z and o and the oddness of f. Hence

[ *_v(t, a)ur(t) dt *ry {'_rörr(x) ctx
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In [1, Appendix] it is shown that

,,(t)=;,l-,%r.,
so that since o(r):(as(r)*as(- t))12 wehave from (3-6i and (3-10) that

(3-l l) *, = ffi I ,,,=r*G)lur(t)l 
dt + o (l 

rn,_rrurr,rrll6z(x)lz 
dv+e'/,llrzrll) .

Now we examine the integral in the O-term of this lower bound. Let s((1,312)
be fxed for the moment, and let rz:ua1$tl4=sl> "v1:t'ts-v,e ätrd ,ti:PI(vJ, i:1,2.
It follows from the Poisson integral formula that ).r(x):O(llvrll/(s- 1)) on lA,87,
so that

Irl, -1rurl,ar 
P''(x)12 dx:' (##&)'

Also, by (3-4)

/,r, -',r,r, r, l't'(x)l' ax : o(llvrll)'

Thus we have from (3-11) that

(3-12) G3äwfo,=L%U)lu,(t)|dt+o(,,,,,il++#ä*eglztl,,il).

Lastly, we come to Gn. Here again we work with ä, expressed as ir+i, as

above. We have

lt:W(6,(z)+ö,(z))),,(z)dzl:oU,(lä,(z)la|ö,(z)|)|A,(z)||dz|)
: o ( l, '»,(r)l' * lö,@)l' + PaQ)1'z ldzl) .

Since we are assuming that s-312, it follows from the Poisson integral formula
that the part of this last integral corresponding to the semicircular portion of E is
O(llurllz+llurlls+llvlll'z). Also, by (3-4) and (3-6) it follows that the rest of the integral
is o(y(e)llarll,+llr,rll +llyrll), so that

_ o(r(e) il urll'*llurll + llvrll).

for x€.1Å,87, w€ have that

, (#{i I : tö, (x) * ä* (x)t d4

,[w) ,

Since,

Ir:

(ä, (z) + ör(r)) l,r@) azl

1r(*) - o(lt vrll i(s - t ))

(z) + ör(r)) 1r@ dzl-

4 +ia)
B, a)

above,

P,u,

I f, G" (t€(z
lJ n D(A,.

as observed i

G" (e((z) * ,

D(A, B, d
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by (3-{ and the Schwarz inequality. Thus

O : (rtrl ttr,ll' * llz,ll *,,r,,, *IqHt).
From this together with (3-2), (3-3), (3-7) and (3-12) we have

G(n,a)= o(esr'(r(e)llz,ll'+ n ,X1)+ffi I o,=,*t)lu,(t)ldt

., (#1$p-+ e' llvlll +eul'(llv,ll + 11,,il))

+ O (e' 7 1e1 I lurllz + tzll r, ll + e' 
f f r, f f * 4l&*5@) .

It is easy to see from the formula for z in Q-9) that 7(s):i11lx(t)lQ+t'z):
f <l<s)*- äs s*1. It is also easy to see that x(t):9111+rs)-') for ltl>I.
Thus we have

G(n, u) = o(esr,(7(e) lla,ll, + llzrll)) +e'z ffi,«tl+ o(r)) 1vr1|

(
* 

[o 
u, * o (e5 t21., (*-årrJ . o (ry)),,,,,,

There exists an s such that the coefficient (3rol20nz)T(s)+O(1) of llvtll is positive.

Then for this s, A(e')+O(e5r\+O(ezl0@)(s-1)t)) is O(e'z). There exists a p=O
such that if llur*uÅl<p, this last O(ez) together with tne O(e'1/11ur+ur11l(r-l))
is again Q(e2). Finally, if llul*u2ll=p, then for sufficiently small s, lla2ll >pl2 and
G(fi,u):97su2). This establishes the desired lower bound (3-l).

We end this section by observing that as a consequence of (0-6) and (2-5) it
follows that

3-14. If g=0 ,s any constant, then G(9, a):g(e) for llurll=-q.

4. Proof of (04)

Let D and R, be as in the statement of (0-4). For sufficient§ small e>0 the
curve C" which forms the outer boundary of .R" is convex, so that E(D, R) is con-
tained inside C,. It is very easy to see from the definition of Cj that E(D,.R) con-
tains the ring lying between C" and Cj, so that in order to prove (0-4) we only have

to show that E(D, R) lies outside of C] . Without loss of generality we may assume

that 0€D. If for a given e>0 there is a function f on D for which f'(D)=R"
but for which flb, a1lies inside C] for some a', b'€D, then

I >- §6 inf {s: flb, al is inside C: for all a,b€rD} >. 0.
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It is easy to see that there then exist a,bQ|(ssD) such tlnat flb,al€C]. Thus,
all we need to do to prove (0-4) is to show that

4-1. There exirls ee>0 such that if O<e<eo and f '(D)SR', then f[b,a] lies
outside of C! for all a,b(\D.

We begin by showing that

4-2. If g(e):sup {lb-al: a,b10D, f'(D)=R", and flb,al is inside c*,
then p(t)*Q 4i 8*0.

To see this, say f'(D\=R". Then f'(z):G(ea(z)+,a), where O=Re {ar(z)}=l
in D, Im {at(0)}:g and a(R. Let q map I one-to-one onto D with q(0):0.
We have

* t:a@)dz : #l t v,,t,(,(,))d, 
: O\ [, c»(q(,(,)))ld (,bl)]a",

where ö is the curve q-L(la,ål), and where s denotes arc length. Since by our as-
sumption about D, inf {lq'(z)l: z(Å}>0, there exists p(f)=O such that for all
pairs of points a,b€|D with la-bl=T, the real part of this last integral is bound-
ed below by

p(r1 ['" xe {a(q(eto1)} de.

Thus, for all such a, å

(4-3)

where v(7)>0 is again a constant which depends only on 7. (It is to be noted tbat
for a given D such a v(T) can be calculated explicitly.) We have

.flb, al_ * {u o(rr(z)+ia)dz

- 
1 

fu,(o (ia) + G' (ia)ea(z) + o (r, *, (z))) dzb-a J a

(4-4)

= c1in1a§-@- tret * ** to@zo'2(z))dz.

If we take either of the arcs of åD joining a and b as the path of integration, it easily
follows from the case p-2 of Riesz's theorem on the p-norm of the conjugate of
a harmonic function in / and the fact that O=Re {ar(z)}=l, that
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From (4-3) and (4-4) it therefore follows that for lb- al=T

eG'(ia)
Re {ar} ds > A,

for e sufficiently small. Since the direction of G'(iu) is that of the outward pointing

normal to CsatG(ia),therc is an er(7)=0 such that for e<sr(I), a,b(OD and

lb-al>T, the point ftb,atr lies outside of C, and therefore outside of C]. This

proves (4-2).
Wenowbegintheproof of (4-1)itself. Letw(z)denotethefunction (l+iz)10-iz)

which maps ä one-to-one onto Å. Let q(z) be any fixed one-to-one mapping of /
onto D. By $-2) we only need to show (4-1) under the additional assumption that

lb-al=q(e). Let f'(D)?Å, and a,b€LD with lå-41=S(e). By interchanging

a and b if necessary, we can assume that in going from a to b along åD in the

positive sense, the shorter of the two arcs of 0D connecting these two points is
traversed. For e suff.ciently small and each a(R there exists a unique t€(0, l) such

that lw(rA(a)\-wkB(a))l:lq-L(a)-q-'(b)1, and consequently there exists a

unique åiu such tirat q(eww(cA(u))):a and q(eww(rB(a)1):6. Furthermore,

r and $ are continuous periodic functions of a by (1-7), and r*0 uniformly as

a*0. Since G(ez) maps the strip .S onto the universal covering surface of "R",

k(a):1m 1C-t(7'@@fw(z;))))) is a continuous periodic function. By the inter-

mediate value theorem there is an s for which k(a):6; that is,

4-5. q(eivw(rA(u))) : a, q(eww(rB(a))) : b and f'(q(etv»'@z))):
G(eh(z)+ia\,' where h(z): Pl('t) 'with 

0 = v(t) = I a.e. on AH.

We have rw'(tz):2fuf(l-riz)2, so that by the assumption about D we have

for z bounded that

(4-6) ,"i0 q' (erv w(r)w' (rz) : )i@t q' (ew!(l +2itfiz * O (rz)),

where u: ,*"'v q::,ld:) 
.wuwrw p-.t- 

d{"r*r,

Since by hypothesis 4"' is bounded on Å, we have

S : q(ei|w(rB)) : qleit) +2ier* Bq' (erv)r - 2(et{ q' (st01+ ezit q" (eit))82r2 + O1r31,

and a is given by the analogous expression in which B is replaced by A. Thus it
follows that

2ir4 ! @*)_ _ I + o (r (Bz - Az) + rz) - I + o (rez + rz)

T: - B-A )

R,{ fLb, a]- G(iu)
l [,,', -o(å)) Iun

(4-7)

where lve have used the fact that B2- Az -O(e').
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It follows from (1-11) that in order

I -Fte

We have, on the one hand,

(4-8) I - Re

o^l (t +o(rn))r-u1@

x [ | te Wl eh (z) + tz G' (i a) L + o (ez h2 (z)) * o (es)) q' (ett w g z)) ew .t w' (r ) dzl

: *"ffi lu h1r-'*-'1e-t*q-,16»)a6l

* e2 4@) *' G+ Ii * 1n1*11+ es + e2 lh(x)1'z dx),

where (1-3) and (1-10) have been used. Since (4-7) implies that rllb-al:aQy
and Re {h(r'tw-r(e-'ilq-'(0))}=0, we have by (3-4) that

, = 
ezL!(a) 

*O@zllvli+es).

By (l-1) we have that r(a):Q(l), so that

to prove (4-1) we have only to

(il f'@) - z(u) dz)) = o.

f:P@h(z) * ia) - z(a)){ (et* wgz))eiv tw' (4drl

show that

l - O(e') +O(e'llvll +sB).

we shall use this lower bound when llvll is small. For other v we need a different
lower bound which we now proceed to derive.

From (4-6) and (4-7) it follows that

(4-e)

(4-10)

By (l-3), (l-7) and (1-10),
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Let v1--vyr^,a1r v2:v-vr, and åi:PI(v), i:1,2 (recall that ft=Pl(v)). We have

l'_,n @), a, : o (f_rftr(x)ldx): o (/llyr1),

by (3a) and the Schwarz inequality. Also,

!'_, hr7r1, d, : /«- -, er ur r. -r(+ f-, 
p (2, t) z d) vg) dt.

Now, for ltl>l

+ f_,P(z,t)zdz: * f_,*.#* : I Iifrr,.
From this it follows that

""{+ f_,h2(z)za,}: n. F* tr__,,{)U(ä,-) (t:*")",aya,l
: o(re Re {0} llvrll) : Q(re llvrll),

since vr(r)=0 a.e. on R, and by our assumption that the curvature of åD is positive,

the real part of the expression B given in (a-6) is strictly positive. Thus

"" {ffi | i tc ane» * ia) - z(il)) z dzl

: o(zellvsll) *o(reillrrll +tt')'
since /" le(en61+ia)-z(a)ldx:o(e) by (1-10), we have from (4-10) that

(4-11) ,: H+o(tellvrll) *o(tey'llvrli+ze' *cze).

By (a-9) there exists a number p>0 such that if llvll=p, then /:O(e2). Since

G(å,a)=S by (3-l), (4-ll) implies that there is a 9=6 such that if llvll=p and

llvrll=2E, then /:O(ze). Finally, if llvrll>2E, then for e sufficiently small

llvlxt-Lqll=(p, sothatby(3-14), llvrll>2rp impliesthat /:g(e). This showsthat
/>-0 for ar,y f provided that e>0 is sufficiently small. This finishes the proof
of (0a).

Index of notation

A*:{ztl<lzl<M|

conv (X) denotes the convex hull of R.

D(A, B, a) - See definition at the beginning of Section l.

E(D, R) : lflb, al: l'(D) e R, a, b€.D|.

E(A) = E(1, R).
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G(z) - See discussion precBding (0'3).

G(rl, a) - See definition in (0'5).

-&I denotes the upper half-Plane.
N* (A, B, a), N- (A, B,a) - See definitions at the beginning of Section I'
o([) - see explanation given in the next to the last paragraph of the introduction.

l+zt I t
P(2, t'; : e_t)O+t\ 

: ;jrfr .

Pr(z) : ; I:-PG, 1u(rtdt.

,(,):""{ffi}.
g:{a:O<Rez<1}.
y(t, d) - See defnition ju§t after (0'6).

wt= 1--ffia,.

y(e):y(e,a):exr bm).
7 - {z: lzl - 1}.

. lx- 1l

-l tnifrTi-
kG\: l- 

-:--:-dx.J -1 x-t

i z-l((z\: - ln---+ l.
7t z+ 1

,Eis the contour defined in (l-4).

trx denotes the characteristic function of the subset X of R'

!2(n - See explanation given in the next to the la§t paragraph ofthe introduction.
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