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PRESPECIRA AND TOWERS OYER MODEL CATEGORIES

KAJ MALM

Introduction

In [2] Edwards and Hastings have given a simple closed model category struc-

ture for tow-G, the category of towers of a closed model category ?. A similar

- duly dualized - structure can be defined for Ps G, the category of prespectra

over G, where 1€ is a closed model category equipped with an endofunctor S which
in some sense is compatible with the model structure. We shall prove the following:
If ,S has a right adjoint, there is an adjoint couple Ps (7o)*(tow-7)o (where o

denotes dualization), which under weak conditions induces an adjoint couple
HoPs (Go)*Ho(tow-G)o. This result has bearing on stable homotopy theory,
as the homotopy theory of Ps€ is that of a stabilized category ([], [6]).

1. A model category structure lor tow-G

Let G be a closed model catagory and tow-i€ the category whose objects are

diagrams

ff: ...* Xn* Xn-r *...* Xt* Xo

in G and the morphisms / : X* f of which are commutative diagrams

aaa

Xn* Xr-t*"'
I r, lr,-,t+
Y" -'> Y"-, *...

in g.

1.1. Definition. A morphism f : X*Y in tow-% is a

i) weak equivalence if every f,,i Xn*Yn is a weak equivalence,

iil cofibration if every f* is a cofibration,
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iii) fibration if every f, is a flbration and the induced morphism in the diagram

Xn+t

t.r \.-\-

\,. oz,,*, \ Yr+t

l

l
vt ttlXn4

where Z,*, is the pullback, is a fibration for every n(N.

1.2. Proposition. The category tow-G endowed with the strltcture gioen in
1.1 is a closed model category.

Proof. Cl.121.3.2.2 and 3.2.7. n

2. Prespectra over a closed moilel category

LetG be a closed model category, S: 6 *G a functor. A (positive) prespectrum

over G is a sequence of objects (C,),eN together with morphisms SCo*C,*r;
morphisms between prespectra are sequences of morphisms in G wilh the usual
commutativity condition. The category of such prespectra is denoted by Ps6.

2.1. Proposition. Suppose S preseroes cofibrations, trioial cofibrations and

finite colimits. Then PsG is a closed model category if a morphisru f : (C,)*(C'-)
is defined to be a
i) weak equiualence, if euery f,: C**g; is aweak equiualence in €,
ii) fibration, if eoery fn is afibration,
iii) cofibration,ifeoery f, isacofibrationandtheinducedmorphism jo*r: Dn,,1*Ci*,

in the following pushout diagram is a cofibration for euery n(N:

§C" re*

I
Co+l 

-> 

Dn*.

Proof. We have to check the axioms CM1-CM5 of a closed model category.

CM 1 : Ps € is closed under finite limits and colimits.
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If {Cr} is a finite diagram inPs?, we construct lim C' and colim C' degreewise,
i.e. (limc'1,:1i1p Ci etc. By assumption the canonical morphism colimsCi*
^S(colim C) is an isomorphism, so we can compose the inverse of it with the ob-
vious morphism colim §Ci*ss1i, Ci*, to get a morphism ,SC,*C,41, where
C:colim Ci. lt is easily seen that the resultingprespectrumreally isthe colimit of
the given diagram. The proof for limits is even easier.

CMZ: If f and g are morphisms in PsG and two of ./i S and fg are weak
equioalences, the third is one, too.

This is valid degreewise and thus by definition in PsG.

CM 3: The rettract of a weak equiualence (fbration, cofibration) is a weak
er1uiualence ( fibration, cofibration ) .

For weak equivalences and fibrations we use degreewise arguments as above,
and for the coflbrations we additionally need only an easy universality argument
based on the definition of a pushout.

CM 4: Iibrations haue the right lifting property with respect to trioial cofibra-
tions and cofibrations haue the left lift@ property with respect to triuial fibrations.

Suppose we have a commutative diagram

in Ps G, where i: {a} is a cofibration and p: {p"\ u trivial fibration. The problem
is to find a lifting X-E, i.e. a morphism å: X*-E such that hi:f and ph:g.
Degreewise a lifting hni Xn-En can be found in the model category 6, and thus
the problem reduces to choosing the morphisms h, in a compatible way. In other
words, we want to have the diagram

(2.2)

(2.3)

commutative for k>1.
in such a way that (2.3)

C -f *E

l'i,
X -q-* B

SX,,-l + - §Eo-,
Itltl, ,1,

Xk-y-* Ek

Suppose, then, that the liftings ho, ..., hn have been defined
is commutative, k:7 , . . . ) n. Consider the diagram
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''l»-.-l\ z4'(2.4) SXr- Zn+rr\- ,/
l" \\- \ ,''n*,,l '\ \ /-l tr, \ /r §,,

S:,Yn Xn+l 

-| 

Bn+r

where Zo*, is a pushout. By assumption, the induced morphism in*ri Zn*1*Xn,r1
is a cofibration; on the other hand, the morphisms SX,,+§iEn *En+t and C,*, *En+t

induce a morphism Zn+t*En+t such that the resulting subdiagrams are commu-

tative by the universal property of the pushout. Thus by CM 4 (applied in G) we

have a lifting hnali X,..*[,*r, and thus for k:n*l the diagram (2.3) which

is embedded as a subdiagram of (2.4) is commutative. The proof of the dual statement

is similar: If iis a trivial coflbration andp a flbration, then r,*, is a weak equivalence,

and furthermore ,Sr" is a trivial cofibration. Thus 7,*r is a trivial cofibration ([5],

Lemma 1.2), and aspn+r is a flbration the lifting exists.

CM 5: Any morphism f can be factorized as f:pi, where p is a fibration
and i a cofibration and either p or i is a weak equioalence.

Of course the factorization can be performed degreewise, but the problem of
compatibility remains. In addition, a degreewise cofibration need not be a cofibra-

tion. Let f : C*D be a morphism in Ps G. We start by factoring fo:poio, where

is Cr*f, is a cofibration and po: XstDs is a trivial fibration. Suppose that
the cofibrations r*: C**X* and trivial fibrations po: Xp*D1, (k:0,...,12) have

been defined so that the diagram

-n 
,^ |

i:, 1,,.,

I

(2.5)

SC*-l 

-> 
§xk-l-> §Dt-t

lrllll
Co-Xx-Dr,

is commutative and the induced morphism

SC*-r 

->
§

I
ck

;Zx*xxinthePushoutdiagram

tJx
'Xg-

h
(2.6) ..r-.--.# rOr\

\\, \
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is a cofibration for k:1, ...,n. Let Cr*r*Xl+t*Dn+1 be a factorization of
fn*, into a cofibration rj*, followed by a trivial fibrationpj*r. Consider the com-
mutative diagram

§C,,--+ Cn+t'i'l *'.'l

.t
ln+I

----..-.+

\f .rrrn*1
i

Xl u,.nl',
]t'"+t

(2.7) S{r- Zn+{ 

- 

Dn+t
\,v
\/

SDn

where Zo*, is the pushout. As ,S preserves cofibrations, ,Si, is one. Thus k,q, is a
cofibration and a lifting Zn+r*Xl+t can be found. Factor this as p|+rj,+r, where
jn+tt Zn+t*Xn+7 is a cofibration and pll+ri Xo+t*Xi*, is a trivial fibration.

Then r,*, :jn+tkn+ti Co11*X,q, is a cofibration and pn+t:pl+til+, is a trivial
fibration, and the diagram shows that the conditions assumed for k:0, ..., n hold
for k:n*|.

If i is to be a trivial cofibration and p a fibration, the induction proceeds simi-
larly. Now f,a1 must be factored into a trivial coflbration i*, followed by a fibra-
tion pi*r. Then by CM 4 we find a lifting SXn*Xl,a1, and applying the universal
property of the pushout we obtain a lifting Zo+t*Xl+t. This is a weak equivalence
([5], Lemma 7.2), and thus å,*, is one, too, by CM 2. Now we factor the morphism
Zn+r*Xl+t as above with the difference that jn+r is a trivial cofibration, pi*,
a fibration. Then ln*r:7o t-rkn+t is a trivial cofibration, while pnal:pi*rpi+, is
a fibration. The induced morphism Zn+r*Xn+t is J,+r and thus a cofibration.
The compatibility conditions can be inferred from the diagram. tr

2.8. Remark. A prespectrum over a closed category can be defined in a less

general way than we have done. One could postulate, e.g., that SC,*C,*, is a co-
fibration. It is easy to see that every prespectrum is weakly equivalent to such a special
prespectrum (which for example in the case of simplicial sets is the usual one). Thus
the added generality does not change the homotopy theory of prespectra.
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3. The dual of a moilel category with endofunctor

lf G is a closed model category, the dual category Go can be given a natural

closed category structure in the following way:

» foego is a fibration if fe« is a cofibration,
ii) f is a cofibration if / is a fibration,
iii) "f is a weak equivalence if / is one.

The proof of this fact is based on the obvious self-duality of the axioms of a
closed model category.

Now suppos eG is eqwpped witn an endofunctot s: G *G and that the functor

Q: G*6 is a right adjoint to §. Then ,S preserves colimits and Q preserves limits

and thus dP: 6ot?o preserves colimits. By Proposition 2.I, PsG is a closed

model category if § preserves cofibrations and trivial cofi.brations. Moreover these

conditions suffice to give Ps(Go) the structure of a closed model category. This is

an easy consequence ofthe following:

3.1. Lemma. Let G be a closed model category with endofunctor S:6*G
such that
i) S preserues cofibrations and trioial cofibrations,

ii) there exists a right adjoint Q to S.

The Q preserues fibrations and trfuial fibrations.

Proof. Let p: X*Y be a fibration. By the properties of a closed model cate-

gory, it is enough to show that A@) has the right lifting property with respect to

trivial cofibrations. Let i: A*B be such a trivial cofibration. Consider the commu-

tative diagram

(3.2)

A, '- , O(X)
,l 1 n,,,rl
L--- e(y).

composing with the end adjunction we obtain the commutativeBy applying § and

diagram

(3.3)

§u) §o (x) " r
,r,,1 

' 
--l-?z l,

I -ttr' + t
s(Bf-*5p{n . .,Y,

where §(i) is a trivial coflbration by assumption i). Thus the dotted arrow f: SB*X
can be filled in to give a lifting. Consider its adjoint morphism f*: B*QSB*QX.
The triangle
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(3.4)

is commutative, as can be

(3.6)

is commutative.
(O,SB osD+ ASOY
commutative:

(3.7)

Å-.o , O(X)
,l ,7"l/.
B

seen when it is embedded in the larger diagram

0(x)

an and 0(p) o(f):
the following diagram is

p,so(r)
I

l'r"

^ *j,Il'i n"'f 
I /

o^s (B) os(b) 
>

+
I

I
I

(3.5)

B ' - ' P,S(B)*-T0T-'+'P(X)'

Next we have to prove that the triangle

o(x)

'/l
u4*nlr

Now 0(p)f*:(B*f2,SB g' AX eP+

--> QY), so we have to Prove that

sL o(Y),

where 4 is the end adjunction. But this is seen if the diagram is augmented by the

front adjunction QY*Q§OI. The proof is similar if p is a trivial flbration' tr

Now suppose (G, S) satisfies the conditions of Lemma 3.1. Consider the cate-

gories Ps (Go) and tow-€. The former has as objects prespectra (QXn*Xna1\ of
-G" 

, i.". sequences (QXr* Xoal) of morphism s in G - By adjointness these correspond

to sequences (§X,+r*X,). Thus by defining F(QX,*Xna):U, where Yn:S"yn'

and correspondingly for morphisms, we obtain a functor F: Ps(6o)-(tow-G\o.

on the other hand we can define a functor G: (tow'€)o*Ps(G") which for objects

is given by G (ff) : (Q (Qo X,) * Q"+L Xn +r).

3.8. Proposition. The functor F: Ps(Go)*(tow-G)o is a left adioint to

G: (tow-G)o*ps(go). If s and d2 preserueweak equiualences, F and G induce

an adjoint couPle

Ho (Ps (7o)) r-- Ho (tow-G)o.



276 Kar Marna

Proof. lf s and o preserve weak equivalences, F ar.dG do, too. Thus we obtain
induced functors Ho F and Ho G, which, by standard arguments used in the theory
of categories of fractions, are adjoint if F and G are. Thus we have to prove the
adjointness of F and G.

Let q: le*o§ <p: sQ*|, be the natural transformations of the adjoint
couple (,s, o). Then, as is well known, (sr, rr') is an adjoint couple with adjunction
morphisms

e"(X): X * QoSX

f,(X): §9,X * X
defined recursively by

eo(X): l*,
eo+{X) : Q'(q(S' X))e"(X): X * Q S' X + on+l§tr+lx,

-fo(X) : l*,

.f"*r(X) : f"(X)§(q@, X)): str+ler+1X * S"QnX * X.

It is clear that en and f, are natural in X.
Now we define a transformation H: l*.,""r*GF by

(3.9) H((xr)),: e,(Xn): X,* §),S"Xn.

Degreewise this is natural, so we only have to prove that we obtain a morphism in
Ps (G") in this way. This amounts to proving the commutativity of the diagram

Xn+, e"+r(x"+r) -' d)n+t,Sr*,Xn*,

(3.10)

(3.11)

I

I

*

o(o,^s, xn),

'"1

QX,,
ge',(X 

n)

where an is the structural map of the prespectrum and the unmarked morphism is
the composite d)o+|s.+1 Xo+t tr"+rs,+r(4,), A"+:-S-+LQXn o"+r§"Q(x,) , e"+r,*xr.

Thus it is enough to prove the commutativity of the diagram

X, +. 
o':"*(T" * ') -..- Qn+ t,Sn + t Xr, *,

" i 1,,,,.,r,- 
lkn)

QX,,W f)"+rgrr+rQXn

s(c,,(r_ 
Qn+,,.|:;:s^rp(x,,)

and as the square is commutative by the naturality of eo*r, it is enough to prove
the commutativity of the triangle. For n:0 this is evident, and using the naturality
of 4 one proves th-e general case by induction.
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We now defrne a natural transformation @: FG*lco*-{rr bY

(3.12) O(69)": f"(Y"): SnQnYn * Yn

for a tower o!: ...*Y,+r*Yn*.... That @ is a well-defined natural transforma-

tion is proved as above. The identities

(3.I3) (G(og) Ir<G(q» > GFG(U) G(o(s)) ' G@)) - lecqt

and

(3.14) (r11x,11-r<ä«tx"t»* FGF((X^)) 
o(F(<x)tt 

' r«x,»): lr«x"))

follow from the adjointness of §' and O'.

3.15. Example. If G is the category of simplicial sets, ,s the simplicial suspen-

sionand O:ar itsadjointasdefinedin[4], o§:aS:l,e andthus Ps(6") can

in this case be embedded as a full subcategory of (tow-G)o.
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