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PRESPECTRA AND TOWERS OVER MODEL CATEGORIES

KAJ MALM

Introduction

In [2] Edwards and Hastings have given a simple closed model category struc-
ture for tow-%, the category of towers of a closed model category €. A similar
— duly dualized — structure can be defined for Ps %, the category of prespectra
over %, where € is a closed model category equipped with an endofunctor S’ which
in some sense is compatible with the model structure. We shall prove the following:
If S has a right adjoint, there is an adjoint couple Ps (%°)=(tow-%)° (where °
denotes dualization), which under weak conditions induces an adjoint couple
Ho Ps (¥°)=Ho (tow-%)°. This result has bearing on stable homotopy theory,
as the homotopy theory of Ps % is that of a stabilized category ([1], [6]).

1. A model category structure for tow-%

Let € be a closed model category and tow-% the category whose objects are
diagrams
-%‘: cee > X,, - Xn—l el > Xl - Xo

in % and the morphisms f: X—Y of which are commutative diagrams
e Xy > Xy > e
lfn lfn—l
...“’I’" g Y,,_l -> ..
in €.
1.1. Definition. A morphism f: X—Y in tow-% is a
i) weak equivalence if every f,: X,—~Y, is a weak equivalence,

ii) cofibration if every f, is a cofibration,
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iii) fibration if every f, is a fibration and the induced morphism in the diagram

X;H»l
AN
0
\5\
Z::+1 Kx+1

Xn Xc b

where Z,_; is the pullback, is a fibration for every néN.

1.2. Proposition. The category tow-¢ endowed with the structure given in
1.1 is a closed model category.

Proof. Cf.[2),3.22and 32.7. 0O

2. Prespectra over a closed model category

Let € be a closed model category, S: ¥—~% a functor. A (positive) prespectrum
over ¥ is a sequence of objects (C,),.n together with morphisms SC,—~C,.,;
morphisms between prespectra are sequences of morphisms in ¥ with the usual
commutativity condition. The category of such prespectra is denoted by Ps .

2.1. Proposition. Suppose S preserves cofibrations, trivial cofibrations and
finite colimits. Then Ps € is a closed model category if a morphism f: (C,)—~(C))
is defined to be a

i) weak equivalence, if every f,: C,~C, is a weak equivalence in €,
ii) fibration, if every f, is a fibration,
iii) cofibration, if every f, is a cofibration and the induced morphism j,.,: D, ,~C; ,
in the following pushout diagram is a cofibration for every n€N:

SC, —— SC,

|

Cn+1"‘“”Du+x
AN

N
\

N
C;+1

Proof. We have to check the axioms CM1—CMS5 of a closed model category.

CM 1: Ps @ is closed under finite limits and colimits.



Prespectra and towers over model categories 271

If {C'} is a finite diagram in Ps %, we construct lim C' and colim C’ degreewise,
ie. (lim C’),=lim C} etc. By assumption the canonical morphism colim SCi—~
S(colim C) is an isomorphism, so we can compose the inverse of it with the ob-
vious morphism colim SCi—~colimC}_, to get a morphism SC,—~C,.,, where
C=colim C". It is easily seen that the resulting prespectrum really is the colimit of
the given diagram. The proof for limits is even easier.

CM2: If f and g are morphisms in Ps € and two of f, g and fg are weak
equivalences, the third is one, too.

This is valid degreewise and thus by definition in Ps %.

CM 3: The retract of a weak equivalence (fibration, cofibration) is a weak
equivalence ( fibration, cofibration).

For weak equivalences and fibrations we use degreewise arguments as above,
and for the cofibrations we additionally need only an easy universality argument
based on the definition of a pushout.

CM 4: Fibrations have the right lifting property with respect to trivial cofibra-
tions and cofibrations have the left lifting property with respect to trivial fibrations.

Suppose we have a commutative diagram

S

C ———

2.2 li |
X-2 B

p

in Ps €, where i={i,} is a cofibration and p={p,} a trivial fibration. The problem
is to find a lifting X—F, i.e. a morphism h: X—E such that hi=f and ph=g.
Degreewise a lifting h,: X,—~E, can be found in the model category %, and thus
the problem reduces to choosing the morphisms /, in a compatible way. In other
words, we want to have the diagram

Shy_4

Sijl SEk—l
(2.3) [ l
Xk '_hk—” Ek .

commutative for k=1. Suppose, then, that the liftings A, ..., h, have been defined
in such a way that (2.3) is commutative, k=1, ..., n. Consider the diagram
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SC,, ’C,, +1 L Cn+1
St Ep4y
24 SX,
Pnsig
1
S‘Yn n+1l

where Z,,, is a pushout. By assumption, the induced morphism j,1;: Z,11->Xp41
is a cofibration; on the other hand, the morphisms SX,—~SE,~E,,, andC,.,~E,;
induce a morphism Z,,,—~E,,,; such that the resulting subdiagrams are commu-
tative by the universal property of the pushout. Thus by CM 4 (applied in %) we
have a lifting h,,;: X,41~E, 11, and thus for k=n+1 the diagram (2.3) which
is embedded as a subdiagram of (2.4) is commutative. The proof of the dual statement
is similar: If i is a trivial cofibration and p a fibration, then i, , is a weak equivalence,
and furthermore Si, is a trivial cofibration. Thus j,,, is a trivial cofibration ([5],
Lemma 1.2), and as p, ., is a fibration the lifting exists.

CM 5: Any morphism f can be factorized as f=pi, where p is a fibration
and i a cofibration and either p or i is a weak equivalence.

Of course the factorization can be performed degreewise, but the problem of
compatibility remains. In addition, a degreewise cofibration need not be a cofibra-
tion. Let f: C—D be a morphism in Ps . We start by factoring f,=p,i,, where
ip: Co—~X, is a cofibration and p,: X,—~D, is a trivial fibration. Suppose that
the cofibrations i,: C,—~X; and trivial fibrations p,: X,~D, (k=0,...,n) have
been defined so that the diagram

SCyoy——> SXjoy——> SD

2.5) l | l
G X, Dy

is commutative and the induced morphism j,: Z,—~X, in the pushout diagram
SCy oy > SXi—1

i

l

(2:6) G
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is a cofibration for k=1,...,n. Let C,.;~X,, ,~D,,; be a factorization of
Ja41 into a cofibration i, , followed by a trivial fibration p;, . Consider the com-
mutative diagram

.’
Tnst ’
n+1

. A7,
Si, | S X +1/ Prst
n
or

e
@7) SX,—— Zyy{—— Dyuy

SC,,——* Cn+1

Sp,
SD,

where Z,,, is the pushout. As S preserves cofibrations, Si, is one. Thus k,,, is a
cofibration and a lifting Z,,,~X,,, can be found. Factor this as p/_, j,.;, Where
Jnt1: Zys1~X,11 is a cofibration and p),, ,: X,,,~X,,, is a trivial fibration.
Then iy13=j,41knt1: Cyy1—>X, 4y is a cofibration and p,,;=p, ,p,,, is a trivial
fibration, and the diagram shows that the conditions assumed for k=0, ..., n hold
for k=n+1.

If i is to be a trivial cofibration and p a fibration, the induction proceeds simi-
larly. Now f,,, must be factored into a trivial cofibration i, , followed by a fibra-
tion p;,. Then by CM 4 we find a lifting SX,—X,,,, and applying the universal
property of the pushout we obtain a lifting Z,.,—~X, ,. This is a weak equivalence
([5], Lemma 1.2), and thus £, is one, too, by CM 2. Now we factor the morphism
Z,11~X,,, as above with the difference that j,,, is a trivial cofibration, pj,,
a fibration. Then i,,;=j,,1k,; is a trivial cofibration, while p,.,=p; . p,,, is
a fibration. The induced morphism Z,,,—~X,.; is j,4; and thus a cofibration.
The compatibility conditions can be inferred from the diagram. [J

2.8. Remark. A prespectrum over a closed category can be defined in a less
general way than we have done. One could postulate, e.g., that SC,~C, ., is a co-
fibration. It is easy to see that every prespectrum is weakly equivalent to such a special
prespectrum (which for example in the case of simplicial sets is the usual one). Thus
the added generality does not change the homotopy theory of prespectra.
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3. The dual of a model category with endofunctor

If ¢ is a closed model category, the dual category %° can be given a natural
closed category structure in the following way:
i) f°€%° is a fibration if f€% is a cofibration,
ii) f° is a cofibration if f is a fibration,
iii) f° is a weak equivalence if f is one.

The proof of this fact is based on the obvious self-duality of the axioms of a
closed model category.

Now suppose ¥ is equipped with an endofunctor S: ¥ —~% and that the functor
Q: ¥~% is a right adjoint to S. Then S preserves colimits and  preserves limits
and thus Q°: ¥°—~%° preserves colimits. By Proposition 2.1, Ps% is a closed
model category if S preserves cofibrations and trivial cofibrations. Moreover these
conditions suffice to give Ps (%°) the structure of a closed model category. This is
an easy consequence of the following:

3.1. Lemma. Let € be a closed model category with endofunctor S: €—%
such that
i) S preserves cofibrations and trivial cofibrations,
ii) there exists a right adjoint Q to S.

The Q preserves fibrations and trivial fibrations.

Proof. Let p: X—Y be a fibration. By the properties of a closed model cate-
gory, it is enough to show that Q(p) has the right lifting property with respect to
trivial cofibrations. Let i: A—B be such a trivial cofibration. Consider the commu-
tative diagram

A—— Q(X)
32 i| [""’

¥

B2 Q).

By applying S and composing with the end adjunction we obtain the commutative
diagram
S(A)—— SQX)— X

/Z
o of 4T
//’

S(B)—- SQ(¥) — T,

where S(i) is a trivial cofibration by assumption i). Thus the dotted arrow f: SB—X
can be filled in to give a lifting. Consider its adjoint morphism f*: B~QSB--QJX.
The triangle
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A-—"— Q(X)
34 il /

B
is commutative, as can be seen when it is embedded in the larger diagram

Q(X)
|
(3.5) AT 0S(4) 29 0se(Xx) | 1t
i ! as(@i)

Next we have to prove that the triangle
Q(X)

(3.6) / \

B Q)
is commutative. Now Q(p)f*=(B—~QSB2L- Qx 22, QY) and Q(p)Q(f)=
(QSB £ QSQY —~ QY), so we have to prove that the following diagram is

commutative:
0S (B) -2, QsQ(Y)

G.7) [ lﬂ(n)
B—t .Q),

where 7 is the end adjunction. But this is seen if the diagram is augmented by the
front adjunction QY —~QSQY. The proof is similar if p is a trivial fibration. [J

Now suppose (%, S) satisfies the conditions of Lemma 3.1. Consider the cate-
gories Ps (6°) and tow-%. The former has as objects prespectra (2X,—X,.,) of
%°, i.e. sequences (QX,< X, ;) of morphismsin €. By adjointness these correspond
to sequences (SX,,;—>X,). Thus by defining F(QX,~ 1) =%, where Y,=S"X,,
and correspondingly for morphisms, we obtain a functor F: Ps (°)— (tow-%)°.
On the other hand we can define a functor G: (tow-%)°—~Ps (¥°) which for objects
is given by G(%)=(Q(Q"X,)~ Q""" X, 1.1)-

3.8. Proposition. The functor F: Ps(%°)~(tow-¢)° is a left adjoint to
G: (tow-8)°~Ps (6°). If S and Q preserve weak equivalences, F and G induce
an adjoint couple ‘

Ho (Ps (¢°)) === Ho (tow-%)°.
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Proof. If S and Q preserve weak equivalences, F and G do, too. Thus we obtain
induced functors Ho F and Ho G, which, by standard arguments used in the theory
of categories of fractions, are adjoint if F and G are. Thus we have to prove the
adjointness of F and G.

Let n: 1,~QS, ¢: SQ—1, be the natural transformations of the adjoint
couple (S, Q). Then, as is well known, (S", Q") is an adjoint couple with adjunction

morphisms
e(X): X - Q"S"X

£(X): "X ~ X

defined recursively by
e(X) = Ix,
en+1(X) = Q'(n(S"X))e,(X): X - Q"S"X ~ QUisrtiy,
f;)(X) = IX’

Sor1(X) = £u(X)S" (0 (2" X)): S"HIQHIX » S"Q" X —~ X.
It is clear that e, and f, are natural in X.
Now we define a transformation H: 1p,4)~GF by
3.9 H((X)), = e,(X,): X, ~ Q"S"X,.
Degreewise this is natural, so we only have to prove that we obtain a morphism in

Ps (%°) in this way. This amounts to proving the commutativity of the diagram

ey 11Xy 1 1
Xn+1 e, QR g Xn+1

(3.10) n

Qe,(X,)

QX,
where a, is the structural map of the prespectrum and the unmarked morphism is

the composite Q'smly, . LTV guitgriigy @ISR | grigny
Thus it is enough to prove the commutativity of the diagram

> Q(Q"S"X,),

X)L
Xppg — 2 gL Y

a, Q"*‘S"“(an)
+1 1
(3.11) QX ——g— QLS"HIQX,
lgn+lsn¢(xn)
(e, (X))
Q"+IS"X,,,

and as the square is commutative by the naturality of e,,,, it is enough to prove
the commutativity of the triangle. For n=0 this is evident, and using the naturality
of n one proves the general case by induction.
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We now define a natural transformation @: FG—140y.¢ by

(3-12) (@), = fu(Yn): S"2"Y, ~ 1,

for a tower ¥: ...~Y,41~Y,~.... That & is a well-defined natural transforma-
tion is proved as above. The identities

(3.13) (G@) 292, GFG(®) 22 G@)) = Lo

and

(3.14) (F((X,) 2292, rGR((X,) 2ES2 . F(X,)) = Traxy
follow from the adjointness of S" and Q".

3.15. Example. If ¢ is the category of simplicial sets, S the simplicial suspen-
sion and Q=w its adjoint as defined in [4], QS=wS=1, and thus Ps(%°) can
in this case be embedded as a full subcategory of (tow-%)°.
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