THE UNIFORM CONTINUITY OF THE MODULUS OF ROTATION AUTOMORPHIC FUNCTIONS

RAUNO AULASKARI and PETER LAPPAN

Let $D = \{z : |z| < 1\}$ and let f(z) be a function meromorphic in D. We say that f(z) is a rotation automorphic function in D if there exists a Fuchsian group Γ acting on D such that for each $T \in \Gamma$ there exists a rotation S_T of the Riemann sphere W such that $f(T(z)) = S_T(f(z))$ for each $z \in D$. We will use F_0 to denote the fundamental region for the Fuchsian group Γ . If Γ contains more than the identity element, there are many possible choices for a fundamental region, and we will fix F_0 to be a connected hyperbolically convex set which satisfies the conditions for a fundamental region. Let $d(z_1, z_2)$ denote the hyperbolic distance between the points z_1 and z_2 in D, and let $\chi(w_1, w_2)$ denote the chordal distance, that is, the usual distance in real 3-space, between the points w_1 and w_2 in W, where we identify points on W with points on the extended complex plane in the usual way. If G is a subset of D, we say that a function f(z) defined on D is uniformly continuous hyperbolically on G if for each $\varepsilon > 0$ there exists a $\delta > 0$ such that $\chi(f(z_1), f(z_2)) < \varepsilon$ whenever z_1 and z_2 are points in G such that $d(z_1, z_2) < \delta$. We note that the definition does not require f(z) to be a meromorphic function, and below we will use the idea of "uniformly continuous hyperbolically" for functions which are not meromorphic. In addition, we let \overline{G} denote the closure of G.

If f(z) is a meromorphic function in D, we say that f(z) is a normal function if $\sup \{(1-|z|^2)f^{\#}(z): z \in D\} < \infty$, where $f^{\#}(z) = |f'(z)|/(1+|f(z)|^2)$.

A concept similar to that of "uniformly continuous hyperbolically" was considered by Hayman [4]. The definition for a normal function as given above is due to Lehto and Virtanen [5].

In [2, Theorem 1], we obtained the following result.

Theorem. If f(z) is a meromorphic rotation automorphic function in D such that f(z) is uniformly continuous hyperbolically on $\overline{F}_0 \cap D$, then f(z) is a normal function.

In this theorem, the condition on f(z) in the fundamental region F_0 is sufficiently strong that no restrictions on the group Γ are needed. For our results below, we will require some restrictions on the group Γ . Our first result deals with a finitely generated group Γ .

Theorem 1. Let f(z) be a meromorphic rotation automorphic function such that h(z) = |f(z)| is uniformly continuous hyperbolically in $\overline{F}_0 \cap D$. If Γ is a finitely generated Fuchsian group, then f(z) is a normal function.

In addition, we can obtain a similar result by changing the nature of the restriction on the group Γ . We say that the fundamental region F_0 is *thick* if for each sufficiently small r>0 there exists a number r'>0 such that for each sequence $\{z_n\}$ of points in $\overline{F_0}$ there exists a sequence of points $\{z'_n\}$ in F_0 such that, for each positive integer n both $d(z_n, z'_n) < r$ and the set $U(z'_n, r') = \{z \in D: d(z, z'_n) < r'\}$ is a subset of F_0 . The concept of "thick" was introduced in [1] with a slight difference in the statement of the definition. (In [1], the sequence $\{z_n\}$ was required to be in F_0 , not its closure. It is a simple exercise to show that the concept as given here is equivalent to that in [1].)

Our second result is the following.

Theorem 2. Let f(z) be a meromorphic rotation automorphic function such that h(z)=|f(z)| is uniformly continuous hyperbolically in $\overline{F}_0 \cap D$. If F_0 is thick, then f(z) is a normal function.

In view of Theorems 1 and 2, it is reasonable to ask the following general question. If f(z) is a rotation automorphic function such that h(z) = |f(z)| is uniformly continuous hyperbolically on $\overline{F_0} \cap D$, is f(z) a normal function? Although we suspect that the answer to this question is negative, we do not have an example to show this. Theorems 1 and 2 show that such an example must involve a fundamental region F_0 with a reasonably complicated structure.

We prove Theorems 1 and 2 below.

Proof of Theorem 1. Let f(z) be a rotation automorphic function relative to a finitely generated Fuchsian group Γ such that h(z) = |f(z)| is uniformly continuous hyperbolically on $\overline{F}_0 \cap D$, and suppose that f(z) is not a normal function. By a theorem of Lohwater and Pommerenke [6, Theorem 1, page 3], there exist a sequence of points $\{z_n\}$ in D and a sequence $\{p_n\}$ of positive real numbers such that $p_n/(1-|z_n|) \rightarrow 0$ and the sequence of functions $\{g_n(t)=f(z_n+p_n t)\}$ converges uniformly on each compact subset of the complex plane to a function g(t) meromorphic and non-constant on the complex plane. Since Γ is a Fuchsian group, for each positive integer *n* there exists $T_n \in \Gamma$ such that $T_n(z_n) \in \overline{F}_0 \cap D$. The family $\{S_{T_n}(g_n(t))\}$ is a normal family because the family $\{g_n(t)\}$ is a normal family. Further, since f(z) is rotation automorphic relative to Γ , we have that $S_{T_n}(g_n(t)) = f(T_n(z_n + p_n t))$, which means that, by taking subsequences, if necessary, we may assume that the sequence $\{f(T_n(z_n+p_n t))\}$ converges uniformly on each compact subset of the complex plane to a non-constant meromorphic function $g_*(t)$. Let $z'_n = T_n(z_n)$ and let $\Phi_n(t) = T_n(z_n + p_n t) - z'_n$. Since $p_n/(1 - |z_n|) \rightarrow 0$, we have that $d(z'_n, z'_n + \Phi_n(t)) \rightarrow 0$ for each fixed complex number t. It is no loss of generality to assume that the sequence

 $\{z'_n\}$ converges to a point on the boundary of D, since f is continuous on D. Also, since Γ is finitely generated, there are only two possibilities: (1) $\{z'_n\}$ converges to a point on the closure of a free boundary arc of $\overline{F}_0 \cap \{z: |z|=1\}$, or (2) $\{z'_n\}$ converges to a parabolic vertex P of \overline{F}_0 .

Assume Case (1). Then there exists a number q_0 (depending on the sequence $\{z'_n\}$) and two real numbers α_1 and α_2 , with $0 \le \alpha_1 < \alpha_2 \le 2\pi$ and $\alpha_2 - \alpha_1 \ge \pi/2$ and such that the set $D_n = \{z: 0 < d(z, z'_n) < q_0, \alpha_1 < \arg(z - z'_n) < \alpha_2\}$ is a subset of F_0 for all sufficiently large *n*. Since T_n preserves both angles and hyperbolic distances, for *n* sufficiently large the set $T_n^{-1}(D_n)$ contains a hyperbolic sector at z_n with an opening containing an angle at least $\alpha_2 - \alpha_1$. By choosing a subsequence, if necessary, we have that if *t* is a complex number taken from an appropriate fixed sector of the complex plane formed by an angle of at least $(\alpha_2 - \alpha_1)/2$ at the origin, then $z_n + p_n t \in T_n^{-1}(D_n)$ and thus $z'_n + \Phi_n(t) \in D_n$. Since h(z) = |f(z)| is uniformly continuous hyperbolically in $\overline{F_0} \cap D$, and since $d(z'_n, z'_n + \Phi_n(t)) \to 0$, it follows that $|g_*(t)| = |g_*(0)|$. But *t* can be chosen arbitrarily from a fixed sector on the plane, so we have that the function $g_*(t)$ must be a constant function, which contradicts our previous assumptions about $g_*(t)$. Thus, the assumptions we have made are untenable in Case (1). This means that Case (1) cannot occur.

Now assume that Case (2) occurs. The point P is the fixed point of a parabolic element $T_P \in \Gamma$, where T_P sends the region F_0 onto an adjacent copy of F_0 . Let S_{T_P} denote the rotation of the Riemann sphere which satisfies the condition $f(T_P(z)) = S_{T_P}(f(z))$. Let A and B denote the two points of the Riemann sphere fixed by the rotation S_{T_P} . We consider three subcases: (2a) A=0 and $B=\infty$ (this includes the case when $S_{T_P} = \text{identity}$); (2b) $0 < |A| < |B| < \infty$; and Case (2c) |A| = |B| = 1. The nature of the fixed points of a rotation of the Riemann sphere gives these three cases as the only possibilities.

Assume that Case (2a) occurs. Fix t with |t| > 0, and let $\zeta_n = z'_n + \Phi_n(t) = T_n(z_n + p_n t)$. For each positive integer n sufficiently large, there exists an integer k_n such that $(T_p)^{k_n}(\zeta_n) \in \overline{F_0}$. But since $d(z'_n, \zeta_n) \to 0$, it follows from the nature of the action of parabolic elements of Fuchsian groups that $d(z'_n, (T_p)^{k_n}(\zeta_n)) \to 0$ also. Thus, since h(z) = |f(z)| is uniformly continuous hyperbolically on $\overline{F_0} \cap D$, we have that $\chi(|f(z'_n)|, |f((T_p)^{k_n}(\zeta_n))|) \to 0$. But since the fixed points of S_{T_p} are 0 and ∞ , it follows that S_{T_p} is a rotation of the complex plane and so $|f(T_P(\zeta_n))| = |S_{T_p}(f(\zeta_n))| = |f(\zeta_n)|$, which means that $|f((T_p)^{k_n}(\zeta_n))| = |f(\zeta_n)|$. But this implies that $|g_*(t)| = |g_*(0)|$. But since t is an arbitrary non-zero complex number, we must conclude that $g_*(t)$ is a constant function, in violation of our previous assumptions. Thus, we have that Case (2a) cannot occur.

Now assume that Case (2b) occurs. For each $\delta > 0$ let $A(\delta) = \{w: \chi(w, A) < \delta\}$ and let $B(\delta) = \{w: \chi(w, B) < \delta\}$. Since |A| < |B|, there exists a number $\delta_0 > 0$ such that $\sup \{|w|: w \in A(\delta_0)\} < \inf \{|w|: w \in B(\delta_0)\}$. Let t_1 and t_2 be two complex numbers such that $g_*(t_1) \in A(\delta_0)$ and $g_*(t_2) \in B(\delta_0)$. Then $d(z'_n + \Phi_n(t_j), z'_n) \to 0$ for j=1, 2. Also, for j=1, 2, there exist integers $k_n^{(j)}$ such that $T_P^{k_n^{(j)}}(z'_n + \Phi_n(t_j)) \in \overline{F}_0$. As in Case (2a), we have $d(z'_n, T_P^{k_n^{(j)}}(z'_n + \Phi_n(t_j))) \to 0$ for j=1, 2, which means, since h(z) = |f(z)| is uniformly continuous hyperbolically on $\overline{F}_0 \cap D$, that both $|g_*(0)| \in \{|w|: w \in A(\delta_0)\}$ and $|g_*(0)| \in \{|w|: w \in B(\delta_0)\}$. But this is impossible by the way in which δ_0 was chosen. Thus, Case (2b) cannot occur.

Now assume that Case (2c) occurs. The boundary of F_0 consists of a finite number of arcs of circles, two of which meet at the point *P*. We designate one of these two arcs as the left boundary and the other as the right boundary, and we denote these two boundaries by *LB* and *RB*, respectively. For convenience, we will choose these arcs so that $T_P(LB)=RB$. Let $C_{LB}=C_{LB}(f, P)$, the cluster set of *f* at *P* relative to the arc *LB*, and let $C_{RB}=C_{RB}(f, P)$, the cluster set of *f* at *P* relative to the arc RB. Finally, let $C_{F_0}(f, P)$ denote the cluster set of *f* at *P* relative to the set F_0 . We wish to show that our accumulated assumptions imply that $C_{LB}=C_{RB}=C_{F_0}(f, P)$, and that each of these sets is a singleton set, say $\{\alpha\}$, where either $\alpha = A$ or $\alpha = B$.

If $w \in C_{LB}$ then there exists a sequence $\{\omega_n\}$ of points in LB such that $f(\omega_n) \to w$. But T_P sends each point ω_n into RB, and also $d(\omega_n, T_P(\omega_n)) \rightarrow 0$. Since h(z) = |f(z)|is uniformly continuous hyperbolically in $\overline{F}_0 \cap D$, we have that $h(T_P(\omega_n)) =$ $|S_{T_p}(f(\omega_n))| \rightarrow |w|$, and thus $|S_{T_p}(w)| = |w|$. Now suppose that C_{LB} is not contained in any great circle through the points A and B. Let w_1 and w_2 be points in C_{LB} , where w_1, w_2, A , and B are all different points and w_2 does not lie on the great circle C_1 determined by A, B, and w_1 . Since the rotation S_{T_p} fixes the two points A and B on the unit circle, and $|S_{T_{\mu}}(w_1)| = |w_1|$, we have that $S_{T_{\mu}}$ sends the circle C_1 onto another circle C_1^* , where C_1^* contains both the points A and B and C_1^* is the reflection of C_1 across the great circle determined by A, B, and ∞ . Similarly, if we denote by C_2 the great circle determined by A, B, and w_2 , then $S_{T_p}(C_2) = C_2^*$, where C_2^* is the reflection of C_2 across the great circle determined by A, B, and ∞ . However, S_{T_2} is a rotation of W, which means that C_1 and C_2 should be rotated by the same angle. But since C_1 and C_2 are different circles, one of the pairs C_1 and C_1^* or C_2 and C_2^* occurs between the other, which means that the angle between C_1 and C_1^* cannot be the same as the angle between C_2 and C_2^* . Thus, we have shown that C_{LB} (and hence C_{RB}) lies on a great circle through A and B.

Suppose that C_{LB} and C_{RB} each consist of more than one point. If C_{LB} is a subset of the unit circle $\{w: |w|=1\}$, then C_{RB} is a subset of this same circle, which means that $S_{T_P}(w)=e^{i\lambda}/w$ for some choice of λ , and $C_{F_0} \cup S_{T_P}(C_{F_0})$ contains the outer angular cluster set of f at P. Since we have assumed that $(1-|z'_n|^2)$. $f^{\#}(z'_n) \rightarrow \infty$ and that $z'_n \rightarrow P$ radially, we must have that the outer angular cluster set of f at P is total. But this means that C_{F_0} must contain at least one of the points 0 or ∞ .

Now suppose that C_{LB} contains points w such that $|w| \neq 1$. Without loss of generality, we may assume that C_{LB} contains a point w with |w| < 1. Let $w_1 \in C_{LB}$

be such that $|w_1| = \min \{ |w| : w \in C_{LB} \}$. Since we have shown that $|S_{T_p}(w)| = |w|$ for $w \in C_{LB'}$ we conclude that $|w_1| > 0$, for we are dealing with a case where 0 is not a fixed point of S_{T_p} . Let $\{\beta_n\}$ be a sequence of points in LB converging to P such that $f(\beta_n) \rightarrow w_1$, and let γ_n denote the circle through β_n which is internally tangent to the unit circle at P. Then $T_P(\beta_n) \in \gamma_n$ and $d(\beta_n, T_P(\beta_n)) \to 0$. Then $f(\gamma_n)$ is a curve on the Riemann sphere containing both $f(\beta_n)$ and $S_{T_n}(f(\beta_n))$. If t_n is a point of $\gamma_n \cap F_0$, then since h(z) = |f(z)| is uniformly continuous hyperbolically on the closure of F_0 , we must have that $|f(t_n)| \rightarrow |w_1|$. But by the continuity of f we can choose the point t_n so that $f(t_n)$ lies on the great circle through the points 0, ∞ , and $(w_1 + S_{T_p}(w_1))/2$. Since the limit points of the sequence $\{f(t_n)\}$ lie in the set C_{F_0} , it follows that C_{F_0} contains a point in the component of the complement of $C_{LB} \cup C_{RB}$ which contains the origin. A basic result of cluster set theory says that the boundary of the set $C_{F_0}(f, P)$ is contained in the union of the two sets C_{LB} and C_{RB} [3, Theorem 5.2.1, page 91]. Thus, we must have that $0 \in C_{F_0}$. From this reasoning, it follows that under the assumptions we have made, we must have either $0 \in C_{F_0}$ or $\infty \in C_{F_0}$. Suppose, for definiteness, that $0 \in C_{F_0}(f, P)$. Then there exists a sequence $\{\tau_n\}$ in F_0 such that $f(\tau_n) \rightarrow 0$. Letting γ_n again be an arc of the circle through P and τ_n which is internally tangent to the unit circle at P, we can repeat the same reasoning as in the previous paragraph to conclude that $0 \in C_{LB}$ and $0 \in C_{RB}$. But this violates what we have shown above. Thus, the only possibility remaining is that C_{LB} and C_{RB} coincide as a singleton set, which must be a fixed point of S_{T_n} . Now, it follows from the argument just completed that $C_{F_n}(f, P) = C_{LB} = C_{RB}$. For definiteness, let A be the point which is the single element of the sets C_{LB} , C_{RB} , and $C_{F_0}(f, P)$.

Now let $U_n = U(z'_n, b)$ be the hyperbolic disc with center at z'_n and hyperbolic radius b, where b>0 is a fixed number. Since $C_{F_0}(f, P) = \{A\}$, for a given number $\delta>0$ there exists a number $\beta>0$ such that $\chi(f(z), A) < \delta$ whenever $z \in \overline{F_0} \cap D$ and $|z-P| < \beta$. Let $D_{\beta} = \{z: |z-(1-(\beta/2))P| < \beta/2\}$. For $z \in D_{\beta}$ there exists an integer n(z) such that $T_P^{n(z)}(z) \in D_{\beta} \cap \overline{F_0}$, which means that $\chi(f(z), A) = \chi(S_{T_P}^{n(z)}(f(z)), A) < \beta$. But, for n sufficiently large, the disk U_n is a subset of D_{β} . Hence, for each complex number t, we have $\chi(g_*(t), A) < \delta$, which, for $\delta < 1/2$, contradicts the assumption that $g_*(t)$ is a non-constant meromorphic function. Thus, Case (2c) is also impossible.

We have now shown that the assumption that f(z) is not a normal function is inconsistent with the other assumptions on f(z) and Γ , and so Theorem 1 is proved.

Proof of Theorem 2. Assume that f(z) is a rotation automorphic function such that h(z) = |f(z)| is uniformly continuous hyperbolically in $\overline{F}_0 \cap D$, where F_0 is thick, and assume that f(z) is not a normal function. Again, by the result of Lohwater and Pommerenke cited above, there exist a sequence of points $\{z_n\}$ in Dand a sequence of positive real numbers $\{p_n\}$ such that $p_n/(1-|z_n|) \to 0$ and the sequence of functions $\{f_n(t)=f(z_n+p_nt)\}$ converges uniformly on each compact subset of the complex plane to a non-constant meromorphic function g(t).

As in the proof of Theorem 1, there exists a sequence of elements $\{T_n\}$ in Γ such that for each n, $z'_n = T_n(z_n) \in \overline{F_0}$ and, if $\Phi_n(t) = T_n(z_n + p_n t) - z'_n$, then the sequence of functions $\{f(z'_n + \Phi_n(t))\}$ converges uniformly on each compact subset of the plane to a non-constant meromorphic function $g_*(t)$, where we replace $\{z'_n + \Phi_n(t)\}$ by a subsequence, if necessary. Also, we have that $d(z'_n, z'_n + \Phi_n(t)) \to 0$ for each complex number t. As in the proof of Theorem 1, it is no loss of generality to assume that the sequence $\{z'_n\}$ converges to a point of the unit circle $\{z: |z|=1\}$.

Let r>0 be fixed. Since F_0 is thick, there exists a real number r'>0 and a sequence $\{\zeta_n\}$ in F_0 such that $d(z'_n, \zeta_n) < r$ and the hyperbolic disk $U_n(\zeta_n, r') =$ $\{z \in D: d(z, \zeta_n) < r'\}$ is a subset of F_0 . Let Δ_n denote the hyperbolic triangle formed by taking z'_n as one vertex and letting the side opposite z'_n be a hyperbolic chord L_n of $U(\zeta_n, r')$ with hyperbolic length r', and such that Δ_n is isosceles with the altitude on the side L_n as large as possible. Since r' is independent of the sequence $\{z'_n\}$, there exists a number $\alpha > 0$, independent of *n*, such that for each *n* the size of the angle of Δ_n at the vertex z'_n is at least α . (Here, Δ_n is a hyperbolic triangle with hyperbolic altitude at most r+r' and hyperbolic base r', where r and r' are fixed. By applying a linear transformation of D which sends the point z'_n to the origin, it is possible to calculate a specific value of α in terms of r and r', but it is enough for our purposes to know that α is a fixed positive number.) Since F_0 is hyperbolically convex, Δ_n° , the interior of Δ_n , is a subset of $F_0 \cap D$. Let $\Delta_n' = T_n^{-1}(\Delta_n^{\circ})$. Then Δ_n' is an open hyperbolic triangular region with a vertex angle at least α at the vertex z_n , and the hyperbolic distance from z_n to the opposite side of the triangular region is at least r'. Let $B_n = \{t: z_n + p_n t \in \Delta'_n\}$. By simple geometric considerations, each of the regions Δ'_n contains a Euclidean triangle X_n , where X_n has a vertex at z_n with vertex angle $\alpha/2$ and the hyperbolic distance from z_n to the opposite side of X_n is bounded away from zero. Since $p_n/(1-|z_n|) \rightarrow 0$, it follows that B_n contains a triangle π_n with vertex at the origin and such that, if h_n is the Euclidean altitude to the side of the triangle π_n opposite the origin then $h_n \to \infty$. Thus, there exists a sector S at the origin with opening $\alpha/2$ such that, if $t \in S$ then $t \in B_n$ for infinitely many n.

Recall that we are assuming that the sequence $\{f(z'_n + \Phi_n(t))\}\$ converges uniformly on each compact subset of the complex plane to the non-constant function $g_*(t)$. But if $t \in S$ then $z'_n + \Phi_n(t) \in \Delta_n^\circ$. However, the conditions that $d(z'_n, z'_n + \Phi_n(t)) \to 0$ and h(z) = |f(z)| is uniformly continuous hyperbolically in $F_0 \cap D$ mean that $|g_*(t)| = |g_*(0)|$ whenever $t \in S$. But this implies that the function $g_*(t)$ is a constant function, in violation of our previous assumptions. It follows that f is a normal function, and the proof of Theorem 2 is complete.

References

- [1] AULASKARI, R.: On the boundary behaviour of a rotation automorphic function with finite spherical Dirichlet integral. Ann. Acad. Sci. Fenn. Ser. A I Math. 9, 1984, 125–131.
- [2] AULASKARI, R., and P. LAPPAN: A criterion for a rotation automorphic function to be normal. -Bull. Inst. Math. Acad. Sinica 15, 1987, 73-79.
- [3] COLLINGWOOD, E. F., and A. J. LOHWATER: The theory of cluster sets. Cambridge University Press, Cambridge, 1966.
- [4] HAYMAN, W. K.: Uniformly normal families. University of Michigan Press, Ann. Arbor, 1955, 199-212.
- [5] LEHTO, O., and K. I. VIRTANEN: Boundary behaviour and normal meromorphic functions.-Acta Math. 97, 1957, 47-65.
- [6] LOHWATER, A. J., and CH. POMMERENKE: On normal meromorphic functions. Ann. Acad. Sci. Fenn. Ser. A I Math. 550, 1973, 1–12.

University of Joensuu Department of Mathematics SF-80100 Joensuu Finland Michigan State University Department of Mathematics East Lansing, Michigan 48824 USA

Received 2 February 1987