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THE UNIFORM CONTINUITY OF THE MODULUS
OF ROTATION AUTOMORPHIC FUNCTIONS

RAUNO AULASKARI and PETER LAPPAN

Let D={z: |z|]<1} and let f(z) be a function meromorphic in D. We say
that f(z) is a rotation automorphic function in D if there exists a Fuchsian group I
acting on D such that for each T¢I there exists a rotation S; of the Riemann
sphere W such that f(T(2))=Sy(f(2)) for each zeD. We will use F, to denote
the fundamental region for the Fuchsian group I'. If I' contains more than the iden-
tity element, there are many possible choices for a fundamental region, and we will
fix F, to be a connected hyperbolically convex set which satisfies the conditions for
a fundamental region. Let d(z,, z,) denote the hyperbolic distance between the
points z, and z, in D, and let x(w,, w,) denote the chordal distance, that is, the
usual distance in real 3-space, between the points w;, and w, in W, where we identify
points on W with points on the extended complex plane in the usual way. If G is
a subset of D, we say that a function f(z) defined on D is uniformly continuous
hyperbolically on G if for each ¢>0 there exists a 6=>0 such that y(f(z), f(z2))<e
whenever z, and z, are points in G such that d(z;, z,)<dJ. We note that the defini-
tion does not require f(z) to be a meromorphic function, and below we will use
the idea of “uniformly continuous hyperbolically” for functions which are not
meromorphic. In addition, we let G denote the closure of G.

If f(z) is a meromorphic function in D, we say that f(z) is a normal function
if sup {(1—[z1%) f*(2): zED}=oo, where f*(2)=|f"(2)I/A+]f ().

A concept similar to that of “uniformly continuous hyperbolically” was con-
sidered by Hayman [4]. The definition for a normal function as given above is due
to Lehto and Virtanen [5].

In [2, Theorem 1], we obtained the following result.

Theorem. If f(z) is a meromorphic rotation automorphic function in D such
that f(z2) is uniformly continuous hyperbolically on Fon\D, then f(z) is a normal
Sfunction.

In this theorem, the condition on f(z) in the fundamental region F, is suffi-
ciently strong that no restrictions on the group I' are needed. For our results below,
we will require some restrictions on the group I'. Our first result deals with a finitely
generated group I'.
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Theorem 1. Let f(z) be a meromorphic rotation automorphic function such
that h(z)=|f(2)| is uniformly continuous hyperbolically in FonD. If T is a finitely
generated Fuchsian group, then f(z) is a normal function.

In addition, we can obtain a similar result by changing the nature of the restric-
tion on the group I'. We say that the fundamental region Fy is thick if for each
sufficiently small r>0 there exists a number r’=0 such that for each sequence
{z,} of points in F, there exists a sequence of points {z,} in F, such that, for each
positive integer n both d(z,,z,)<r and the set U(z,,r)={z¢D: d(z, z;)<r"}
is a subset of F,. The concept of “thick” was introduced in [1] with a slight difference
in the statement of the definition. (In [1], the sequence {z,} was required to be in
F,, not its closure. It is a simple exercise to show that the concept as given here is
equivalent to that in [1].)

Our second result is the following.

Theorem 2. Let f(z) be a meromorphic rotation automorphic function such
that h(z)=|f(2)| is uniformly continuous hyperbolically in FynD. If F, is thick,
then f(z) is a normal function.

In view of Theorems 1 and 2, it is reasonable to ask the following general
question. If f(2) is a rotation automorphic function such that h(z)=| f(z)| is uniformly
continuous hyperbolically on FynD, is f(z) a normal function? Although we suspect
that the answer to this question is negative, we do not have an example to show this.
Theorems 1 and 2 show that such an example must involve a fundamental region
F, with a reasonably complicated structure.

We prove Theorems 1 and 2 below.

Proof of Theorem 1. Let f(z) be a rotation automorphic function relative to
a finitely generated Fuchsian group I' such that h(z)=|f(z)| is uniformly con-
tinuous hyperbolically on FynD, and suppose that f(z) is not a normal function.
By a theorem of Lohwater and Pommerenke [6, Theorem 1, page 3], there exist a
sequence of points {z,} in D and a sequence {p,} of positive real numbers such that
Pu/(1—|z,)~0 and the sequence of functions {g,(t)=f(z,+p,t)} converges uni-
formly on each compact subset of the complex plane to a function g(¢) meromorphic
and non-constant on the complex plane. Since I' is a Fuchsian group, for each po-
sitive integer n there exists T,€I" such that T,(z,)¢F,nD. The family {STn(g,, )}
is a normal family because the family {g,(s)} is a normal family. Further, since
f(2) is rotation automorphic relative to I', we have that Sy (g,(1)=f(T,(z.+Pat)),
which means that, by taking subsequences, if necessary, we may assume that the
sequence {f(T,(z,+p,1))} converges uniformly on each compact subset of the
complex plane to a non-constant meromorphic function g, (¢). Let z,=7,(z,) and
let &,()=T,(z,+p,t)—2,. Since p,/(1—]|z,])~0, we have that d(z], z,+ ®,(1))~0
for each fixed complex number 7. It is no loss of generality to assume that the sequence
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{z,} converges to a point on the boundary of D, since f is continuous on D. Also,
since I' is finitely generated, there are only two possibilities: (1) {z,} converges to
a point on the closure of a free boundary arc of Fyn{z: |z|]=1}, or (2) {z} con-
verges to a parabolic vertex P of F,.

Assume Case (1). Then there exists a number g, (depending on the sequence
{z;}) and two real numbers o, and a,, with O=o;<a,=27 and o,—a,=7/2 and
such that the set D,={z: 0<d(z, z,)<q,, o,<arg (z—z,)<a,} is a subset of F,
for all sufficiently large ». Since T, preserves both angles and hyperbolic distances,
for n sufficiently large the set 7, *(D,) contains a hyperbolic sector at z, with an
opening containing an angle at least a,—0;. By choosing a subsequence, if necessary,
we have that if 7 is a complex number taken from an appropriate fixed sector of
the complex plane formed by an angle of at least (x,—a;)/2 at the origin, then
Z,+p,t€T, (D,) and thus z,+®,(t)€D,. Since h(z)=|f(z)| is uniformly con-
tinuous hyperbolically in F,nD, and since d(z, z,+ ®,(¢))~0, it follows that
lg+(t)|=1g,(0)]. But ¢ can be chosen arbitrarily from a fixed sector on the plane,
so we have that the function g, (¢) must be a constant function, which contradicts
our previous assumptions about g, (¢). Thus, the assumptions we have made are
untenable in Case (1). This means that Case (1) cannot occur.

Now assume that Case (2) occurs. The point P is the fixed point of a parabolic
element Tp€I', where T, sends the region F, onto an adjacent copy of F,. Let
Sy, denote the rotation of the Riemann sphere which satisfies the condition
f(Tp(2))=Sr,(f(2) Let 4 and B denote the two points of the Riemann sphere
fixed by the rotation Sy ,. We consider three subcases: (2a) 4=0 and B=-<o (this
includes the case when S; = identity); (2b) O<|A|<|B|<<; and Case (2c)
|A]=|B|=1. The nature of the fixed points of a rotation of the Riemann sphere
gives these three cases as the only possibilities.

Assume that Case (2a) occurs. Fix ¢ with |7|>0, and let {,=z,+®,(¢)=
T,(z,+p,t). For each positive integer n sufficiently large, there exists an integer
k, such that (Tp)(¢,)€F,. But since d(z,,{,)—0, it follows from the nature of
the action of parabolic elements of Fuchsian groups that d(z], (Tp)*=({,))~0 also.
Thus, since h(z)=|f(z)| is uniformly continuous hyperbolically on FynD, we have
that x(| £ (z)l, | £ ((Tp)»())])~0. But since the fixed points of S, r, are 0 and oo,
it follows that St is a rotation of the complex plane and so | f (TP(C,,))]
|S7,(f@)| =1/, which means that | f((Zp)()|=]/()l. But this implies
that |g,(#)|=|g,(0)]. But since ¢ is an arbitrary non-zero complex number, we
must conclude that g, (?) is a constant function, in violation of our previous assump-
tions. Thus, we have that Case (2a) cannot occur.

Now assume that Case (2b) occurs. For each =0 let A(0)={w: x(w, 4)<d}
and let B(8)={w: x(w, B)<d}. Since |A|<|B]|, there exists a number &,>0
such that sup {|w|: weA(8,)}<inf {|w|: weB(d,)}. Let 7, and f, be two complex
numbers such that g, (4)€4(d,) and g,(1)€B(S,). Then d(z,+®,(1)),2,)-~0
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for j=1,2. Also, for j=1,2, thereexistintegers k¥’ such that Tﬁs'”(z,’,+d>,,(t D)EF,.
As in Case (2a), we have d(z}, T';s'j)(z,',—l—@,,(tj)))—»O for j=1,2, which means,
since h(z)=|f(z)| is uniformly continuous hyperbolically on F,nD, that both
lg, (O)]€{Iw]: weA4(dp)} and | 2, (0)|€{lwl: weB(Jy)}. But this is impossible by the
way in which &, was chosen. Thus, Case (2b) cannot occur.

Now assume that Case (2¢) occurs. The boundary of F, consists of a finite
number of arcs of circles, two of which meet at the point P. We designate one of
these two arcs as the left boundary and the other as the right boundary, and we
denote these two boundaries by LB and RB, respectively. For convenience, we will
choose these arcs so that 7Tp(LB)=RB. Let Crz=Cry(f, P), the cluster set of
f at P relative to the arc LB, and let Crz=Crp(f, P), the cluster set of f at P
relative to the arc RB. Finally, let CFo (f, P) denote the cluster set of f at P
relative to the set F,. We wish to show that our accumulated assumptions imply
that Crp=Crp=Cp (/. P), and that each of these sets is a singleton set, say {a},
where either a=A4 or a=B.

If weCyp then there exists a sequence {w,} of points in LB such that f (w,)~>w.
But 7} sends each point o, into RB, and also d(w,, Tp(w,))—0. Since h(z)=|f(2)|
is uniformly continuous hyperbolically in F,nD, we have that h(Te(w,)=
|STP( f (co,,))|—>|w|, and thus |S7, (w)|=|w|. Now suppose that Cyp is not contained
in any great circle through the points 4 and B. Let w; and w, be points in Cyg,
where w;, w,, 4, and B are all different points and w, does not lie on the great circle
C, determined by 4, B, and w,. Since the rotation Sy fixes the two points 4 and B
on the unit circle, and |Sy_ (wy)|=|w;|, we have that Sy sends the circle C; onto
another circle C¥, where C; contains both the points 4 and B and Cy is the reflec-
tion of C, across the great circle determined by 4, B, and <o. Similarly, if we denote
by C, the great circle determined by 4, B, and w,, then Sy, (Co)=C3, where C;
is the reflection of C, across the great circle determined by 4, B, and . However,
Sr, is a rotation of W, which means that C; and C, should be rotated by the same
angle. But since C; and C, are different circles, one of the pairs C; and Cf or C,
and C¥ occurs between the other, which means that the angle between C; and Cy
cannot be the same as the angle between C, and Cj. Thus, we have shown that Cpg
(and hence Cyj) lies on a great circle through 4 and B.

Suppose that Cpp and Cgp each consist of more than one point. If Cpp is a
subset of the unit circle {w: |w|=1}, then Cgp is a subset of this same circle, which
means that Sy (w)=e*/w for some choice of 1, and C¢,USr,(Cy) contains
the outer angular cluster set of f at P. Since we have assumed that (1—1z]®.
f*(z))~<> and that z,—~P radially, we must have that the outer angular cluster
set of f at P is total. But this means that Cr must contain at least one of the
points O or <.

Now suppose that Cpp contains points w such that |w]=1. Without loss of
generality, we may assume that Cpp contains a point w with |w|<1. Let w,€Cpp
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be such that |wj|=min {|w|: weCyp}. Since we have shown that [Sy (w)|=|w|
for w € C.p we conclude that |wy|=>0, for we are dealing with a case where 0 is
not a fixed point of Sy . Let {f,} be a sequence of points in LB converging to P
such that f(B,)—~w,, and let y, denote the circle through f, which is internally
tangent to the unit circle at P. Then Tp(B,)€y, and d(B,, Tp(B,))—0. Then f(y,)
is a curve on the Riemann sphere containing both f(f,) and ST,,( f(B)). If t, is
a point of y,NF,, then since h(z)=|f(z)| is uniformly continuous hyperbolically
on the closure of F,, we must have that |f(z,)]—|w,]. But by the continuity of
f we can choose the point ¢, so that £(z,) lies on the great circle through the points
0, e, and (w,+Sy, (wp)/2. Since the limit points of the sequence {f(#,)} lie in the
set Cp,, it follows that Cp contains a point in the component of the complement
of CrpuCrp which contains the origin. A basic result of cluster set theory says
that the boundary of the set Cy (f, P) is contained in the union of the two sets
Cypp and Cgp [3, Theorem 5.2.1, page 91]. Thus, we must have that 0€Cy . From
this reasoning, it follows that under the assumptions we have made, we must have
either 0€Cy or «€Cp. Suppose, for definiteness, that 0€Cp (f, P). Then
there exists a sequence {z,} in Fy such that f(r,)—~0. Letting y, again be an arc of
the circle through P and t, which is internally tangent to the unit circle at P, we can
repeat the same reasoning as in the previous paragraph to conclude that 0€Cyp
and 0€Cprp. But this violates what we have shown above. Thus, the only possibility
remaining is that C;z and Cgjp coincide as a singleton set, which must be a fixed point
of Sy._. Now, it follows from the argument just completed that Cp (f; P)=Crp=Ckgs-
For definiteness, let 4 be the point which is the single element of the sets Crp, Cgp,
and Cg (f, P).

Now let U,=U(z,, b) be the hyperbolic disc with center at z, and hyperbolic
radius b, where b>0 is a fixed number. Since Cy, (f, P)={4}, for a given number
5>0 there exists a number B>0 such that x(f(z), 4)<6 whenever z€FynD
and |z—P|<B. Let D,={z: |z—(1—(B/2))P|<B/2}. For zED, there exists an
integer n(z) such that Tp®(2)éD,nF,, which means that x(f(2),4)=
x(S’,’gl?( f(2), A)<p. But, for n sufficiently large, the disk U, is a subset of D,.
Hence, for each complex number ¢, we have x(g, (), A)<é, which, for 6<1/2,
contradicts the assumption that g, (¢) is a non-constant meromorphic function.
Thus, Case (2c) is also impossible.

We have now shown that the assumption that f(z) is not a normal function
is inconsistent with the other assumptions on f(z) and I', and so Theorem 1 is
proved.

Proof of Theorem 2. Assume that f(z) is a rotation automorphic function
such that h(z)=|f(z)| is uniformly continuous hyperbolically in FynD, where
F, is thick, and assume that f(z) is not a normal function. Again, by the result of
Lohwater and Pommerenke cited above, there exist a sequence of points {z,} in D
and a sequence of positive real numbers {p,} such that p,/(1—|z,])-~0 and the
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sequence of functions {f,(#)=f(z,+p,t)} converges uniformly on each compact
subset of the complex plane to a non-constant meromorphic function g(#).

As in the proof of Theorem 1, there exists a sequence of elements {7},} in I" such
that for each n, z,=T,(z,)¢F, and, if ®,(t)=T,(z,+p,t)—z,, then the sequence
of functions {f(z,+®,(r))} converges uniformly on each compact subset of the
plane to a non-constant meromorphic function g, (), where we replace {z,+®,(1)}
by a subsequence, if necessary. Also, we have that d(z), z,+ ®,(1))~0 for each
complex number #. As in the proof of Theorem 1, it is no loss of generality to assume
that the sequence {z,} converges to a point of the unit circle {z: |z|=1}.

Let r=0 be fixed. Since F, is thick, there exists a real number r'=0 and a
sequence {{,} in F, such that d(z,{,)<r and the hyperbolic disk U,({,,r)=
{z€D: d(z,(,)<r"} is a subset of Fy. Let 4, denote the hyperbolic triangle formed
by taking z, as one vertex and letting the side opposite z, be a hyperbolic chord
L, of U({,, r’) with hyperbolic length r’, and such that 4, is isosceles with the alti-
tude on the side L, as large as possible. Since r’ is independent of the sequence {z},
there exists a number o>0, independent of n, such that for each n the size of the
angle of 4, at the vertex z, is at least a. (Here, 4, is a hyperbolic triangle with hyper-
bolic altitude at most r+r’ and hyperbolic base r’, where r and r” are fixed. By
applying a linear transformation of D which sends the point z, to the origin, it is
possible to calculate a specific value of « in terms of r and r’, but it is enough for
our purposes to know that o is a fixed positive number.) Since F, is hyperbolically
convex, 47, the interior of 4,, is a subset of FynD. Let 4,=7T,"(d4;). Then 4,
is an open hyperbolic triangular region with a vertex angle at least « at the vertex
z,, and the hyperbolic distance from z, to the opposite side of the triangular region
is at least r’. Let B,={¢: z,+p,t€4,}. By simple geometric considerations, each
of the regions 4/ contains a Euclidean triangle X, where X, has a vertex at z, with
vertex angle o/2 and the hyperbolic distance from z, to the opposite side of X, is
bounded away from zero. Since p,/(1—|z,|)—~0, it follows that B, contains a triangle
7, with vertex at the origin and such that, if A, is the Euclidean altitude to the side
of the triangle &, opposite the origin then h,—~<. Thus, there exists a sector § at
the origin with opening o/2 such that, if /€S then #€B, for infinitely many n.

Recall that we are assuming that the sequence {f(z,+®,(z))} converges
uniformly on each compact subset of the complex plane to the non-constant function
g.(r). But if S then z,+,(t)€4,. However, the conditions that
d(z,, z,+®,(1))~0 and h(z)=|f(z)| is uniformly continuous hyperbolically in
FynD mean that |g,(¢)|=|g,(0)] whenever ¢¢S. But this implies that the func-
tion g, (¢) is a constant function, in violation of our previous assumptions. It follows
that f is a normal function, and the proof of Theorem 2 is complete.
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