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THE UI\IFORM COI§TII{UITY OF THE VIODULUS
OF ROTATTON AUTOMORPHIC FUI{CTIONS

RAUNO AT,JLASKARI ANd PETER LAPPAN

Let D:{z: lzl<1} and let f(z) be a function meromorphic in D. We say

that f (z) is a rotation automorphic function in D if there exists a Fuchsian group I
acting on D such that for each T€f there exists a rotation ,S, of the Riemann
sphere W sachthat f(f|)):Sr("f(r)) for each z€D. We will use Fo to denote

the fundamental region for the Fuchsian group I. If I contains more than the iden-
tity element, there are many possible choices for a fundamental region, and we will
fix Fo to be a connected hyperbolically convex set which satisfies the conditions for
a fundamental region. Let dQr,z) denote the hyperbolic distance between the

points zy and zrin D, and let X(wt,wz) denote the chordal distance, that is, the

usual distance in real 3-space, between the points w, and wrinW, where we identify
points on W vuith points on the extended complex plane in the usual way. If G is
a subset of D, we say that a function /(e) defined on D is uniformly continuous

tryperbolicatty on G if for each e >0 there exists a ä >0 such that )(,(.f (z), f (zr))= t
whenever z1 arrd z2 arc points in G such that dQr, zz)=6. We note that the defini-
tiondoesnotrequire .f(z) to beameromorphic function, and below we willuse
the idea of 'ouniformly continuous hyperbolically" for functions which are not
meromorphic. In addition, we let G denote the closure of G.

lf f (z) is a meromorphic function in D, we say that f (z) is a normalfunction
if sup {(l - lzl'z) f+ (z) : z€.D\ = -, where f + (z) :l f (z)l l0 +l f (z)l\.

A concept similar to that of "uniformly continuous hyperbolically" was con-
sidered by Hayman [a]. The definition for a normal function as given above is due

to Lehto and Virtanen [5].
In [2, Theorem l], we obtained the following result.

Theorem. If f (z) is a meromorphic rotation automorphic function in D such

that f (z) is uniformly continuous hyperbolically on FoaD, then .f (z) is a normal

function.

In this theorem, the conditionon f(z) in the fundamental region Fo is suffi-

ciently strong that no restrictions on the group .f are needed. For our results below,

we will require some restrictions on the group i-. Our first result deals with a finitely
generated group l-.
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Theorem 1. Let f (z) be a meromorphic rotation automorphic function such

that h(z):1fG)l is uniformly continuous hyperbolically in FonD. If f is a finitely
generated Fuchsian group, then f (z) is a normalfunction.

In addition, we can obtain a similar result by changing the nature of the restric-
tion on the group .l'. We say that the fundamental region Fo is thick if for each

sufficiently small r>0 there exists a number r'>0 such that for each sequence

k"\ of points in Fo there exists a sequence of points {zil in F, such that, for each

positive integer n both d(zo,/)=r and the set U(zi,r'):{z(D: d(z,zi)-r'}
is a subset of r.o. The concept of "thick" was introduced in [1] with a slight difference

in the statement of the definition. (In [1], the sequence {zn} was required to be in
Fo, not its closure. It is a simple exercise to show that the concept as given here is
equivalent to that in [].)

Our second result is the following.

Theorem 2, Let f (z) be a meromorphic rotation automorphic function such

that h(z):lf (z)l X uniformly continuous hyperbolically in FonD. If Fo is thick,
then f (z) is a normal function.

In view of Theorems 1 and 2, it is reasonable to ask the following general

question. If f (z) is arotationautomorphic functionsuch that h(z):lf (z)l is uniformly
continuous hyperbolically on FonD, is f(r) a normal function? Although we suspect

that the answer to this question is negative, we do not have an example to show this.

Theorems I and 2 show that such an example must involve a fundamental region

^Fo with a reasonably complicated structure.

We prove Theorems I and2 below.

Proof of Theorem 1. Let f (z) be a rotation automorphic function relative to
a finitely generated Fuchsian group I such that h(z):lf (z)l is uniformly con-

tinuous hyperbolically on ,FonD, and suppose that f (z) is not a normal function.
By a theoremof Lohwaterand Pommerenke[6, Theorem 1, page 3], there exist a
sequence of points {2,\ it D and a sequence {p,} of positive real numbers such that
p,l\-lz,l)*O and the sequence of functions {g"(t):f (r"+p"t)} converges uni-
formly on each compact subset of the complex plane to a function g(r) meromorphic
and non+onstant on the complex plane. Since .l- is a Fuchsian group, for each po-

sitive integer nthere exists [€I such that T,(z)€FonD. The family {,Sr,(g,(r))}
is a normal family because the family {s"G)l is a normal family. Further, since

f (z) is rotation automorphic relative to l-, we have that §r,(S,(r)){(7"(2"+p,t)),
which means that, by taking subsequences, if necessary, w€ may assume that the
sequence 17(7"(zn+pnr))) converges uniformly on each compact subset of the
complex plane to a non-constant meromorphic function g*(r). Let z':Tn(z) and
let i[n(t)-fo(2,*p^t)-zi. since p,lT-lz,l)*0, wehave that d(z!,,2!,+o,7t1)*g
for each fixed complex number t. It is no loss of generality to assume that the sequence
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{z!,\ converges to a point on the boundary of D, since / is continuous on D. Also,
since .l' is finitely generated, there are only two possibilities: (t) {ri} converges to
a point on the closure of a free boundary arc of Fon{z: lzl:l}, or Q) {zill con-
verges to a parabolic vertex P of4.

Assume Case (1). Then there exists a number ao (depending on the sequence

{z'rl) and two real numbers a, and ar, with O<ar<.q,z=zn and ur-ar>nl2 and
such that the set Dn:lz;O=d(z,zi)-qo, a..<arg(z-/,)--arl is a subset of F6

for all sufficiently large n. Since I preserves both angles and hyperbolic distances,
for n sufficiently large the set T;'(D.) contains a hyperbolic sector at zo witin an
opening containing an angle at least az- ilt. By choosing a subsequence, if necessary,
we have that if r is a complex number taken from an appropriate fixed sector of
the complex plane formed by an angle of at least (a2-a)12 at the origin, then
zo*p,tQTnt (D,) and thus zi+<D,(t)e»". Since å(z):lf(z)l is uniformly con-
tinuous hyperbolically in FonD, and since d(zi,zi+O,1t11*0, it follows that
lg*(l)l:lg*(0)1. But / can be chosen arbitrarily from a fixed sector on the plane,
so we have that the function g*(r) must be a constant function, which contradicts
our previous assumptions about g*(/). Thus, the assumptions we have made are
untenable in Case (l). This means that Case (1) cannot occur.

Now assume that Case (2) occurs. The point P is the fixed point of a parabolic
element Tp€i-, where 7, sends the region Fo onto an adjacent copy of Fo. Let
§r" denote the rotation of the Riemann sphere which satisfies the condition
f(Tr1z1):5r"(f(r))- Let A and B denote the two points of the Riemann sphere
fixed by the rotation §rr. We consider three subcases: (2a) A:0 and 3: - (this
includes the case when ,Srp: identity); (2b) 0<lll<lBl<-; and Case (2c)

lAl:lBl:1. The nature of the fixed points of a rotation of the Riemann sphere
gives these three cases as the only possibilities.

Assume that Case (2a) occurs. Fix , with lrl=0, and let (o:zi+Oo1t1:
Tn(zolpnt). For each positive integer r sufficiently large, there exists an integer
k, such that (Tik"(C,)€,F0. But since d(zi,(,)*0, it follows from the nature of
the action of parabolic elements of Fuchsian groups that d(zi, (7r)h((J)*0 also.
Thus,since h(z):lfk)l isuniformlycontinuoushyperbolically on FonD, wehave
that {lf(z)l,lf(7")o"((,))l)*0. But since the fixed points of .§r- are 0 and -,
it follows that ^Sr, is a rotation of the complex plane and ro l/1frti,))l:
lsr,(/((,)l:lfG,tl, which means that l"f((7r)*"((,»l:l"f((,)1. But'this implies
that lg*(r)l:lg*(0)1. But since, is an arbitrary non-zero complex number, we
must conclude that g*(r) is a constant function, in violation of our previous assump-
tions. Thus, we have that Case (2a) cannot occur.

Nowassume that Case (2b) occurs. For each ä>0 let A(6):lw: y(w,,4)=ä)
and let B(ä): {w: y(w,B)=ä}. Since lAl<lBl, there exists a number äo=0
such that sup {lwl: w€z{(äj}=inf {lwl: weB(äJ}. Let \ and t, be two complex
numbers such that g*(rJ€l(äo) and S*(rJ€B(öd. Then d(zi+O.(t),2)*O
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for i:1,2. Also,for 7:1, 2, thereexistintegers /<[' such that fi§ltp' +o,(l))e Fo'

As in case (2a), we have d(zi,r!!!'p;+o,(r)))*0 for .7:1,-2, which means'

since ft(z):lf (z)l is uniformly continuous hyperbolically on -F6nD, that both

lg*(O)le {lwl: w(A(öo)} and lg*(O)le {lwl: w€B(äJ}. But this is impossible bv the

way in which äo was chosen. Thus, Case (2b) cannot occur.

Now assume that Case (2c) occurs. The botrndary of F6 consists of a flnite

number of arcs of circles, two of which meet at the point P. We designate one of

these two arcs as the left boundary and the other as the right boundary, and we

denote these two boundaries by LB and .RB, respectively. For comenience, we will

choose these arcs so that TI(LB):RB' Let Crr-Crr(f,P), the cluster set of

f at P relative to the arc LB,andlet Cps:Cpr(f,P), the cluster set of f at P

relative to the arc RB. Fina§, let Cro (f , P) denote the cluster set of f at P
relative to the set F6. We wish to show that our accumulated assumptions imply

that C6:Csu:Cro(f,P), and that each of these sets is a singleton set, say {e},

where either a:A or a:8.
lf w€Cm then there exists a sequence {co,} of points in IB such that f (ah)*w'

Bnt Trsends each point crr, into Å8, and also d(a,, Tr(an))*O' Since h(z):lf (z)l

is uniformly continuous hyperbolically in FooD, we have that h(rr1as):

lS".(/(r,Dl*lwl, and thus l§r"(w)l: lwl. Now suppose that Cas is not contained

i"-ä"y greai circle through the points A and B. Let w. and w, be points in Car,

where w1, wz, A, and B ate all different points arrd w, does not 1ie on the great circle

c, determinedby a, B, and w1. since the rotation §". fixes the two points a and B

on the unit circle, and lSr,(wr)l :lwrl, we have that §r, sends the circle C, onto

another circle Cf, where Cf contains both the points A and B and Cf is the reflec-

tion of C, across the great circle determined by A, B, and -. Similarly, if we denote

by Cs the great circle determined by A, B, and wr, then,Sr,(C2) :Ct, whete Ct
is the reflection of C2 across the great circle determined by A, B, and -. However,

,S", is a rotation of. W, which means that C, and C, should be rotated by the same

u.r§t". nrrt since C, and C, are different circles, one of the pairs C, and C{ or C,

and, C§ occurs between the other, which means that the angle between C, and C{

cannot be the same as the angle between Crand Cf. Thus, we have shown that Cs
(and hence C^r) lies on a great circle through A and B.

Suppose thatCLB and Cp6 each consist of more than one point. If Casis a

subsetoftheunitcircle{w:llyl:1},thenCapisasubsetofthissamecircle,which
means that §r,(w):eitlw for some choice of )", 

_and 
Cror§I.lCrr) .:o1t1i:t

the outer ungotlur cluster set of f at P. Since we have assumed that (l-V:n.
fn(/)** and that zi-P radially, we must have that the outer angular cluster

set of / at P is total. But this means that Cro must contain at least one of the

points 0 or -.
Now suppose that cru contains points ry such that lwl#l. without loss of

generality, we may assume that cae contains a point w with lwl=I. Let wr(cB
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be such that l4l:min{llylt wQCaBl. Since we have shown that l§",(w)l:lu,l
for ru € C"o,we conclude that lwrl>O, for we are dealing with a case where 0 is
not a fixed point of §r,. Let {0,} be a sequence of points in.LBconverging to P
such that f (§)*wr, and let y, denote the circle through p, which is internal§
tangent to the unit circle at P. Then Tr(fi,)€y, and d(§o, f"(§))*0. Then /(y,)
is a curve on the Riemann sphere containing both f(fr") and §r,(/(f,)). If t, is
a point of y,nFo, then since h(z):171r11 is uniformly continuous hyperbolically
on the closure of Fo, we must have that lf!)l*lwrl. But by the continuity of
/ we can choose the point /o so that /(r,) lies on the great circle through the points

0, -, ärd (4+,Sr,(r.r,)/2. Since the limit points of the sequence {/0,)} lie in the

set C,,r, it follows that Cuo contains a point in the component of the complement
of CasvC*s which contains the origin. A basic result of cluster set theory says

that the boundary of the set Cuo(f,P) is contained in the union of the two sets

C6 and C*, f3, Theorem 5.2.1, page 911. Thus, we must have that 0(Coo. From
this reasoning, it foilows that under the assumptions we have made, we must have

either 0€Cro or -€Cro. Suppose, for definiteness, that OeCEr(f, P). Then
there exists a sequence {r,} in Fo such that f (r) -0. Letting yo again be an arc of
the circle through P and z, which is internally tangent to the unit circle at P, we can

repeat the same reasoning as in the previous paragraph to conclude that 0QCas

and 0€Cxa. But this violates what we have shown above. Thus, the only possibility
remaining is that C* and Cas coincide as a singleton set, which must be a fixed point
of §... Now,itfollowsfromtheargumentjustcompletedthat Cro(f, P):Cae:Cas.
For definiteness, let z{ be the point which is the single element of the sets Ctn, C n7,,

andCr,(f, P).

Now let Un:U(zi, b) be the hyperbolic disc with center at z!, and hyperbolic
radius ä, where ä>0 is a fixed number. Since Cu"(/ P):{A}, for a given number
ä>0 there exists a number p>0 such that y(f@),A)=6 whenever z€FonD
and lz-Pl<p. Let Do:{z: lz-(t-(flZ))rl=B127. For zCDp there exists an

integer n(z) such that T1{')7z7EDraFo, which means that x(f @), A):
X(g{?OfO),A)-f. But, for n sufficient§ large, the disk U, is a subset of Du.
Hence, for each complex number l, we have X(S*Q), A)=ö, which, f61 $<112,
contradicts the assumption that g*(l) is a non-constant meromorphic function.
Thus, Case (2c) is also impossible.

We have now shown that the assumption that f (z) is not a normal function
is inconsistent with the other assumptions on f(z) and i-, and so Theorem 1 is
proved.

Proof of Theorem2. Assume that. f(z) is a rotation automorphic function
such that h(z):lf (z)l is uniformly continuous hyperbolically in FonD, where

F6 is thick, and assume that f (z) is not a normal function. Again, by the result of
Lohwater and Pommerenke cited above, there exist a sequence of points {2,} in D
and a sequence of positive real numbers {p"} such that pnl(I-lz,l)*0 and the
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sequence of functions {f,(t):f (r"*p"t)} converges uniformly on each compact
subset of the complex plane to a non-constant meromorphic function g(r).

As in the proof of Theorem 1, there exists a sequence of elements {Z',,} i" ,l- such

that for each n, zi:Tn(2,)€Fo and, if iLn(t):7,(2,*p,t)-z',, then the sequence

of functions {7(r;+O,1t))} converges uniformly on each compact subset of the
plane to a non-constant meromorphic function 8*(l), where we replace {zi+O,1t)}
by a subsequence, if necessary. Also, we have that d(zi,z',+a,(l))*O for each

complex number r. As in the proof of Theorem l, it is no loss of generality to assume

that the sequence {z',} converges to a point of the unit circle {z: lrl:l}.
Let r>0 be fixed. Since Fo is thick, there exists a real number r'>0 anda

sequence {(,} i" Fs such that d(zi,(n)=r and the hyperbolic disk U,((n,r'):
{z€D: dQ,()=r'} is a subset of ,F.s. Let /n denote the hyperbolic triangle formed
by taking zln as one vertex and letting the side opposite z', be a hyperbolic chord
L, of U((n,r) with hyperbolic tength r', and such that /, is isosceles with the alti-
tude on the side L,aslarge as possible. Since r'is independent ofthe sequence {zi},
there exists a number a>0, independent of z, such that for eachn the size of the
angle of ln at the vertex z',is at least a. (Here, lois a hyperbolic triangle with hyper-
bolic altitude at most r+r' and hyperbolic base r', where r and r'are fixed. By
applyrng a linear transformation of D which sends the point z', to the origin, it is

possible to calculate a specific value of a in terms of r and r', b\t it is enough for
our pu4)oses to know that u is a fixed positive number.) Since Fo is hyperbolically
convex, ll,the interior of /,, is a subset of .I1nD. Let /i:7-L(/?). Then Å;
is an open hyperbolic triangular region qrith a vertex angle at least a at the vertex

zn, and the hyperbolic distance from zn to the opposite side of the triangular region
is at least r'. Let Bn:{t: z,-lp,t€Å'*). By simple geometric considerations, each

of the regions /i contains a Euclidean triangle X,, where X, has a vertex at z,with
vertex angle al2 and the hyperbolic distance from zn to the opposite side of I, is

bounded away from zero. Since p,l!-lz,l)*0, it follows that B,contains a triangle
z, with vertex at the origin and such that, if h" is the Euclidean altitude to the side

of the triangle z, opposite the origin then ån*-. Thus, there exists a sector,S at
the origin with opening ul2 swh that, if t(,S then t(Bn for infinitely many n.

Recall that we are assuming that the sequence {f (rl+O"(t))} converges

uniformly on each compact subset of the complex plane to the non-constant function

C*Q). But if ,€,S then z'"+O.1t1<li. However, the conditions that
d(zi,zi+A,(t))*O and h(z):lf(z)l is uniformly continuous hyperbolically in
FonD mean that lg*(r)l:lg*(0)l whenever /€,S. But this implies that the func-
tion g*(r) is a constant function, in violation of our previous assumptions. It follows
that f is a normal function, and the proof of Theorem 2 is complete.
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