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DECISION PROBLEMS RESIJLTING
F'ROM GRAMMA'TICAL INTERENCE

SÅNDOR HORVÄTH, EFIM KINBER, ARTO SAI,OMAA ANTI SHET'{G YU

l. Introduction. Grammatical inference is one of the classical areas of language
theory. The basic task is to infer the rules of a grammar, or at least some specific
subset of them, from some samples. (See, for instance, [ 1].) Inference problems are
particularly natural when associated with devices generating a language as a sequence
of words. Then the task is to determine the whole sequence (and possibly the rules
of the device) from some part of the sequence. Typical examples deal with Z sys-
tems, [3].

The particular problem investigated in this contribution has been initiated in
connection with studies concerning the inference of programs, see [l] and [2]. The
set-up is as follows. We are given a finite set I : {Dr, .. ., Dn]1 of derivations. We
consider gralnmars G that can be inferred ftom g in the following sense. It is possible
to "realize" each derivation step in each D, using productions of G, and all pro-
ductions of G result from some such derivation step. Attention will be mostly restric-
ted to context-free grammars G. However, our basic definition below is more general.

LetGl and G2 be two gramrtrars inferred from g.Intuitively, G. and Grare
o'close to each other" or "similar". Thus it is conceivable that, at least for some
specially restricted 9's, the equivalence problem of grammars inferrable from g
is decidable.

However, it turns out tbat the equivalence problem is undecidable even if
attention is restricted to context-free grammars and the 9's considered are in some
sense very simple. Results to this effect will be presented in this paper. The results
show that some well-known undecidability results for context-free grammars hold
true even if some specific additional information is available. We consider only
grammars but analogous results hold for Z systems as well.

We present various techniques in our undecidability proofs, obtaining a se-
quence of results of growing strength.

The following very natural set-up leads to decidability results. We are given
all words that can be derived by derivation trees of some flxed height i, i:0, l, 2, .. . .

From this information we have to infer the grammar. Various versions of this prob-
lem are obtained, depending on the additional information available and, for instance,
whether we want all possible grammars or just one of them.
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A brief description of the contents of this paper follows. The basic definitions
are given in Section 2. Section 3 proves the first undecidability result. The result is

shown in the next section to hold even in a special case. Sections 5 and 6 establish

two further strengthenings ofundecidability. The final section discusses the inference

problem based on flnite sets ofwords.
Some of the results were presented already in [4].

2. Definitions. The reader is referred to [5] for all unexplained notions in lan-
guage theory. Consider two disjoint alphabets E* (nonterminals) and 2y (terminals)
and denote

Z: ZxuZr.

Some letter .S in .E,o is specified as ttre start symbol.
A finite sequence ofwords at over Z

D: d1, ..., a,p (k =- 2)

is referred to as a deriuation provided each of the words a,i, i<k, contains a letter
of .Er. The pairs (ar, ar*r), i:1, ..., k-1, arc referred to as steps of D. A pair (§,y)
of words over .E is termed a rule or a production inferred from the step (4,, a,*)
ifand only ifthere are words Brand B2 such that

ai : 0rfr§2, ai+t: §flfr2

and, furthermore, B contains a letter of .Xr. The same rule may be inferred from
several steps.

By customary notations, derivations are often written

Ur=+ AZ+...+ Ah

and productions B*y. Productions are called context-free if and only if B is a
letter of X1,.

Let now
g: {Dr, ..., Dnl1

be a finite set of derivations. Then a grammar

G - (Xn, »r,,S, P)

i s said to be inferred from I if and only if the production set P is obtained by inferring
exactly one production from every step in every derivation Dr. G is termed context-

free if and only ifall productions in P are context-free. The notation 9(9) (respec-

tively 9gp(g)) stands for the family of all (respectively all context-free) grammars

inferred from 9.
Observe that, by our definitions, nonterminals, terminals and the start symbol

cirn be recognized from the derivations Dr.
For instance, assume that I consists of the following three derivations:

(1) ,S " ,S,§, S ==r ^§r 
--+ 2, ,St S, =-, GStb,Sl .
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(Capital letters are nonterminals. Lower case letters are terminals. The empty word
is denoted by 2.) Then the only context-free grammar G inferred from I is deter'

mined by the productions

,S * §Sl,Sr, §r * aSrålrt'

However, also the grammar G1 determined by the productions

§ * ^S§l,Sr, S, * ,1., SrSr * a,Srå,S,

is inferred from A. No further grammars can be inferred from 0, Clearly,

"fhus, the two grammars inferred fuom I are not equivalent.
We want to investigate the existence of algorithms to the foliowing effect.

Given 9 and two grammars inferred from 0, the algorithm decides whether or not

the grammars are equivalent. Hereby the selection of 9's may be somehow restric-

ted. Attention may also be restricted to the families 9gp(9).

3. Basic undecidability. Consider the grammars G, and G2 defined on p. 90 of

[5]. (The grammars are based on a giveninstance of the Post correspondence problem.)

We now def,ne the set I as follows. I contains all one-step derivations obtained

from productions common to both G. and Gr. Thus, the production ,S0*/ com-

mon to both G1 and G, yields the derivation Sn=>A in 9' Fwthennore, I contains

the three derivations

(2) S,S,t#§;, i - 1,3,4.

(As defined in [5], G, results from G, by replacing the productions 511 * # and ,Sr * g

with the production Sa * #. \t I these three "exceptional" productions are rep-

resented by (2).)

Consider now the following grammar Gi in I (9). The productions

Sr * #, §3 * #, §4^Sa * fi§a

are inferred from steps (2). From all other steps in I we of course infer the unique
production inferrable from that step. The grarnmar Gi is obtained in the same way

by inferring the productions

Sr§r *#§r,,Sr,Ss-#§a, &*f
from steps (2). It is clear that Gi and Gi are equiv;ilent, for i:1,2, because it is

not possible to derive a word with two nonterminals according to Gi. Hence, the

equivalence problem for grammars in I (9) is undecidable, even if attention is
restricted to context-sensitive grammars,

This result will now be strengthened to concerrl context-free grammars as well.

Consider two arbitrary context-free grammars Ga and GB with start symbols

Å and B and with disjoint nonterminal alphabets not containing any of the letters

S listed below. The set I is now def,ned as follows.
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I consists of all one-step derivations corresponding to the productions of G,1

and Gs and, moreover, of the following derivations :

§ =+ §r§r, § =+ ,S1,Sr,

§r*å, S2+1, Sr*i,
,SrS, =+ S1 frLfr Sr, 

^Sr^Sr 
+ S1 frBf.,Sr.

(Here 4 is considered to be a terminal letter. The start symbol is §.)
Consider the following two grammars G, and G, inferred from g. We have to

list only the productions inferred from (3), since all other productions of G, and G,
are uniquely determined by the derivation steps. The productions inferred from (3)
are in G,

§1 -- StfrAf, ,S, -' §11 frB/-

§a -* #A#Sr, §B -* frB#§r.

L(G) : (x t(C)# u # L(Gr)# )*
and

L(G) : (x qe ; a1* w (* t1c u1 *)*.

This means that G, and G, are equivalent if and only if one of the languages I(Gr)
and L(G) is contained in the other. Since the latter condition is obviously unde-
cidable for arbitrary context-free grammars Gn and G6, 'wa have established the
following result.

Theorem l. There is no algorithmfor deciding, gitsen g and two context-free
grammars G, and Gs inferredfrom 9, whether ornot G, and G2 are equioalent.

4. Undecidability for restricted 9's. We shall show in this section that our
problem remains undecidable even if I is "minimal". We consider minimality
in two senses.

We have observed that sometimes only one production can be inferred from
a derivation step. This is always the case when the left side consists of one nonter-
minal only, for instance, §*§, §r, but it is true also in some other cases, for instance,
§,S+a§å. Let us call a derivation step ambiguous if and only if more than one
production can be inferred from it. The total number of ambiguous steps in the
derivations of I is called the order of 9.

Thus, the order of 0 defined by (1) is one. The order ofthe set g used in the
proof of Theorem 1 is two. Clearly, if the order of I is zero then I (9) contains
only one grammar and, hence, the equivalence problem is trivial. On the other
hand, the proof of Theorem 1 shows that the equivalence problem of ggr(9) remains
undecidable if I is restricted to sets with order =2. We now strengthen this result
to concern sets with order <1.

Consider the proof of Theorem 1. We modify the set I as follows. The gram-
mars Ga ard G3 are as before. As before, I also contains all one-step derivations

and in G,

CIearly,
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corresponding to the productions of G,a and Gp. But now the additional deriva-

tions in I are
§ + §rSr, & + §r#l#, ,S1 + 2, S, * 1,

(4) §r§, = S1#Bf §r.

observe that (4) is the only ambiguous step and, consequently, the order of
g eq;51als one. To define a grammar inferred ftom 9, it suffices to tell the production

inferred from (4).

Consider now the context-free grammars G, and G, inferred from I such

that the production inferred from (4) is

5r *§rfiB# and §z * #BfiSz,
respectively. Clearly,

(s) L(GL\ = (x4e;1u Sr(Gn)f,)*'

(6) L(G): (x4e^1p)*(*21c,1s1*.

As before we see that the equivalence of G, and G, is undecidable.

We finally show the undecidability of our problem when 0 is minimized in the

sense that it contains only one derivation.
we shall define a set I consisting of only one derivation D. As before, the

grammars Gn and G, constitute the starting point but now we assume that they

are also redueed. LetG4 contain t andGs z productions. The first l*z*3 steps

in the derivation D are:

S + Sr§, + &filf & + SrfrA* frAfr Sz

+...::' S{*Afr)'Sz+ &#B* (frAfrYS,

.+... =+,S1( fi Bfr)" (frAfry Sz

-. & ( #B# )' (*A*)' + ( fiB# )'( frA*)t .

The derivation D now continues in such a way that each of the occurrences of B
and A is transformed into a terminal word. The transformation is arbitrary other-

wise but the derivation starting from the ith occurrence of B (respectively l)
must use the lth production of Gs (respectively Gn), fot all i.

Consider now the grammars G, and G2 inferred from I such that both contain

the production ,S*§rSz, Sr*2, Sz-1, and all productions of Gnand Gp' Further-

more, G1 contains the productions

§, * §r frA#lSLfB*
and G2the productions

q * ,s, #B# , s2 * fiafi s2.

I(GJ and L(G) are as in (5) and (6) except that in (6) the order of the two catena-

tion factors has been commuted.

The results of Section 4 are summarized in the following theorem.
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Theorem 2. The undecidability result of Theorem I holds true enen if g is
restricted either to sets of order one or else to sets consisting of one proper deriuation
(i.e,, a deriuationbeginning with the start symbol and ending with a terrninal word).

5, Further strengthening. A very naturat next step is to combine the two con-
ditions of Theorem 2. This will be done in our next theorem.

Theorem 3. The undecidability result of Theorem I holds true euen if g is
restricted to sets of order one consisting of one proper deriuation.

Proof. We flrst observe that the following problem is easily shown to be un-
decidable. We are given two reduced rt-free linear grammars Gn and G6, with start
symbols A and B, and with no common nonterminals. We have to decide whether
or not one of the languages L(G) and L(Gs) is contained in the other.

The following argument applies reduction to this undecidable problem.
Given G, and Gu, we consider the following proper derivation of order one.

It is understood that all capital letters appearing in the derivation (apart from I and
B) arc nonterminals not appearing in Gn and G3. As before, f is a terminal letter.
We now indicate the derivation; additional explanations are given later on.

§ + Sr& + & #B#& + S,KA# #3il Sz

+ SÅLfr ilBilSz+ Qr#A# #BfrSz

:3"i) rr,iil{ s;;:'" 
# )' # A# * B n s z

- QJA*)ZKilAfr #B#52

:,å:::::rr:;';

-'irrr'r"r.i1!rrrlÅli};^,
+ (a*)'k #Ail #B* (# B)eR,

=+... =, (A#)ro frA# frB# (fr B)z^ Rt

> (Ap)zk YAfr *Bfr (* B)rm + ... ;

where the final part consists of deriving a terminal word from each of the ,4's and
B's in such a way that every rule of Gnand G, is applied at least once. The con-
stants k and m are chosen to be large enough for this purpose. This is certainly pos-
sible. Observe, in particular, that there will be no difficulties as regards the parity
of the number of ,4's and B's: it does not matter if we have to take some derivation
twice.
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The only ambiguous step in the above derivation is the second one: the deri-

vation is of order one. Let us denote by Gr the grammar having the rule

'Sr 
* 

'Sr fiB# '
and by Grthe grammar having the rule

§t2 * *B#,sr.

G, and G, are the only grammars inferred from the above derivation. They

have as common rules all the rules of Ga and Gp and, moreover, the following rules:

,S*,SrSz, 51 *,S1K1 fi, K**,
Sr * Qt, Qr * QzA#, Qt * ),,

Qr* QtA*, S, * Ar, Rr*fi8R2,
Rt * 1, R2 * fi8R1.

Denoting L(Gr), L(G), L(G) and L(G) shortly bY L', Lr, La,and Lr, respec-

tively, we see that

and 
Lr: ((LaD,)*(*(rnu Lil*)*((* Lr)')*

Lr: ((Lnilz)* (# Lail* (# Lr# ).« # rB)').

This means that Lr: l, exactly in case one of the languages Lo and I, is contained

in the other. Since the latter condition is undecidable, we have completed the proof.

The above derivation is somewhat more complicated than actually necessary

because we have taken care of the additional condition: whenever Go and Gs are

unambiguous, so are G, and Gr.
Observe, secondly, that the only ambiguous step in the derivation given in the

proof of Theorem 3, in fact, increases the number of nonterminals. (The step was

&Sr=& #B# ,Sr.) This increase is not necessary, as seen from the following
rnodification:

§-sr&+&#&+§lKl##'s,
+ &#A#fr §z + (fl#f #&

+ (ilA#)zfrf"Bfi^t, =) (*Afr)'#(*B*)z

+ (frA#)s #(*8il)2

:=>...+ (frAilk#(#B*)z

+ (*Ail)k f (#Bf )3

:+ . .. :+ (#Afr)k # (*B# )' .+ . . .

where the continuation is as before. Again the only ambiguous step is the second

one. It gives the production ,Sr*§.* to G, and the production §a*#§a to Gr.
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The productions common to Gr and G2 are now, apart from productions of G,a

and Gp, simpler than before:

§*§r§2, St*SIKA*, K*#,
&* *A#, §, * *BfiSz, §z * #Bfi,

A*A**4, B*8ill8.
Using the same notations as before, we now conclude that

and
Lt : (* Lo# )+ ((x r"f ) u t # )). (* tr# )+

Lz : G Le#)* $* ruf ) u {*})- (# Lu#)+.

This implies that In:1, if and only if Laand Zs coincide, so the reduction is
again completed. We have, thus, established the following result.

Theorem 4. The undecidability result of Theorem I holds true euen in I is
restricted to sets of order one consisting of one proper deriuation, in which the only
ambi guous step is nont erminal-nonincre asing.

We remark that the grammars G1 and G, inferred in the above construction are

always ambiguous (independently of the ambiguity or nonambiguity of Go and Gr).
We do not know whether this is indeed unavoidable.

6. Not euen recursiaely enumerable. Two further strengthenings of the unde-
cidability results obtained so far will now be mentioned.

(i) In all results we may restrict ourselves to a two-letter alphabet. The con-
struction needed is the standard one: the letter ai, i:7, ...,n, is encoded as abia.

(ii) The problems P we have considered have the property that the set {XlP
holds) is not recursively enumerable. This follows because, for instance, the set of
pairs of equivalent linear grammars (of the type we considered) is not recursively

enumerable. To put it differently, our problems are not even "partially decidable",
as this phenomenon is sometimes called.

7. Grammatical inference from finite sefs. This final section of our paper deals

with a broad area yielding, contrary to our previous theorems, rather strong deci-
dability results. The area concerns the very basics oflanguage theory. The subsequent
considerations are to be understood as an initial contribution only: we hope to
return to the topic in another paper.

Essentially, we have the following problem. An oracle gives us, one after the

other, finite subsets Fo, Fr, Fz, .. . of a language Z(G). We know the rule by which
the sets F, are obtained from Z(G). Based on this information, we have to determine
G (or a grammar equivalent to it). We are also given some a priori information,
for instance, an upper bound on the number of nonterminals of G.

We consider only the following rule of forming the sets F;. Given a context-free
grammar G, the set fi(G), i:0, 1,2, ..., consists of those words of .L(G) that can
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be derived by a tree of height i. Thereby, height is determined by the nonterminal

part ofthe tree only. For instance, the trees

/l\
,SAA,

/r/l\
,SAA

,r/\r I

a bb

for the terminal words ab arLd abbaba are of height 0 and 2, respectively.

We can now formulate our problem as follows.

Algorithmic problem. Given a sequence Hi, i:0, 1,2, ..., of finite sets of words,

construct (if possible) a grammar G with the property Hi: Fi(G), for all f.

The sequence ä; is "given" (as already indicated above) by listing the sets one

after the other and not, for instance, by a formula in predicate calculus. Sometimes

this is quite essential for decidability.
Let us consider an example. We have the information that G has only one non-

terminal and only one nonterminating production, that is, production with non-

terminals on the right side. We start to unfold the list of the P-sets:

Fo : {a21, Fr: {al), Fr: {a12, at7l.

From the additional information and F6 we conclude that the terminal alphabet

consists of a alone. Let us denote the only nonterminal by §. Then Fe tells us that
§*cz is the only terminating production.

What could the nonterminating production be? By Fr, there are three possi'

bilities:
§*d§, ,S*43§§, S*a§§§.

(We assume without loss of generality that the a's precede the §'s on the right side:

the order does not affect the language.)

The first possibility would produce only one word to Fr, and the third possi-

bility three words. We immediately check that the second possibility is in harmony

with f'r. Hence, the only possible grammar is

S*d2, S*48§§.

The following result is easy to establish along the lines of this example.

^§

ab
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Theorem 5. Assume that the following additional information is giuen: G has
only one nonterminal and only one nonterminating production. If Fo:{ak},
F1:{at} and m:k+l=7, then at most one grammar canbe inferredfrom the F;
sequence. It is uniquely determined by the sets Fi with i52.

Theorem 5 does not hold for m:0. In fact, in case Fo:Ft-Fz-{,l} all of the
productions ,S*51 (n=l) serve the purpose. We want to emphasize that the
uniqueness in Theorem 5 refers tothe above convention: all a's precede all s's.

In the following example we have the same additional information as above.
Now the list begins:

Fo : {a, a3}, F1 : {alo, a", arn}.

This is enough in this case. ,S*a and §*d are the only terminating productions.
Since the cardinality of .F, is three, the nonterminating production has to have two
,S's on its right side. Hence, it must be ,S*a8§^S.

Again, the result holds also in general.

Theorem 6. With the sante additional inforntation as in Theorem 5, if
Fo: {*, a"}, mln, then at most one grammar can be inferred from the Fisequence.
It is uniEtely determined by the sets Fo and F1.

The additional information of Theorems 5 and 6 can be defined as follows,
without introducing the further simplification of a one-letter terminal alphabet.

Let G be a context-free grammar with the productions

,S * gr§az,S ,,.il,1r-15u.1r,

S * f,, i: l, ...,m,

where the a's and B's are terminal words (maybe empty). We know that the grammar
to be inferred has such a form.

The sets F; can now be defined in a concise way:

Fo(G) : {frr, "', §^},

4(G): luryraryr...ay-{l*-ta*l each y in .$(G)

with 7 < i, at least one 1 in .(-r(G)),
where i>1.

If there are two nonempty I's in Fo(G) containing no colnmon letter, we call
G boundary-marked.

Theorem 7. If G is boundary-marked, there is an algorithm that constructs

from Fr(G) and F2(G) a gratnmar equiualent to G.

The proof of Theorem 7 is based on the idea that the condition of boundary-
markedness can be applied to deduce the nonterminating production. Fo(G) is not
needed because, in the first approximation, the terminating productions and the
nonterminating one can be guessed simultaneously.
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The following uninferability result shows that the grammars must be inferred
from a class that is somehow bounded. Consider the following very simple sequence:

4:{a'), i:0, 1,....

Assume that the grammar to be inferred is right-linear.
Take now any algorithm working on the sequence ,Fj. It has to make its decision

after some initial segment of the sequence, say, Fo, Fr,..., Fo. Then the choice
may be the simple grammar

G:,S*å, §-' aS.

f{owever, the true

k,

k.

sequence might have been

* 1{atlr for i =
tt i t too bt*oy for i >

Hence, our algorithm inferred a wrong grammar, a correct one being:

Si*)", j:0,...,k,
S; * a,S;.'1, j : 0, ,.,, k-1,
,St * b§r,

where S, is the start symbol (and the second line is empty for /c :0;.
Thus, either the number of nonterminals or the number of productions has to

be a priori bounded. It does not suffice to bound the length ofthe right sides ofthe
productions.

Once an a priori bound has been flxed, a general method for our inference
problem would proceed as follows.

The set Fo gives all productions .S*a, where a is a terminal word. Then the
set F, gives from our bounded set finitely many candidates G1, ...,G,,. Each of
the candidates G7 satisfles the conditions

Fs(G): Fs, Fr(G): 4.
Considering Fr, a subset of G;'s is obtained: grarnmars in this subset must satisfy
also the equation for Fr. And so forth. At each step, the set of candidates becomes
smaller or remains unchanged. Such a "stable" step must occur since we are begin-
ning with a finite set. It seems likely that every grammar remaining after this stable
step can be inferred from the Fr-sequence, or else there are no inferrable grammars.
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