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ON THE EXTREMÄLITY AND UMQUE EXTREMÄLITY
OF AFFINE MAPPINGS IN SPÄCE, AN ADDENDUM

STEPHEN AGARD anil RICHARD FEHLMANN

The proper use of the number expl/nl|@-t) in our above mentioned paper
([1]) depended on the crucial inequality {=ZIS wheneoer q:0. There were Cases

(II) and (III). In Case (II), E andrlt were the following functions of the two variables
a, B: r!:p11n111' e-*-LB^-to, in which F(u, B):117q-l)2+km(u-§)'+
m(fr-l)'| G(a, B):pB@- l)' +km(a- f)' +mu(P-l)'. }Jerc k, m, n ate positive
integers with k+m:n and n>2. The case a:F:1 is an irrelevant exception to
the inequality. Aithough the case a:0 had been treated, we neglected to treat
the vanishing of G. It is the purpose of this note to correct this oversight for both
this and the companion Case (II!.

To begin, and by syrnmetry, we may assume that a=fr, hence G:0 can only
occur if q=0. If B=0, then F>k+m-n=Ql3)(n+l). If B-a>|, then
F =k * km : k (n + | - k) >-n=Ql3) (n +1). This could restrict consideration to the
triangle T:{(a, P): O=P=a}l, -1=a<0}, but we prefer to consider the square

Q:{(a,fi): -l<c<O,0<p=1}, in which F assumes its absolute minimum at
(a,fl):(0,U(k+l)), having there the value (z*l)kl&+t). This in turn is not
less than Ql3)(n+l) as soon as k>2. Hence all cases k>2 are done.

In case k:1, and on any vertical line (fixed a) which meets p, G is a quadratic
function of f, and since G(a,0):(n-l)(a *u»)<0=n(a-l)z:61q, l), it follows
that the set G:0 meets each vertical section of Q in exact§ one point,

We define the pair (8, M) by sayrng that the level curve lP:Ql3)(n+1)|
(an ellipse) has its lower meeting with the B-axis when p:3, having there slope M.
The tangent line I: §:Ma*B, which is a lower support line for the sublevel set
y:{F<.Ql3Xn +1)}, enters Q from the right at (0, B), and crosses the line d:-l
at B:3-tr4. As we will soon see, this number is 1-2Be(0,11. Our objective will
now be to show that G is nonnegative on ^L. It will then follow that the locus G:0
has no contact with K.

Tbe defining conditions are: B is the smaller root of |r+(F-l)r:
Qn-l)13(n-l), whereas M: - Fn(o, B)lFn(o, B):l(n-l)B +tll@-t)(28-t).
More explicitly, the formula B:(Uz)(l-lf@» shows that B increases

from 0 to (li2)(1- ft1Z1-0.» as n runs from2to -. fn particular, 1-24€(0, tl.
The equally crucial and easily checked relation M:38- I is helpful in simplifying
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the following expressions, where we write g(a):G(a, Md,+B): Ao+Ara+ Araz +
Aras, and in which

Ao: B+(n-l)82: nB-(n-2)16: ll3+nlB-(1/6)l > 0,

At: M-28+(n-l)l2B(M- 1)+(B- l)'l: Ao,

Az: B-2M+(n-l)l2M(B- 1) +(M- l)'l : 1+(U2)n(7 - 108),

As, : M * (n - L) Mz : 3nB - (l l2)(n - 2) : I a (l l2)n(- 1 + 68) : 3Ao > 0.

Regarding the claim An>O: one sees B:116 when n:7. The case n:2
giving Ao:0, the remaining cases n:3,4,5,6 arc checked individually. We now

see in additionthat Ar- As:4n(l-28)=0. We deduce from the variously displayed

relations:

g (a) : Ao + Ara I Araz I Arus : Ao(l * s + 3as + 3 aB) + 4n (l - 28) az

= Ao(l*u*3a2*3as): Ao(l+a)(l+3a2) = 0,

whenever -1<c<0, withequalityonlyif «:0 and An:O Qn:)).
Turning to Case (III), the analogue to (n*|)r!:F may be expressed by

xA.x-2x.o*n,in which x istherowvector(4, fr,y), u is therowvector (k,m,P),

and as before k, ffi , p, n are positive integers with k +m + p : n. Hete, A, and for later

use, ,E, are the matrices:

The analogue to the side condition E:0 is easily expressed, but in this case

there is also a secondary side condition xE - x :0, which amounts to af +f I * ay :g -

This all comes about because a, 8,1, were originally three distincl roots to a certain

cubic equation ([ l], bottom page 105) which had no linear term. As it turns out,

neither the relation g--0, nor the assumption that a,B,y are distinct is required.

We simply show F>(2/3)(n+1) whenever xE.x:O. The beauty of this side

condition is that it is independent of the parameters k, ffi, P.
The theory of Lagrange multipliers tells us that for any extremal configuration,

there is a nontrivial linear dependence of the gradients, which amounts to
),(xA-a):pxE. lf l,:0, then xE:O, hence x:0, and F:n. Tn continuing

the investigation, we assume ,1,: I .

Next assuming k:m=p, the first and second coordinates of u are the same.

Therefore the same can be said for x(A- pE), and we find easily by subtraction

that lk(n+1)+t4[a-f]:0, hence either a:f or p--k(n+l). With a:f,
the side condition reads c(«+2y):0, hence either a:0 or d: -2y. lnthe former

case r:(0,0,y) and p:p(2k*1)y2-2py*n, minimal for y-ll(2k+l), 
'.yurth

lk@+L-k) -mk -kp I to I 1I
a:l ' -*k m(n+r-m) -;o l, ,: I r o r l.

| -oo -mp p(n+r-p)) tl I oJ

We do not, however, adhere to the requirement that k, m, p be integers. Nevertheless,

l=k=-m<-p is an allowable and useful normalization.
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value Vr(k,p):-plQk+l)+n. In the latter case x:(-4,-2y,y) and F:
y2(8k*p *l8pk)-2y(p- ak) +n, minimal for y:(1,-4k)l(8k+p +l&pk), with
valre Vr(k, p) : - @ - ak)z I $k + p + lSpk) + n. The final alternative p: - k (n * l)
leads (with the side condition) back to ,:(0, o,llQk+l)) arrd Vr(k,p). Since

both extremal values Vr(k, p) and Vz(k, p) are less than n, we can in future disre-
gard the first extremal configuration ,[:0. We note that Vr(k,p)-V1(k,p):
l6k(p-k)(n+I)lQk+l)(8k*p+l8pk)-0, so the minimum for the special case

(k, m, p):(k, k, n-2k) is W1(k, n):V1(k, n-2k):2k(n+l)lQk +1). We also
note W r(k, n)=Ql 3) (n + l).

We next assume k<m-p.By algebraic duality with the previous case, we find
the minimum to be W r(k, n) : V r((n - k) I 2, t<) : 9 7, 1n + 1) (n - D I (an - 3k + 9k (n - k)).
Finally to interpolate between these cases p:(n-k)12 and p:n-2k we observe

with x, k,nfixedandm replaced by n-k-p, that F is quadraticinp with leading
term -p2(§-y)2. Thus for each fixed x, k, n, the minimum of F with respect to p
occurs either for p:n-2k or p:(n-k)12. It follows that with k,n fixed,
min {F(x): xE.x:0,k+map:n} is the smaller of the pair Wr(k,n), Wr(k,n),
which happens to be the former. Indeed, one finds

W r(k, n) - W'(k, n) : k (n * r) (n - 3k) I Qk + t) (an - 3k + 9k (n - k)) > 0.

Since, as observed above, Wr(k,n)=(213)(n+1), we are about done.
Perhaps one should point out that the case (k, m,p):(nf3,nl3,nl3), strictly

speaking not included in the previous analysis, can nevertheless be treated by con-
tinuity from the cases considered. It is not surprising and follows from the last
formula that Wr(nl3,n):Wr(nl3,n). Slightly different about this case, however,
are the higlrly nonunique extremal configurations - a locus comprising a space circle.
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