HOMEOMORPHISMS OF BOUNDED LENGTH DISTORTION

JUSSI VÄISÄLÄ

1. Introduction

1.1. Let D and D' be domains in the plane R^2 , and let $f: D \rightarrow D'$ be a homeomorphism. We let $l(\alpha)$ denote the length of a path α . If $L \ge 1$ and if

$$(1.2) l(\alpha)/L \leq l(f\alpha) \leq Ll(\alpha)$$

for all paths α in *D*, we say that *f* is of *L*-bounded length distortion, abbreviated *L*-BLD. In a joint article [MV] of O. Martio and the author, we consider more general BLD maps: discrete open maps of domains of \mathbb{R}^n into \mathbb{R}^n satisfying (1.2). For homeomorphisms and, more generally, for immersions, (1.2) is equivalent to the following condition: Every point in *D* has a neighborhood *U* such that f|U is *L*-bilipschitz, that is,

(1.3)
$$|x-y|/L \le |f(x)-f(y)| \le L|x-y|$$

for all $x, y \in U$. For this reason, the BLD immersions are often called locally bilipschitz maps or local quasi-isometries or just quasi-isometries [Jo], [Ge].

The BLD property can also be defined in terms of upper and lower derivatives. Let $L_f(x)$ and $l_f(x)$ be the upper and lower limits of |f(x+h)-f(x)|/|h| as $h \to 0$. Then a homeomorphism f is L-BLD if and only if $l_f(x) \ge 1/L$ and $L_f(x) \le L$ for all $x \in D$. In particular, if f is differentiable at x, this means

$$(1.4) |h|/L \le |f'(x)h| \le L|h|$$

for all $h \in \mathbb{R}^2$.

Every *L*-BLD homeomorphism is L^2 -quasiconformal, but a quasiconformal map is BLD only if its derivative is a.e. bounded away from 0 and ∞ .

The purpose of this paper is to identify the domains $D \subset \mathbb{R}^2$ which are BLD homeomorphic to a disk or to a half plane. The corresponding problem for bilipschitz maps was solved in the early eighties by Tukia $[Tu_1], [Tu_2]$, Jerison—Kenig [JK] and Latfullin [La]; see also [Ge]. Their results can be stated as follows: A bounded domain D is bilipschitz homeomorphic to a disk if and only if its boundary ∂D is a rectifiable Jordan curve satisfying the *chord-arc* condition: There is $c \ge 1$ such that

(1.5)
$$\sigma(x,y) \leq c|x-y|$$

for all $x, y \in \partial D$; here $\sigma(x, y)$ is the length of the shorter arc of ∂D between x and y. The half plane case is similar; then ∂D is a locally rectifiable Jordan curve through ∞ satisfying (1.5).

We show that the BLD homeomorphic images of the disk and the half plane can be characterized by a somewhat similar condition. However, the euclidean distance |x-y| in (1.5) must be replaced by the *internal distance* $\lambda_D(x, y)$, which is the infimum of the lengths of all arcs joining x and y in D. Moreover, ∂D need not be a Jordan curve. Hence we shall replace ∂D by the prime end boundary $\partial^* D$. Alternatively, the condition can be expressed in terms of the neighborhood system of ∂D in D. An equivalent condition has been considered by Pommerenke [Po₂].

In a forthcoming paper I shall apply the results of the present paper to show that a bounded domain is BLD homeomorphic to a disk if and only if $D \times R^1$ is quasiconformally equivalent to a ball.

1.6. Notation. If $x \in \mathbb{R}^n$ and r > 0, B(x, r) is the open ball with center x and radius r, and S(x, r) is its boundary sphere. We shall write

$$B(r) = B(0, r), \quad B^n = B(1), \quad S(r) = S(0, r), \quad S^{n-1} = S(1).$$

We let d(A) denote the euclidean diameter of a set $A \subset \mathbb{R}^n$, and d(x, A) is the distance between A and a point $x \in \mathbb{R}^n$.

2. Preliminaries

In this section we introduce the internal chord-arc condition for simply connected domains in \mathbb{R}^2 . In 2.9 we give a modulus estimate needed in Section 3. Since it may have independent interest, it is formulated for an arbitrary dimension n.

2.1. Jordan domains. A domain $D \subset R^2$ is a Jordan domain if its boundary ∂D in the extended plane $\dot{R}^2 = R^2 \cup \{\infty\}$ is a Jordan curve (homeomorphic to a circle). Suppose that D is a Jordan domain and that ∂D is locally rectifiable, that is, every compact arc in $\partial D \setminus \{\infty\}$ is rectifiable. If $a, b \in \partial D \setminus \{\infty\}$, we let $\sigma_D(a, b)$ denote the length of the shorter subarc of ∂D with end points a and b. If $x, y \in \overline{D} \setminus \{\infty\}$, $\lambda_D(x, y)$ will denote the infimum of the lengths of all paths joining x and y in D. We say that D has the *internal chord-arc property* with parameter $c \ge 1$ if

(2.2)
$$\sigma_D(a,b) \leq c\lambda_D(a,b)$$

for all finite boundary points a, b of D. We abbreviate this by saying that D is c-ICA.

The ordinary chord-arc condition (1.5) clearly implies (2.2). One can show that a Jordan curve through ∞ satisfies (1.5) if and only if both components of its complement have the property (2.2). The domain $D = \{(x, y) \in \mathbb{R}^2 : x < 0 \text{ or } y > |x|^2\}$ satisfies (2.2) but not (1.5).

305

2.3. Prime ends. We give a brief summary on some known facts on prime ends. In what follows, we assume that D is a simply connected proper subdomain of \mathbb{R}^2 which is *finitely connected on the boundary*. This means that every boundary point of D has arbitrarily small neighborhoods U such that $D \cap U$ has only a finite number of components. Equivalently, ∂D is locally connected. Still equivalently, every QC map $f: \mathbb{B}^2 \to D$ has a continuous extension $\overline{f}: \overline{\mathbb{B}}^2 \to \overline{D}$. See [Nä, 3.2] and [Po₁, 9.8].

The prime ends of such a domain D are always of the first kind and can be defined as equivalence classes of tails. By a tail of D we mean a path $\alpha: [a, b) \rightarrow D$ such that $\alpha(t) \rightarrow z \in \partial D$ as $t \rightarrow b$. The point z is written as $h(\alpha)$. A subtail of α is a restriction to a subinterval $[a_1, b)$. If U is a neighborhood of $h(\alpha)$, there is a unique component $W(U, \alpha)$ of $U \cap D$ containing a subtail of α . Two tails α and β are equivalent if $h(\alpha) = h(\beta)$ and if $W(U, \alpha) = W(U, \beta)$ for every neighborhood U of $h(\alpha)$. The equivalence class $\overline{\alpha}$ of a tail α is a boundary element of D, and their collection ∂^*D is the prime end boundary of D. The set $D^* = D \cup \partial^*D$ has a natural topology such that (D^*, ∂^*D) is homeomorphic to (\overline{B}^2, S^1) . In fact, every QC homeomorphism $f: B^2 \rightarrow D$ has a unique extension to a homeomorphism $f^*: \overline{B}^2 \rightarrow D^*$. There is a natural continuous impression map $i: D^* \rightarrow \overline{D}$, defined by $i(\overline{\alpha}) = h(\alpha)$ for $\overline{\alpha} \in \partial^*D$ and by i|D = id. If D is locally connected at a boundary point $z, i^{-1}(z)$ consists of a single point, which is often identified with z. In particular, if D is a Jordan domain, we can identify $\partial^*D = \partial D$ and $D^* = \overline{D}$.

Suppose that α is a subarc of $\partial^* D$. Then $i | \alpha$ is a path in \dot{R}^2 and has a well-defined length $l(\alpha) \in (0, \infty]$, called the length of α . If $i(u) = \infty$ for at most one $u \in \partial^* D$, then also written as ∞ , and if $l(\alpha) < \infty$ for every compact arc $\alpha \subset \partial^* D \setminus \{\infty\}$, we say that $\partial^* D$ is locally rectifiable. Equivalently, $l(\alpha)$ can be defined as the infimum of all numbers λ such that there is a sequence of arcs $\alpha_j \subset D$ such that (1) $\alpha_j \rightarrow \alpha$ in the natural topology of the space of all arcs of D^* and (2) $l(\alpha_j) \rightarrow \lambda$.

2.4. The ICA property. Suppose that D is as in 2.3 and that ∂^*D is locally rectifiable. If u and v are finite points in ∂^*D , we let $\sigma_D(u, v)$ denote the length of the shorter arc of ∂^*D between u and v. Furthermore, let $\lambda_D(u, v)$ be the infimum of the lengths of all paths α joining u and v in D. By this we mean that α is an open path which has subpaths representing both u and v. One has always $\lambda_D(u, v) \leq \sigma_D(u, v)$. If there is a constant $c \geq 1$ such that

(2.5)
$$\sigma_D(u,v) \leq c\lambda_D(u,v)$$

for all finite $u, v \in \partial^* D$, we say that D is c-ICA.

For Jordan domains D, this definition is equivalent to that given in 2.1. The complement of a ray and a disk with a radial slit are ICA non-Jordan domains.

2.6. Remarks. 1. Pommerenke [Po₂, Theorem 2] considered domains D satisfying the condition

(2.7)
$$\sigma_D(u,v) \leq c \delta_D(u,v)$$

where $\delta_D(u, v)$ is the infimum of the diameters $d(|\alpha|)$ of all paths α joining u and v in D. Since $\delta_D \leq \lambda_D$, (2.7) implies (2.5). Conversely, (2.5) implies that (2.7) is true with c replaced by a constant $c_1 = c_1(c)$. This follows easily from the results in Section 3. The half plane with an orthogonal slit is $2^{1/2}$ -ICA, but satisfies (2.7) only for $c \geq 2$.

2. It is possible to characterize the ICA property without mentioning prime ends: Let $D \subset \mathbb{R}^2$ be simply connected, $D \neq \mathbb{R}^2$. Then D is c-ICA if and only if for each pair $a, b \in \partial D \setminus \{\infty\}$ and for each $\varepsilon > 0$ there is r > 0 such that if a path α joins points $x \in D \cap B(a, r)$ and $y \in D \cap B(b, r)$ in D, there is a path γ joining x and y in $D \cap (\partial D + \varepsilon B^2)$ with $l(\gamma) \leq cl(\alpha) + \varepsilon$.

3. One can also show that D is c-ICA if and only if the chord-arc condition

$$\sigma_D(u,v) \leq c |i(u)-i(v)|$$

is valid for all $u, v \in \partial^* D$ which are the end points of a segmental crosscut of D, that is, the open line segment with end points i(u), i(v) lies in D and represents both u and v.

2.8. Path families. In Section 3 we shall consider paths γ joining a boundary point $a \in \partial D$ to a point $b \in \overline{D}$ in D. Such a path defines an element $u \in \partial^* D$ with i(u) = a, and we can as well consider γ as a path joining u to b. If Γ is a family of such paths, the modulus $M(\Gamma)$ is always well defined. If γ is a path, we let $|\gamma|$ denote its locus im γ .

2.9. Lemma. Let t>0 and let $A \subset \mathbb{R}^n$ with $d(A) \leq t$. Let $\lambda>0$ and let Γ be a family of paths in \mathbb{R}^n such that $l(\gamma) \geq \lambda t$ and $\overline{|\gamma|} \cap A \neq \emptyset$ for all $\gamma \in \Gamma$. Then $M(\Gamma) \leq \mu_n(\lambda)$, where $\mu_n(\lambda) \to 0$ as $\lambda \to \infty$.

Proof. We may assume that t=1 and that $A \subset \overline{B}^n$. We may also assume that $\lambda > 1$, since otherwise [Vä₁, 7.1] gives $M(\Gamma) \leq m(B(2))/\lambda^n$. Define $\varrho_1, \varrho_2: \mathbb{R}^n \to \mathbb{R}^1$ by

$$\varrho_1(x) = \frac{2}{(\ln \lambda)|x|} \quad \text{for} \quad 1 < |x| < \lambda^{1/2}, \quad \varrho_2(x) = 1/\lambda \quad \text{for} \quad |x| < \lambda^{1/2},$$

and $\varrho_j(x)=0$ for other $x \in \mathbb{R}^n$. We show that $\varrho=\max(\varrho_1, \varrho_2)$ belongs to $F(\Gamma)$, that is, the line integral of ϱ along any rectifiable $\gamma \in \Gamma$ is at least one.

If $|\gamma| \subset B(\lambda^{1/2})$, we have

$$\int_{\gamma} \varrho_2 \, ds \ge l(\gamma)/\lambda \ge 1.$$

If $|\gamma| \oplus B(\lambda^{1/2})$, $\overline{|\gamma|}$ meets the spheres S^{n-1} and $S(\lambda^{1/2})$, and hence

$$\int_{\gamma} \varrho_1 \, ds \geq \int_{1}^{\lambda^{1/2}} \frac{2 \, dr}{r \ln \lambda} = 1.$$

Thus $\varrho \in F(\Gamma)$, which implies

$$M(\Gamma) \leq \int_{R^n} \varrho^n \, dm.$$

Letting Ω and ω denote the volume of B^n and the area of S^{n-1} we have

$$\int_{\mathbb{R}^n}\varrho_1^n dm \leq 2^{n-1}\omega (\ln \lambda)^{1-n}, \quad \int_{\mathbb{R}^n}\varrho_2^n dm = \Omega\lambda^{-n/2},$$

and the lemma follows. \Box

3. Main results

3.1. In this section we characterize the BLD homeomorphic images of B^2 and H^2 . The half plane case is given in 3.4 and the disk case in 3.8. We recall from 1.1 that a homeomorphism $f: D \rightarrow D'$ is *L*-BLD if

$$(3.2) l(\alpha)/L \leq l(f\alpha) \leq Ll(\alpha)$$

for every path in D or, equivalently, f is locally L-bilipschitz.

3.3. Theorem. Let $D \subset R^2$ be a convex Jordan domain, and let $f: D \rightarrow D' \subset R^2$ be an L-BLD homeomorphism. Then:

(1) f is L-Lipschitz in the euclidean metric.

(2) D' is finitely connected on the boundary.

(3) f is L-bilipschitz in the metric $\lambda_{D'}$.

(4) $\partial^* D'$ is locally rectifiable.

(5) f has a unique extension to a homeomorphism $f^*: \overline{D} \to D'^*$, which is *L*-bilipschitz outside ∞ in the metric $\lambda_{D'}$.

(6) $f^*|\partial D$ is L-bilipschitz outside ∞ in the metrics σ_D and $\sigma_{D'}$.

If, in addition, D has the c-chord-arc property, D' is L^2c -ICA.

Proof. Observe that since D is convex, λ_D is the euclidean metric. The condition (1) follows at once from convexity. Hence f has a continuous extension $\overline{f}: \overline{D} \rightarrow \overline{D'}$. Then (2) follows from [Nä, 3.2]. Since D is convex, ∂D is locally rectifiable. The rest of the theorem follows easily from (3.2) and from the considerations in 2.3 and 2.4. \Box

3.4. Theorem. A simply connected domain $D \subset R^2$ is BLD homeomorphic to the half plane $H^2 = \{(x, y) \in R^2: y > 0\}$ if and only if (1) $D \neq R^2$, (2) D is finitely connected on the boundary, (3) D is ICA, and (4) D is unbounded.

Proof. Suppose that $f: H^2 \rightarrow D$ is an *L*-BLD homeomorphism. Since the image of the segment $\{0\}\times(0, 1]$ has length at most *L*, (1) is true. Since H^2 is convex and 1-ICA, (2) and (3) follow from 3.3. Since f^{-1} is locally *L*-Lipschitz, $\infty = m(H^2) \leq L^2 m(D)$, which implies (4).

The converse part is considerably harder. We first give an outline of the proof. Suppose that D satisfies the conditions (1)—(4). Choose a conformal map $f_1: H^2 \rightarrow D$. It has a homeomorphic extension, still written as $f_1: \overline{H}^2 \rightarrow D^*$. We may assume that $f_1(\infty) = \infty$. Choose a homeomorphism $g: \mathbb{R}^1 \rightarrow \partial^* D \setminus \{\infty\}$ such that $\sigma_D(g(x), g(y)) = |x-y|$ for all $x, y \in \mathbb{R}^1$ and such that the homeomorphism $s: \mathbb{R}^1 \rightarrow \mathbb{R}^1$ defined by $s(x) = g^{-1}(f_1(x))$ is increasing. Extend s by the Beurling—Ahlfors construction [Ah, p. 69] to a homeomorphism $f_2: \overline{H}^2 \rightarrow \overline{H}^2$. Then $f = f_1 f_2^{-1}: \overline{H}^2 \rightarrow D^*$ is a homeomorphism, and $f \mid H^2$ will be the desired BLD homeomorphism.

Step 1. We show that s is quasisymmetric (QS). Let $x \in \mathbb{R}^1$ and t > 0. Let Γ be the family of all paths joining the intervals [x-t, x] and $[x+t, \infty]$ in H^2 . Then $M(\Gamma)=1$. If γ belongs to the image Γ' of Γ under f_1 , γ has end points a, b with $a \in A = f_1[x-t, x]$ and $b \in B = f_1[x+t, \infty]$. The σ -diameter of A is at most its length s(x) - s(x-t), and hence $d(iA) \leq s(x) - s(x-t)$. Furthermore, $\sigma_D(a, b) \geq s(x+t) - s(x)$. Since D is c-ICA, this implies $s(x+t) - s(x) \leq cl(\gamma)$. From 2.8 we obtain the estimate $M(\Gamma') \leq \mu_2(R)$ with

$$Rc = \frac{s(x+t) - s(x)}{s(x) - s(x-t)}.$$

Since f is conformal, $M(\Gamma) = M(\Gamma') = 1$. Since $\mu_2(R) \to 0$ as $R \to \infty$, we obtain an upper bound for Rc. A lower bound is found similarly, changing the roles of x-t and x+t. Hence s is H-QS with a constant H depending only on c.

Let $f_2: \overline{H}^2 \to \overline{H}^2$ be the Beurling—Ahlfors extension of *s*. Then $f_2|H^2$ is *K*-QC and *L*-bilipschitz in the hyperbolic metric of H^2 [Ah, p. 73] with L=L(c) and $K=L^2$. Then $f=f_1f_2^{-1}: \overline{H}^2 \to D^*$ is a homeomorphism, and $f|R^2=g$; thus

(3.5) $\sigma_D(f(x), f(y)) = |x - y|$

for all $x, y \in \mathbb{R}^1$.

Step 2. We write $\delta(w) = d(w, \partial D)$ for $w \in D$ and show that there is a constant M = M(c) such that

$$(3.6) y/M \leq \delta(f(z)) \leq My$$

for every $z=(x, y)\in H^2$.

Let T be the line through b=i(f(x)) and f(z), let R be the component of $T \setminus \{f(z)\}$ not containing b, and let C' be the component of $R \cap D$ with end point f(z). Let Γ be the family of all paths joining the real segment [x, x+y] to $C=f^{-1}C'$ in H^2 . Then well known modulus estimates show that $M(\Gamma) \ge q_0 > 0$ with a universal constant $q_0 > 0$, cf. [GV, Lemma 3.3, p. 13]. Assume that $\delta(f(z)) = \delta > y$. Since (3.5) implies $\sigma_D(f(x+y), f(x)) = y$, the members of $\Gamma' = f\Gamma$ meet the circles S(b, y) and $S(b, \delta)$. Hence $M(\Gamma') \le 2\pi/\ln(\delta/y)$. Since $M(\Gamma) \le KM(\Gamma')$, we obtain the second inequality of (3.6) with $M = e^{2\pi K/q_0}$.

We turn to the first inequality of (3.6). Fix $z=(x, y)\in H^2$ and set $\delta = \delta(f(z))$. Choose $w_0\in\partial D$ with $|w_0-f(z)|=\delta$. The segment $[f(z), w_0)$ defines an element $u_0 \in \partial^* D$ with $i(u_0) = w_0$. Let C'_0 be the arc on $\partial^* D$ such that u_0 divides C'_0 to two subarcs of length $7c\delta$. Let C_1 be the vertical ray with end point z. Then $C'_1 = fC_1$ joins f(z) to ∞ in D. Let J be the subarc of C'_1 joining f(z) and a point $w_1 \in S(f(z), \delta)$ in $B(f(z), \delta)$.

Case 1. $|w_1 - w_0| \ge \delta$. Set $w_2 = (w_0 + f(z))/2$. For every $r \in [\delta/2, 3^{1/2}\delta/2]$ we can choose an arc α_r of $S(w_2, r)$ with end points $a_r \in J$, $b_r \in \partial D$ and with $\alpha_r \setminus \{b_r\} \subset D$. Let Γ' be the family of all these arcs α_r . A standard estimate gives $M(\Gamma) \ge (\ln 3)/4\pi = q_1$. The arc $\alpha'_r = \alpha_r \setminus \{b_r\}$ defines an element $u_r \in \partial^* D$ with $i(u_r) = b_r$. Moreover, $\alpha'_r \cup [a_r, w_0)$ joins u_r and u_0 in D. Since D is c-ICA, we have

$$\sigma_D(u_r, u_0) \leq c(l(\alpha_r) + |a_r - w_0|) \leq c(2\pi r + |a_r - w_2| + |w_2 - w_0|)$$

$$\leq 3^{1/2} c \delta(2\pi + 3^{1/2}/2 + 1/2)/2 < 7c \delta.$$

Hence $b_r \in C'_0$. Consequently, the members of $\Gamma = f^{-1}\Gamma'$ join $C_0 = f^{-1}C'_0 = [x - 7c\delta, x + 7c\delta]$ and C_1 . Thus either $y \leq 7c\delta$ or $M(\Gamma) \leq 2\pi/\ln(y/7c\delta)$. Since $M(\Gamma') \leq KM(\Gamma)$, we obtain

$$y \leq 7c\delta e^{2\pi K/q_1}$$

which yields the first inequality of (3.6).

Case 2. $|w_1 - w_0| = t < \delta$. We repeat the argument of Case 1 replacing w_2 by $w_3 = (w_0 + w_1)/2$. Since $S(w_3, r)$ meets J and ∂D whenever $t/2 \le r \le 3^{1/2} t/2$, we obtain the same estimate as in Case 1.

Step 3. We prove that the homeomorphism $f|H^2$: $H^2 \rightarrow D$ is BLD. Since $f=f_1f_2^{-1}$ where $f_1|H^2$ is conformal and $f_2|H^2$ L-bilipschitz in the hyperbolic metric, the diffeomorphism $f|H^2$ is L-bilipschitz in the hyperbolic metrics of H^2 and D. Hence

$$|h|/Ly \le \varrho(f(z))|f'(z)h| \le L|h|/y$$

for all $z = (x, y) \in H^2$ and $h \in \mathbb{R}^2$, where ϱ is the density of the hyperbolic metric in D. It is well known that

$$1/4\delta(w) \leq \varrho(w) \leq 1/\delta(w)$$

for all $w \in D$. Together with (3.6), these inequalities show that f is L_1 -BLD with $L_1 = 4LM = L_1(c)$. \Box

3.7. Remark. The proof above shows that the quantitative version of 3.4 is also true: If $f: H^2 \rightarrow D$ is an *L*-BLD homeomorphism, *D* is *c*-ICA with $c=L^2$. If *D* is *c*-ICA and unbounded, there is an *L*-BLD homeomorphism $f: H^2 \rightarrow D$ with L=L(c).

3.8. Theorem. A simply connected domain $D \subset \mathbb{R}^n$ is BLD homeomorphic to the unit disk B^2 if and only if (1) D is finitely connected on the boundary, (2) D is ICA, and (3) D is bounded.

Proof. Suppose that $f: B^2 \rightarrow D$ is a BLD homeomorphism. Then f is L-Lipschitz and hence $d(D) \leq 2L$. The conditions (1) and (2) follow from 3.3. More precisely, since B^2 is π -ICA, D is πL^2 -ICA.

The converse part is proved by modifying the proof of 3.4. Suppose that D satisfies (1) and (3) and that D is c-ICA. Then ∂^*D is rectifiable. We normalize the situation by assuming $l(\partial^*D)=2\pi$. Then there is a lengthpreserving homeomorphism $g: S^1 \rightarrow \partial^*D$. Let $f_1: B^2 \rightarrow D$ be a conformal map. It has an extension to a homeomorphism, still written as $f_1: \overline{B}^2 \rightarrow D^*$. Then $g^{-1}f|S^1=s$ is a self homeomorphism of S^1 , and $l(s\alpha)=l(f_1\alpha)$ for every arc $\alpha \subset S^1$. We may assume that $s|N_3=id$ where $N_3=\{1, e^{2\pi i/3}, e^{4\pi i/3}\}$.

Step 1. We show that $f_1|S^1$ has the following quasisymmetry property: If α and β are adjacent arcs of S^1 with $l(\alpha) = l(\beta)$, then

$$(3.9) l(f_1\beta) \leq c_1 l(f_1\alpha)$$

with some constant $c_1 = c_1(c)$.

Assume first that $l(\alpha) \leq \pi/3$. Then we may assume that $\alpha \cup \beta$ does not meet the arc $A = \{e^{i\varphi}: 2\pi/3 < \varphi < 4\pi/3\}$. Let *a* be the end point of *A* which has the greater distance from $\alpha \cup \beta$. Using the terminology of [LV, I.3.2] we consider the quadrilateral *Q* consisting of the domain B^2 , the three end points of α and β , and the point *a*. There are two path families Γ_1 , Γ_2 associated with *Q* with moduli $M(\Gamma_1) = 1/M(\Gamma_2)$. The length of a path in either family is at least $d(\alpha) = t$. Hence 2.9 implies $M(\Gamma_j) \leq \mu_2(1)$ and thus $M(\Gamma_j) \geq 1/\mu_2(1)$. Let Γ_1 be the family joining α to the opposite side of *Q*, and suppose that $\gamma \in f_1 \Gamma_1 = \Gamma'_1$. The end points of γ divide $\partial^* D$ into two arcs. One of these contains $f_1\beta$ and the other f_1A . Since sA = A, we have $l(f_1A) = 2\pi/3$. Since *D* is *c*-ICA, this implies $cl(\gamma) \geq \min(l(f_1\beta), 2\pi/3)$. Since $d(if_1\alpha) \leq l(f_1\alpha)$, 2.9 gives $M(\Gamma'_1) \leq \mu_2(R)$ with

$$R=\frac{\min\left(l(f_1\beta),2\pi/3\right)}{cl(f_1\alpha)}$$

Since $M(\Gamma_1) = M(\Gamma_1) \ge 1/\mu_2(1)$ and since $\mu_2(t) \to 0$ as $t \to \infty$, R is bounded by a universal constant c_0 . Hence either (3.9) holds with $c_1 = c_0 c$ or $2\pi/3 \le c_0 cl(f_1\alpha)$. In the latter case (3.9) holds with $c_1 = 2c_0 c$.

The case $l(\alpha) > \pi/3$ reduces to the case above by dividing α and β to three subarcs, cf. [LV, II.7.1].

Step 2. We want to extend $s: S^1 \rightarrow S^1$ to a QC homeomorphism $f_2: \overline{B}^2 \rightarrow \overline{B}^2$. To this end we choose an auxiliary Möbius map h with $hB^2 = H^2$ and $h(1) = \infty$. Then $s_1 = hsh^{-1}|R^1$ is an increasing homeomorphism onto R^1 . Moreover, s_1 is (weakly) *H*-QS with H = H(c). This can be seen for example as follows: Since $l(s\alpha) = l(f_1\alpha)$, (3.9) implies that $s: S^1 \rightarrow S^1$ is weakly H_1 -QS in the arc metric, hence in the euclidean metric, cf. [TV, p. 113]. Since S^1 is of π -bounded turning, s is η -QS with $\eta = \eta_c$ [TV, 2.16]. Hence s is θ -quasimöbius with $\theta = \theta_c$ by [Vä₂, 3.2]. Consequently, s_1 is θ -quasimobius. Since $s_1(\infty) = \infty$, s_1 is θ -QS and hence (weakly) *H*-QS with $H = \theta(1)$.

Let $g: \overline{H}^2 \to \overline{H}^2$ be the Beurling—Ahlfors extension of s_1 . It induces a homeomorphism $f_2 = h^{-1}gh: \overline{B}^2 \to \overline{B}^2$. Then $f_2|S^1 = s$, and $f_2|B^2$ is K-QC and L-bilipschitz in the hyperbolic metric of B^2 with L = L(c), $K = L^2$.

Step 3. The map $f=f_1f_2^{-1}$: $\overline{B}^2 \rightarrow D^*$ is the desired map. This follows as in the proof of 3.3 from the inequalities

(3.10)
$$(1-|z|)/M \leq \delta(f(z)) \leq M(1-|z|)$$

where $z \in B^2$, M = M(c), $\delta(w) = d(w, \partial D)$. This is proved by a rather obvious modification of the proof of the corresponding inequalities (3.6) of the half plane case. Omitting other details, we describe the construction of the arcs $C'_0 = f_1 C_0$ and $C'_1 = f_1 C_1$. We may assume that $7c\delta < 1 - |z|$. As in the proof of (3.6), C'_0 will be a subarc of $\partial^* D$ with $l(C'_0) = 14c\delta$. This is possible, since $14c\delta < 2(1-|z|) \le 2 < 2\pi = l(\partial^* D)$. Then C_1 is chosen to be the line segment with end points z and $-f^{-1}(w_0)$. \Box

3.11. The quantitative version of 3.8. If $f: B^2 \rightarrow D$ is an L-BLD homeomorphism, D is c-ICA with $c=\pi L^2$. If D is c-ICA and bounded with $l(\partial^*D)=r$, there is an L-BLD homeomorphism $f: B(r) \rightarrow D$ with L=L(c).

References

- [Ah] AHLFORS, L. V.: Lectures on quasiconformal mappings. D. Van Nostrand Company, Inc., Princeton, New Jersey—Toronto—New York—London, 1966.
- [Ge] GEHRING, F. W.: Injectivity of local quasi-isometries. Comment. Math. Helv. 57, 1982, 202-220.
- [GV] GEHRING, F. W., and J. VÄISÄLÄ: The coefficients of quasiconformality of domains in space. -Acta Math. 114, 1965, 1–70.
- [JK] JERISON, D. S., and C. E. KENIG: Hardy spaces, A_{∞} , and singular integrals on chord-arc domains. Math. Scand. 50, 1982, 221–247.
- [Jo] JOHN, F.: On quasi-isometric mappings, I. Comm. Pure Appl. Math. 21, 1968, 77-110.
- [La] LATFULLIN, Т. G., (Латфуллин Т. Г.): О геометрических условиях на образы прямой и окружностн при квазиизометрии плоскости. - Материалы XVIII всесоюзной научной студенческой конференции, Новосибирск, 1980, 18—22.
- [LV] LEHTO, O., and K. I. VIRTANEN: Quasiconformal mappings in the plane. Springer-Verlag, Berlin—Heidelberg—New York, 1973.
- [MV] MARTIO, O., and J. VÄISÄLÄ: Elliptic equations and maps of bounded length distortion. To appear.
- [Nä] Näkki, R.: Continuous boundary extension of quasiconformal mappings. Ann. Acad. Sci. Fenn. Ser. A I Math. 511, 1972, 1—10.
- [Po1] POMMERENKE, C.: Univalent functions. Vandenhoeck & Ruprecht, Göttingen, 1975.
- [Po₂] POMMERENKE, C.: One-sided smoothness conditions and conformal mapping. J. London Math. Soc. (2) 26, 1982, 77-82.

- [Tu₁] TUKIA, P.: The planar Schönflies theorem for Lipschitz maps. Ann. Acad. Sci. Fenn. Ser. A I Math. 5, 1980, 49-72.
- [Tu₂] TUKIA, P.: Extension of quasisymmetric and Lipschitz embeddings of the real line into the plane. Ann. Acad. Sci. Fenn. Ser. A I Math. 6, 1981, 89–94.
- [TV] TUKIA, P., and J. VÄISÄLÄ: Quasisymmetric embeddings of metric spaces. Ann. Acad. Sci. Fenn. Ser. A I Math. 5, 1980, 97–114.
- [Vä₁] Väisälä, J.: Lectures on *n*-dimensional quasiconformal mappings. Lecture Notes in Mathematics 229, Springer-Verlag, Berlin—Heidelberg—New York, 1971.
- [Vä₂] VÄISÄLÄ, J.: Quasimöbius maps. J. Analyse Math. 44, 1984/85, 218-234.

University of Helsinki Department of Mathematics SF-00100 Helsinki Finland

Received 9 April 1987