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HOMEOMORPIIISMS OF BOUNDED LENGTH DISTORTION
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1. Introiluction

1.1. Let D and D'be domains in the plane.R2, and let f : D*D' be a homeo'

morphism. We let /(a) denote the length of a path a.lf L=l and if
(1.2) t(u)lL=t(fa)=Lt(a)

for all paths a in D, we say that / is of L-bounded length distortion, abbreviated

Z-BLD. In a joint article [MV] of O. Martio and the author, we consider more

general BLD maps: discrete open maps of domains of -P into Å' satisfying (1.2).

For homeomorphisms and, more generally, for immersions, (1.2) is equivalent to
the following condition: Every point in D has a neighborhood U such that /lU
is Z-bilipschitz, that is,

lx- yllL s lf@)-f(y)l = Llx*yl

for all x,y€(J. For this reason, the BLD immersions are often called locally bi
lipschitz maps or local quasi-isometries or just quasi-isometries pol, [Ge].

The BLD property can also be defined in terms of upper and lower derivatives.

Let L1@) and f (x) be the upper and lower limits of lf (x+h)-.f (x)lllhl as å*0.
Then a homeomorphism / is Z-BLD if and only if lr(x)=llL and Lr(x)=L for
all x(D. In particular, if / is differentiable aL x, this means

(1.4)

for all heRz.

Every ,L-BLD bomeomorphism is "L2-quasiconformal, but a quasiconformal

map is BLD only if its derivative is a.e. bounded away from 0 and -.
The purpose of this paper is to identify the domains DcRz which are BLD

homeomorphic to a disk or to a half plane. The corresponding problem for bilip-
schitz maps was solved in the early eighties by Tukia [Tu1], [Tul, Jerison-Kenig

FKI and Latfullin [La]; see also [Ge]. Their results can be stated as follows: A
bounded domain D is bilipschitz homeomorphic to a disk if and only if its boundary

åD is a rectifiable Jordan curve satisfying the chord-arc condition: There is c>l
such that

(1.5)

( 1.3)

o(x, y) = clx - yl
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for all x, y€|D; here o(x, y) is the length of the shorter arc of 0D between x and y.
The half plane case is similar; then åD is a locally rectifiable Jordan curve through

- satisfying (1.5).

We show that the BLD homeomorphic images of the disk and the half plane

can be characteraed by a somewhat similar condition. However, the euclidean
distance lx-yl in (1.5) must be replaced by the internal distance Lo(x,y), which
is the infimum of the lengths of all arcs joining x and y in D. Moreover, åD need

not be a Jordan curve. Hence we shall replace 0D by the prime end boundary 0*D.
Alternatively, the condition can be expressed in terms of the neighborhood system

of åD in D. An equivalent condition has been considered by Pommerenke [PoJ.
In a forthcoming paper I shall apply the results of the present paper to show

that a bounded domain is BLD homeomorphic to a disk if and only if DXR1 is
quasiconformally equivalent to a ball.

1.6. Notation If x€R' and r>0, B(x, r) is the open ball with center x and
radius r, and §(x, r) is its boundary sphere. We shall write

B(r) - B(0, r), Bo : B(l), §(r) - §(0, r), 5*-L - .S(1).

We let d(A) denote the euclidean diameter of a set AcR", arrd d(x,l) is the
distance between A and a point x€R'.

2. Preliminaries

In this section we introduce the internal chord-arc condition for simply connect-
ed domains in Å2. In 2.9 we give a modulus estimate needed in Section 3. Since it
may have independent interest, it is formulated for an arbitrary dimension r.

2.1. Jordan domains. A domain DcRz is a Jordan domain if its boundary
0D in the extended plane Rz:R'r{-} is a Jordan curve (homeomorphic to a

circle). Suppose that D is a Jordan domain and that åD is locally rectifiable, that
is, every compact arc in åD\{-} is rectifiable. If a, å6åD\{-}, we let or(a,b)
denote the lengh of the shorter subarc of åD with end points a and b. If x, y€ D1{-},
Lr(x, y) will denote the infimum of the lengths of all paths joining x and y in D.
We say that D has the internal chord-arc property with parameter c>l if

(2.2) o »(a, b) = cÄo@, b)

for all finite boundary points a, b of D. We abbreviate this by saying that D is c-tCA.
The ordinary chord-arc condition (1.5) clearly implies Q.2). One can show that

a Jordan curve through - satisfies (1.5) if and only if both components of its com-
plement have the property Q.2). The domain D:{(x,/)€Å2: x=0 or y=lxlz}
satisfies Q2)bfi not (1.5).
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2.3, Prime ends. We give a brief summary on some known facts on prime ends.

In what follows, we assume that D is a simply connected proper subdomain of Å2

which is fi.nitely connected on the boundary. This means that every boundary point

of D has arbitrarily small neighborhoods Usuch that DaU has only a finite number

of components. Equivalently, 0D is local§ connected. Still equivalently, every QC
rnap f : B'*D has a continuous extension J: Ba*D. See §ä, 3.2land[Pot,9.8].

The prime ends of such a domain D are always of the first kind and can be

defined as equivalence classes of tails. By a tail of D we mean a path a: la,b)*p
such that a(t)-|Egp as t*b. The point z is written as /r(a). A subtail of s is a

restriction to a subintewallar,b).If U is a neighborhood of h(u), there is a unique

component W(U, a) of UnD containing a subtail of a. Two tails a and B are equiva-

lent if h(a):11B1 and if l't/(U,a):ll/(U,B) fot every neighborhood U of h(q.).

The equivalence class d, of a tail a is a boundary element of D, and their collection

å*D is the prime end boundary of D. The set D*:Dv\*D has a natural topology

such that (D*, A*D) is homeomorphic to (82, ,Sl). In fact, every QC homeomorphism

f : Bz*D has a unique extension to a homeomorphism f*: Bz*D*. Thereis a
natural continuous impression map i: D**D, defined by i@):h(a) for d,<0*D

and by i lD:id. If D is locally connected at a boundary point z,i-t(z) consists of
a single point, which is often identified with z. In particular, if D is a Jordan domain,

wecanidentify 0*D:0D and D*:D.
Suppose that o( is a subarc of 0*D.Then ila is a path in .R2 and has a well-defined

length /(a)€(0, *1, called the length of a. If i(u):* for at most one uQ|*D;

then also written 4s -, ätrd if /(a)<- for every compact arc ac|*D\{-}, we

say that å*D is locally rectifiable. Equivalently, l(a) an be deined as the infimum

of all numbers /u such that there is a sequence of arcs a;cD such that (1) ar*a
in the natural topology of the space of all arcs of D* and Q) t(a)*1.

2.4.ThelCAproperty. Suppose that D is as in 2.3 and that |xD is locally

rectifiable. lf u and u are finite points in å*D, we let op(u,a) denote the length of
the shorter arc of ä*D between u and u. Furthermore , let ),p(u, u) be the infimum

of the lengths of all paths a joining u arrd u in D. By this we mean that a is an open

path which has subpaths representing both u and u. One has always ).p(u, a)=op(u, u).

If there is a constant c>-l such that

oo(u, a) = clo(u, r)(2.5)

for all finite n, a€\*D, we say that D is c-ICA.
For Jordan domains D, this definition is equivalent to that given in 2.1. The

complement of a ray and a disk with a radial slit are ICA non'Jordan domains.

2.6. Remarks. l. Pommerenke [Po*, Theorem 2]considered domains D satis-

fying the condition

(21) op(u,u) < cöp(u,u)
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where äp(2, u) is the infimum of the diameters d(lal) of all paths a joining u and o in
D. Since 61*).p, (2.7) implies (2.5). Conversely, (2.5) implies that (2.7) is true
with c replaced by a constant cr:cr(a). This follows easily from the results in
Section 3. The half plane with an orthogonal slit is 2u2-ICA, but satisfies (2 .7) only
for c=2.

2. It is possible to characterize the ICA property without mentioning prime

ends: Let DcRz be simply connected, D#R?. Then D is c-ICA if and only if
for each pair a,å€AD\{-} and for each e>0 there is r=0 such that if apath
e joins points xQDnB(a, r) and y€DaB(b, r) in D, there is a path 7 joining x and

yin Dn(lD*eBa) with /(?)=c/(c)+e.

3. One can also show that D is c-ICA if and only if the chord-arc condition

op(u, u) =- cli(u) - r(u)l

is valid for all u, u€}*D which are the end points of a segmental crosscut of D,
that is, the open line segment with end points i(u), i(u) lies in D and represents both
u and u.

2.8. Pathfamilies.In Section 3 we shall consider paths l joining a boundary
pont a€LD to a point beD in D. Such a path defines an element u€|*D with
i(u):a, and we can as well consider }, as a path joining u to b.If .l' is a family of
such paths, the modulus M(f) is always well defined. If 7 is a path, we let lyl denote

its locus im y.

2.9. Lemma. Let ,>0 and let Å.c"R"

be a family of paths in l?' such that l(y)> ).t
M(DS p,(,1), uthere p,(Ä)'-'Q tts )* *.

Proof. We may assume that t:l and that AcB". We may also assume that
l,>1, since otherwise [Vä1, 7.U gives M(.f)= m(Ap1)11". Define Q* Qzi Å'*R1 by

)
qr(x): iir;rEi- for 1< lxl = i'''t', Qz@): Ul for lxl = Lriz,

and g;(x):0 for other x€-R'. We show that e:max(qr, QJ belongs to F(i-),
that is, the line integral of q along any rectifiable y€I is at least one.

If lylca(,t1rs), we have

with d(A)=t. Let ,,>0 and let r
and WlnA#fr for atl yef . Then

If lylC g(åtl'), pl meets

{ ,nrcls = t(y)l). = 1.

the spheres §"-1 and §(ltlz;, and hence

[,n'ds] {:"'+ - 1'
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Thus q€ ^F(f), which implies

Letting (} and

iWQ) * l *^q'clm,

the volume of B" and

tx # 2n-1 at (ln A)'-",

tr

the

{o,

o denote

{ n-qiclr

follows.

area of 
^Sn-1 

we have

aEclm * {LÄ^ntz,
,r *o

and the lemma

3. Main results

3.1. In this section we characterize the BLD homeomorphic images of Bz and
H2. The half plane case is given in 3.4 and the disk case in 3.8. We recall from 1.1

that a homeomorphism f : D*D' is I,-BLD if
(3.2) t(a)lL= t(fa)= Lt(a)

for every path in D or, equivalently, / is locally Z-bilipschitz.

3.3. Theorem. Let DcRz be a conoex lordan domain, and let f : D*D'cRz
be an L-BLD homeomorphism. Then:

(1) / is L-Lipschitz in the euclidean metric.

Q) D' is finitely connected on the boundary.

Q) f is L-bilipschitz in the metric ).o,.
(4) 0*D' is locally rectifiable.
(5) f hos a unique extension to a homeomorphism f*: D*D'*, whlch is

L-bilipschitz outside * in the metric ).r,.
(6) f*lDD is L-bilipschitz outside * in the metrics op and op,.
If, in addition, D has the c-chord-arc property, D' is Lzc-lCA.

Proof Observe that since D is convex, ,lp is the euclidean metric. The condition
(1) follows at once from convexity. Hence / has a continuous extension f: D*D'.
Then (2) follows from [Nä, 3.2]. Since D is convex, åD is locally rectifiable. The
rest of the theorem follows easily from (3.2) and from the considerations in 2.3

and2.4. tr
3.4. Theorem. A simply connected domain DcÄ2 ir BLD homeomorphic

to the half plane H2: {(x, l)€R': y>0) if and only if (I) D *R2, (2) D is finitely
connected on the boundary, (3) D ,s lCA, and (4) D is unbounded.

Proof. Suppose that .f : Hz--D is an .L-BLD homeomorphism. Since the
image of the segment {0}X (0, 1l has length at most Z, (1) is true. Since.fy'z is convex
and 1-ICA, (2) and (3) follow from 3.3. Since .;r-t is locally L-Lipschitz, *:m(Hz)å
Lzn(D), which implies (4).
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The converse part is considerably harder. We first give an outline of the proof.

Suppose that D satisfies the conditions (1)-(a). Choose a conformal map ft:
Hz*D. It has a homeomorphic extension, still written as fr: Ez*D*. We may
assume that f,(-):-. Choose a homeomorphism g: Å1*ä*D\{-} such that
o o(g (x), I b)) : lx - yl for a1l x, y ( RL and such that the homeomorphism s :,Rl -.R1
defined by s(x):g-'(Å(r) is increasing. Extend s by the Beurling-Ahlfors con-
struction [Ah, p. 69] to a homeomorphism fr: Ez*Ez. Then f:7r7-r: Ez-D*
is a homeomorphism, and f lHz will be the desired BLD homeomorphism.

Step l. We show that s is quasisymmetric (QS). Let .n€R1 and r>0. Let I
be the family of all paths joining the intervals fx- t, x) and [x * /, -] in f12. Then
M(f):t. If y belongs to the image l'of .l- under fr, y has end points a,b with
aQA-frlx-t, xl and 6q3:fr[x*/, -]. The o-diameter of I is at most its length
s(x) - s(x- l), and hence d(iA)=s(x) - s(x- /). Furtherm ore, o r(a, b) =s(x + l) -
s(x). Since D is c-ICA, this implies s(x*r)-s(x)=cl(y). From 2.8 weobtain
the estimate M(f)=pz(R) with

R": '!1+');'q ."" - s(x)-s(x-r) '

Since / is conformal, M(|):M(I):I. Since pr(R)*Q as -R*-, we obtain
an upper bound for Rc. A lower bound is found similarly, changing the roles of
x- t and x*1. Hence s is ä-QS with a constant ä depending only on c.

Let fr: Ez*Ez be the Beurling-Ahlfors extension of s. Then frlUz is K-QC
and Z-bilipschitz in the hyperbolic metric of Hz [Ah, p. 73] with L:L(c) and
K:LL. Then f:frf;7: EL*D* is a homeomorphism, and f lRz:g; thus

(3.5)

for alt x, y€RL

Step 2. We write ö(w):61r,åD) for w€D and show that there is a constant
M:M(c) such that
(3.6) ylM = a(f@)) < My
for every 2:(x, y)€Hz.

Let T be the line through b:i(f (x)) and f (z), let .R be the component of

^{/k)} 
not containingb, andlet C' be the component of AnD with end point

f (z). Let f be the family of all paths joining the real segment [x, x * !) to C :f- 7 C'
in H2. Then well known modulus estimates show that M(f)=qo>O with a uni-
versal constant 4o>0, cf. [GV, Lemma 3.3, p. 13]. Assume that ö(f (z)):ä=y.
Since (3.5) implies oe(f @*il, f @)):y, the members of f':fl meet the circles

S(b,y) and §(b,ä). Hence M(t')<2nlln(ö1il. Since M(I)=KM(f'), we obtain
the secondinequality of (3.6) with M-ez"Rlso.

We turn to the firstinequality of (3.6). Fix z:(x,y)€Hz and set ö:6(f(z)).
Choose wg€AD with l+vu-fQ)l:6. The segment lfk),u,o) defines an elemenf

oo(f @), f 0)) : lx * yl
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us(O*D with i(a,):wr. LetC'obethe arc on å*D such thatuo divides Ci to two
subarcs of length 7cö.Let C, be the vertical ray with end point z. Then Ci:fC,
joins/(z) to - in D.LetJ be the subarc of Ci joining f(z) and a point wgS(f (z), ö)

in B(f (z), ö).

Case l. lwr-wol>ä. Set wr:(wn*fQ))12. For every r€[ö12,31t2612] we can

choose ai arc u, of S(wr, r) with end points a,Q.J, b,€|D and with a\{å,}cD.
Let f' be the family of all these arcs d,. A standard estimate gives M(i-) > (ln 3)l4n:
q1. The arc aj:a;{b,} defines an element u,<0*D with i(uS:b,. Moreover,
a!,vfa,, w) joins u, and uo in D. Since D is c-ICA, we have

o p(u,, us) < c (l (u) * la, - w ol\ = c (2nr * la, - w rl + I wz - wol)

= 3ttz cö(2n*3tt2l2*tl2)12 < 7c6.

Hence b,eCi. Consequently, the members of f :f-tf' ioin Cs:f-rC'o:
[x-7c6,x*7c6] and C1. Thus either y<7cö or M(f)=2n11n(yl7cö). Since

M (f') = Y114(J-), we obtain
! 5 7c6e2"Klet'

which yields the first inequality of (3.6).

Case2. lwr,-wol:t<ö. We repeat the argument of Case 1 replacing w, by
wu:(wn*w1)/2. Since 

^S(wr, 
r) meets../ and 0D whenever tl2<r<3112fl2, we ob-

tain the same estimate as in Case 1.

Step 3. We prove that the homeomorphism /lä2: Hz*D is BLD. Since

f:frfr' where frlHz is conformal and frlilz Z-bilipschitz in the hyperbolic metric,
the diffeomorphism f lHz is Z-bilipschitz in the hyperbolic metrics of ä2 and D.
Hence

lhllLy = Q(f?)\lf'e)hl = Llhlly

for all 2:(x, y)€Hs and å€R2, where q is the density of the hyperbolic metric
in D. It is well known that

!aö@) = s(il,) = tlö(w)

for all w€D. Together with (3.6), these inequalities show that / is ä-BLD with
lt:4LM:lo@\ tr

3.7. Remark. The proof above shows that the quantitative version of 3.4

is also true: If f: Hz*D is an Z-BLD homeomorphism, D is c-ICA with c:LL.
If D is c-ICA and unbounded, there is an Z-BLD homeomorphism f ; Hz*D
with L:L(c).

3.8. Theorem. A simply connected domain DcÅ' ,3 BLD homeomorphic to

the unit disk Bz if and only if (l) D ,s finitely connected on the boundary,
(2) D is lCA, and (3) D ,'§ bounded.
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Proof. Suppose that f : Bz*D is a BLD homeomorphism. Then f is L-
Lipschitz and hence d(D)=2L. The conditions (1) and (2) follow from 3.3. More
precisely, since .B2 is z-ICA, D is nLz-lCA.

The converse part is proved by modifying the proof of 3.4. Suppose that D
satisfies (1) and (3) and that D is c-ICA. Then ä*D is rectifiable. We normalize the
situation by assuming l(0*D1:2n. Then there is a lengthpreserving homeomorphism
g: §1*äxD. Let fr: B?*D be a conformal map. It has an extension to a homeo-
morphism, stillwritten as fr: Bz-,D*. Then g-f l,S1:s is a self bomeomorphism
of §1, and /(sa):71;,4; for every arc ac,S1. We may assume that slÄf :id
where JVr: {1, ez"tls, se"ilay.

Step l. We show that f,1,S1 has the following quasisymmetry property: If a
and P are adjacent arcs of ,S1 with l(u):1181, 1A",

(3.9) t(frfl) = c1t(fiu)

with some constant c1:c1(c).
Assume fust that l(a)=n13. Then we may assume tbat av§ does not meet

the arc A: {ei* : 2n13=g=4n13}. Leta be the end point of I which has the greater

distance from auB. Using the terminology of [LV, I.3.2] we consider the quadrilate-
ral Q consisting of the domain 82, the three end points of a and P, and the point a.

There are two path families fr,l, associated wirh Q with moduli M(f ,):t11'41711.
The length of a path in either family is at least d(a):t. Hence 2.9 implies MQ)=
pr(l) and th:us M(f i\=llpr[). Let.t', be the family joining « to the opposite
side of Q, and suppose that y (f1f 1: Ii. The end points of y divide ä+D into two
arcs.Oneofthesecontains fr§ andtheother frA. Since sA:A, wehave l(fLA):
2n13. SinceDisc-ICA,thisimplies c/(y)>min (l(fr,§),22l3). Since d(rtd=l(fra),
2.9 gives M(f)=pr(R) wrth

R- min (l(frp),2n13)
cl(fra)

Since l1(.1'):M(f)=llpr(l) and since pr(t)*0 as l*-, R is bounded by a
universal constant cr. Hence either (3.9) holds with c1:cnc or 2rf3=crcl(fru).
In the latter case (3.9) holds with cr:2coc.

The case l(a)>rl3 reduces to the case above by dividing a and B to three
subarcs, cf. [LV, II.7.t].

Step 2. We want to extend s: ,S1*,S1 to a QC homeomorphism fi: Bz*Bz.
To this end we choose an auxiliary Möbius map h with hB2:H2 and å(1):-.
Then sr:lsrr-l|Rl is an increasing homeomorphism onto -R1. Moreover, s, is
(weakly) I/-QS with H:H(c). This can be seen for example as follows: Since

l(sa):117ro1, (3.9) implies that s: §1*,Sr is weakly I/r-QS in the arc metric,
hence in the euclidean metric, cf. [TV, p. 113]. Since ,S1 is of z-bounded turning,
s is 4-QS with q:q" [TV, 2.16]. Hence s is 0-quasimöbius with 0:0" by fYär,
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3.21. Consequently, s. is 0-quasimöbius. Since sr(-):-r §1 is 0-QS and hence

(weakly) ä-QS with H:A[).
Let g: Ez-Ez be the Beurling-Ahlfors extension of sr. It induces a homeo-

morphism fz:h-Lgh: Bz*Bz. Then fl§l:s, and frlBz is K-QC and Z-bi-
lipschitz in the hyperbolic metric of Ba with L:L(c), K:LI.

Step 3. The map .f:frfr': Bz*D* is the desired map. This follows as in
the proof of 3.3 from tbe inequalities

(3.10) (t-lzl)lM = ö(f(z)) = M(t-lzl)

where z€82, M:M(c), ö(w):rtp,6p1. This is proved by a rather obvious
modification of the proof of the corresponding inequalities (3.6) of the half plane

case. Omitting other details, we describe the construction of the arcs C'o:ftCo
and Ci:frCr. We may assume that lcö<l- lzl. As in the proof of (3.6), Ci will
be a subarc of å*D with i(C;):14cä. This is possible, since 14cä=2(l-lzl)=2<
2n:l(0*D). Then C, is chosen to be the line segment with end points z and
_f_r(wi. tr

3.11. The quantitatiue oersion oJ' 3.8. lf f : Bz*D is an I-BLD homeo-
morphism, D is c-ICA wrth c:nLz. If D is c-ICA and bounded with l(O*D):y,
there is an L-BLD homeomorphism /: B(r)*p with Z:Z(c).

References

[Ah] Anr.rons, L, V.: Ifctures on quasiconformal mappings. - D. Van Nostrand Company, Inc,,
Princeton, New Jersey-Toronto-New York-London, 1966.

[Ge] Grunruc, F. W.: Injectivity of local quasi-isometries. - Comment. Math. }lelv.57, 1982,
202---220.

[GV] GrmrNc, F. W., and J. ViirsÄt Ä: The coefficients of quasiconformality of domains in spacc. -
Acta Math. ll4, 1965,1-70.

UK] JeRrsoN, D. S., and C. E. Krt*rc: Hardy spaces, Ä*, and singular integrals on chord-arc
domains. - Math. Scand. 50, 1982,221--247.

Uol JonN, F.: On quasi-isometric mappings, I. - Comm. Pure Appl. Math.2l, 1968,77-llo.
[La] Larrur,lrN, T. G., (Jlaröyarms T. I.): O reoMerpu{ec(m ycroBfisx Ea o6pasbr upruofi z

oKpyxEocrrr trpE KBa3m3or\{erputr urocKocrz. - Marepralu XVIII Bcecoro3Eo[
Ea)ryEotr cryÄeErec(ofi xou(leperqm, Horocu6rpcr, 1980, 18-22,

[LV] LBrro, O., and K, I. VIRTANEN: Quasiconformal mappings in the plane. - Springer-Verlag,
Berlin-Heidelberg-New York, 1973.

IMVJ M,uuo, O., and J. VÄrsÄr.Ä: Elliptic equations and maps of bounded length distortion. - To
appeaf.

[Nä] NÄKKr, R.: Continuous boundary extension of quasiconformal mappings, - Ann. Acad. Sci.
Fenn. Ser. A I Math. 511,1972, l-l1.

[Por] PouurpsNrs, C.: Univalent functions. - Vandenhoeck & Ruprecht, Göttingen, 1975.

[Porl PourrnrsNKE, C.: One-sided smoothness conditions and conformal mapping. - J. London
Math. Soc. (2) 26,1982,77-82,

311



312 Jussr VÄnÄlÄ

lTurl Turn, P.: The ptanar Schönflies theorem for Lipschitz maps. - Ann. Acad. Sci. Fenn. Ser.

A I Math. 5, 1980, 49-72.
[TuJ Tuxre, P.: Extension of quasisymmetric and Lipschitz embeddings of the real line into the

plane. - Ann. Acad. Sci. Fenn' Ser. A I Math. 6' 198I, 89-94.
[TV] TuxH, P., and J. Viirslir,Ä: Quasisymmetric embeddings of metric spaces. - Ann. Acad. Sci.

Fenn. Ser. A I Math. 5, 1980, 97-114.
[Vär] Vfu§,{LÄ, J.: pctures on z-dimensional quasiconformal mappings. - Lecture Notes in

Mathematics 229, Springer-Verlag, Berlin-Heidelberg-New York, 197I.

[Värl VÄlsÄLÄ, J.: Quasimöbius maps. - J. Analyse Math' 44, 1984/85, 218---234.

University of Helsinki
Department of Mathematics
SF-00100 Helsinki
Finland

Received 9 April 1987


