Annales Academiz Scientiarum Fennica
Series A. I. Mathematica
Volumen 12, 1987, 303—312

HOMEOMORPHISMS OF BOUNDED LENGTH DISTORTION

JUSSI VAISALA

1. Introduction

1.1. Let D and D’ be domains in the plane R? and let f: D—~D’ be a homeo-
morphism. We let /(x) denote the length of a path «. If L=1 and if

(1.2) I@)/L = I(f4) = Li(2)

for all paths o in D, we say that f is of L-bounded length distortion, abbreviated
L-BLD. In a joint article [MV] of O. Martio and the author, we consider more
general BLD maps: discrete open maps of domains of R* into R" satisfying (1.2).
For homeomorphisms and, more generally, for immersions, (1.2) is equivalent to
the following condition: Every point in D has a neighborhood U such that f|U
is L-bilipschitz, that is,

(1.3) Ix=yl/L = |fx)—f] = LIx—y

for all x,ycU. For this reason, the BLD immersions are often called locally bi-
lipschitz maps or local quasi-isometries or just quasi-isometries [Jo], [Ge].

The BLD property can also be defined in terms of upper and lower derivatives.
Let L,(x) and /,(x) be the upper and lower limits of | f(x+h)—f(x)|/|h] as h—O0.
Then a homeomorphism f is L-BLD if and only if /,(x)=1/L and L (x)=L for
all x€D. In particular, if f is differentiable at x, this means
1.4) |hl/L = | f’(x)h| = LIh|
for all heR2.

Every L-BLD homeomorphism is L2?-quasiconformal, but a quasiconformal
map is BLD only if its derivative is a.e. bounded away from 0 and oo.

The purpose of this paper is to identify the domains DCR?* which are BLD
homeomorphic to a disk or to a half plane. The corresponding problem for bilip-
schitz maps was solved in the early eighties by Tukia [ Tu,], [ Tu,], Jerison—Kenig
[PK] and Latfullin [La]; see also [Ge]. Their results can be stated as follows: A
bounded domain D is bilipschitz homeomorphic to a disk if and only if its boundary
9D is a rectifiable Jordan curve satisfying the chord-arc condition: There is c¢=1
such that

(L.5) o(x,y) = clx—y|
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for all x, y€0D; here o(x, y) is the length of the shorter arc of 0D between x and y.
The half plane case is similar; then 0D is a locally rectifiable Jordan curve through
o satisfying (1.5).

We show that the BLD homeomorphic images of the disk and the half plane
can be characterized by a somewhat similar condition. However, the euclidean
distance |[x—y| in (1.5) must be replaced by the internal distance A,(x, y), which
is the infimum of the lengths of all arcs joining x and y in D. Moreover, dD need
not be a Jordan curve. Hence we shall replace @D by the prime end boundary 0*D.
Alternatively, the condition can be expressed in terms of the neighborhood system
of 0D in D. An equivalent condition has been considered by Pommerenke [Po,].

In a forthcoming paper I shall apply the results of the present paper to show
that a bounded domain is BLD homeomorphic to a disk if and only if DXR! is
quasiconformally equivalent to a ball.

1.6. Notation. If x€R" and r=0, B(x,r) is the open ball with center x and
radius r, and S(x, r) is its boundary sphere. We shall write

B() = B(0,r), B'=B(l), S =S0,7, S'=5().

We let d(4) denote the euclidean diameter of a set ACR", and d(x, A) is the
distance between 4 and a point x¢€R".

2. Preliminaries

In this section we introduce the internal chord-arc condition for simply connect-
ed domains in R2 In 2.9 we give a modulus estimate needed in Section 3. Since it
may have independent interest, it is formulated for an arbitrary dimension #.

2.1. Jordan domains. A domain DCR? is a Jordan domain if its boundary
oD in the extended plane R?=R?U{w} is a Jordan curve (homeomorphic to a
circle). Suppose that D is a Jordan domain and that 9D is locally rectifiable, that
is, every compact arc in dD\ {<} is rectifiable. If a, bcdD\ {=}, we let op(a, b)
denote the length of the shorter subarc of dD with end points a and b. If x, y€ D\ {},
Ap(x, y) will denote the infimum of the lengths of all paths joining x and y in D.
We say that D has the internal chord-arc property with parameter c¢=1 if

2.2) op(a, b) = cp(a, b)

for all finite boundary points a, b of D. We abbreviate this by saying that D is ¢-ICA.

The ordinary chord-arc condition (1.5) clearly implies (2.2). One can show that
a Jordan curve through oo satisfies (1.5) if and only if both components of its com-
plement have the property (2.2). The domain D={(x, yY)€R*: x<0 or y=>|x|?}
satisfies (2.2) but not (1.5).
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2.3. Prime ends. We give a brief summary on some known facts on prime ends.
In what follows, we assume that D is a simply connected proper subdomain of R?
which is finitely connected on the boundary. This means that every boundary point
of D has arbitrarily small neighborhoods U such that DAU has only a finite number
of components. Equivalently, dD is locally connected. Still equivalently, every QC
map f: B2~D has a continuous extension f: B*-D. See [N4, 3.2] and [Po,, 9.8].

The prime ends of such a domain D are always of the first kind and can be
defined as equivalence classes of tails. By a tail of D we mean a path «: [a, b)~D
such that a(r)~z€dD as t—b. The point z is written as h(x). A subtail of a is a
restriction to a subinterval [a;, b). If U is a neighborhood of A(x), there is a unique
component W (U, &) of UnD containing a subtail of o. Two tails o and § are equiva-
lent if h(x)=h(B) and if W (U, x)=W (U, B) for every neighborhood U of h(a).
The equivalence class & of a tail « is a boundary element of D, and their collection
9*D is the prime end boundary of D. The set D*=Dud*D has a natural topology
such that (D*, 9*D) is homeomorphic to (B, S?). In fact, every QC homeomorphism
f: B2>D has a unique extension to a homeomorphism f*: B2-D*. There is a
natural continuous impression map i: D*—D, defined by i(&)=h(x) for &€0*D
and by i|D=id. If D is locally connected at a boundary point z, i~*(z) consists of
a single point, which is often identified with z. In particular, if D is a Jordan domain,
we can identify 0*D=dD and D*=D.

Suppose that « is a subarc of 9*D .Then i|a is a path in R? and has a well-defined
length [(0)€(0, =], called the length of a. If i(u)=co for at most one u€d*D,
then also written as o, and if I(¢)<eo for every compact arc aCd*D\{e}, we
say that 9*D is locally rectifiable. Equivalently, /(x) can be defined as the infimum
of all numbers A such that there is a sequence of arcs a;CD such that (1) o;—~a
in the natural topology of the space of all arcs of D* and (2) /(x;)—>2.

2.4. The ICA property. Suppose that D is as in 2.3 and that 0*D is locally
rectifiable. If u and v are finite points in 9*D, we let op(u, v) denote the length of
the shorter arc of 9*D between u and v. Furthermore, let A(u, v) be the infimum
of the lengths of all paths « joining u and v in D. By this we mean that « is an open
path which has subpaths representing both v and v. One has always 25 (u, v)=0p (4, v)-
If there is a constant ¢=1 such that

2.5) op(u, v) = cip(u, v)

for all finite u, v€0*D, we say that D is c-ICA.
For Jordan domains D, this definition is equivalent to that given in 2.1. The
complement of a ray and a disk with a radial slit are ICA non-Jordan domains.

2.6. Remarks. 1. Pommerenke [Po,, Theorem 2] considered domains D satis-
fying the condition

2.7 op(u, v) = cdp(u, v)
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where 8p(u, v) is the infimum of the diameters d(|«|) of all paths « joining v and v in
D. Since dp=1p, (2.7) implies (2.5). Conversely, (2.5) implies that (2.7) is true
with ¢ replaced by a constant ¢;=c¢;(c¢). This follows easily from the results in
Section 3. The half plane with an orthogonal slit is 2/2-ICA, but satisfies (2.7) only
for ¢=2.

2. It is possible to characterize the ICA property without mentioning prime
ends: Let DCR? be simply connected, D>~R? Then D is ¢-ICA if and only if
for each pair a, b€dD\{e} and for each ¢>0 there is r=0 such that if a path
o joins points xé DnB(a, r) and y€DNB(b,r) in D, there is a path y joining x and
yin Dn(@D+¢eB? with [(p)=cl(x)+e.

3. One can also show that D is ¢-ICA if and only if the chord-arc condition

op(u, v) = clifu)—i(v)|

is valid for all u, v€0*D which are the end points of a segmental crosscut of D,
that is, the open line segment with end points i(u), i(v) lies in D and represents both
u and v.

2.8. Path families. In Section 3 we shall consider paths y joining a boundary
point acdD to a point beD in D. Such a path defines an element u€d*D with
i(u)=a, and we can as well consider y as a path joining u to b. If I is a family of
such paths, the modulus M (I') is always well defined. If y is a path, we let || denote
its locus im y.

29. Lemma. Let t=0 and let AcCR" with d(4)=t. Let =0 and let T
be a family of paths in R® such that 1(y)=At and [p|nA#® for all ycI. Then
MI)=p, (%), where p,(A)—~0 as A—eoo.

Proof. We may assume that =1 and that 4cB". We may also assume that
A>1, since otherwise [Vd,, 7.1] gives M(I)=m(B(2))/A". Define g;, ;1 R"~R* by

() = ﬁxﬁ for 1<|x|<AY% g,(x) =1/ for |x] < AY%

and ¢;(x)=0 for other x€R". We show that ¢=max (g;, ;) belongs to F(I),
that is, the line integral of ¢ along any rectifiable y¢I' is at least one.
If |y]cB(A?), we have

[, euds = )i = 1.

If |yl & B(AY2), [y| meets the spheres $”~" and §(4%), and hence

Az 2 d
fyglds?:fl m—ri= 1
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Thus o€ F(I'), which implies
M) = f . o"dm.

Letting Q and o denote the volume of B” and the area of $"~* we have
n — n=-1 1—n n — —n/2
[eidn=2""oniy", [ oidm= Qi

and the lemma follows. [J

3. Main results

3.1. In this section we characterize the BLD homeomorphic images of B2 and
H?. The half plane case is given in 3.4 and the disk case in 3.8. We recall from 1.1
that a homeomorphism f: D-D’ is L-BLD if

3.2 I@)/L = I(fo) = Ll(o)
for every path in D or, equivalently, f is locally L-bilipschitz.

3.3. Theorem. Let DCR? be a convex Jordan domain, and let f: D-~D’C R?
be an L-BLD homeomorphism. Then:

(1) f is L-Lipschitz in the euclidean metric.

(2) D’ is finitely connected on the boundary.

(3) f is L-bilipschitz in the metric .

(4) 0*D’ is locally rectifiable.

(5) f has a unique extension to a homeomorphism f*: D->D"*, which is
L-bilipschitz outside <o in the metric Ap,.

(6) f*|0D is L-bilipschitz outside - in the metrics oy and op..

If, in addition, D has the c-chord-arc property, D’ is L*c-ICA.

Proof. Observe that since D is convex, A, is the euclidean metric. The condition
(1) follows at once from convexity. Hence f has a continuous extension f: D—D’.
Then (2) follows from [N&, 3.2]. Since D is convex, dD is locally rectifiable. The
rest of the theorem follows easily from (3.2) and from the considerations in 2.3
and 24. 0O

3.4. Theorem. A simply comnected domain DCR?* is BLD homeomorphic
to the half plane H*={(x, y)€¢R?*: y=>0} if and only if 1) DR (2) D is finitely
connected on the boundary, (3) D is ICA, and (4) D is unbounded.

Proof. Suppose that f: H?-~D is an L-BLD homeomorphism. Since the
image of the segment {0} (0, 1] has length at most L, (1) is true. Since H?is convex
and 1-ICA, (2) and (3) follow from 3.3. Since f~!islocally L-Lipschitz, co=m(H?=
L2m(D), which implies (4).
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The converse part is considerably harder. We first give an outline of the proof.
Suppose that D satisfies the conditions (1)—(4). Choose a conformal map f;:
H2-D. It has a homeomorphic extension, still written as f;: H2—~D*. We may
assume that f,(e)=-cc. Choose a homeomorphism g: R'—g¢*D\ {e} such that
op(g(x), g(»)=|x—y| forall x, y€R* andsuch that the homeomorphism s: R'—R!
defined by s(x)=g~(fi(x)) is increasing. Extend s by the Beurling—Ahlfors con-
struction [Ah, p. 69] to a homeomorphism f,: H2—~H?2 Then f=f,f;': H?-D*
is a homeomorphism, and f|H? will be the desired BLD homeomorphism.

Step 1. We show that s is quasisymmetric (QS). Let x€R! and ¢=0. Let I
be the family of all paths joining the intervals [x—¢, x] and [x+¢, <] in H2 Then
M(I)=1. If y belongs to the image I'” of I under f;, y has end points a, b with
acA=fi[x—t, x] and bEB=fi[x+¢, «]. The o-diameter of A4 is at most its length
s(x)—s(x—1), and hence d(id)=s(x)—s(x—1?). Furthermore, op(a, b)=s(x+1t)—
s(x). Since D is ¢-ICA, this implies s(x+¢)—s(x)=c/(y). From 2.8 we obtain
the estimate M(I")=u,(R) with

SGe 1) —5(x)

K S @=sG—n
Since f is conformal, M(I)=MI")=1. Since u,(R)—~0 as R—oo, we obtain
an upper bound for Re. A lower bound is found similarly, changing the roles of
x—tand x+¢ Hence sis H—QS with a constant H depending only on c.

Let f;: H2—H? be the Beurling—Ahlfors extension of s. Then f;|H? is K-QC
and L-bilipschitz in the hyperbolic metric of H? [Ah, p. 73] with L=L(c) and
K=L2 Then f=f,f;': H*->D* is a homeomorphism, and f|R*=g; thus

(3.5 ap(f(x), f(») = |x—yl
for all x, yeR.

Step 2. We write 6(w)=d(w, dD) for wecD and show that there is a constant
M=M{(c) such that
3.6) yIM = 6(f(2)) = My
for every z=(x, y)€ H

Let T be the line through b=i(f(x)) and f(z), let R be the component of
T\{f(2)} not containing b, and let C’ be the component of RnD with end point
f(2). Let I be the family of all paths joining the real segment [x, x+)] to C=f"1C’
in H? Then well known modulus estimates show that M(I')=¢,>0 with a uni-
versal constant ¢y>0, cf. [GV, Lemma 3.3, p. 13]. Assume that &(f(2))=6>y.
Since (3.5) implies op(f(x+»), f(x))=y, the members of I"=fT" meet the circles
S(b, y) and S(b, §). Hence M(I'")=2rn/ln (6/y). Since M(I')=KM(I"’), we obtain
the second inequality of (3.6) with M =e**K/%,

We turn to the first inequality of (3.6). Fix z=(x, )€ H® and set 6=5(f(2)).
Choose wyedD with |wy—f(2)|=0. The segment [f(z), w,) defines an clement
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u,€0*D with i(up)=w,. Let C, be the arc on 9*D such that u, divides C; to two
subarcs of length 7¢d. Let C; be the vertical ray with end point z. Then C;=fC,
joins f(2) to == in D. Let J be the subarc of C; joining f(z) and a point w,€ S( f(2), 6)
in B(f(2), 9).

Case 1. |w,—wg|=6. Set wy=(w,+f(2))/2. For every r€[§/2,3"5/2] we can
choose an arc a, of S(w,, r) with end points a,€J, b,€0D and with «\{b,}CD.
Let I'”” be the family of all these arcs «,. A standard estimate gives M (I')=(In 3)/4n=
¢,- The arc a,=a\{b,} defines an element u,€0*D with i(u)=b,. Moreover,
o ula,, wy) joins u, and u, in D. Since D is ¢-ICA, we have

op(uty, ty) = C(l(ac,.)+ la,— Wo|) = c2nr +|a, — wo| + [wa — wgl)
= 312e5(2n+ 3132+ 1/2)/2 < Tcd.

Hence b,cC,. Consequently, the members of I'=f~1T" join Cy=f"1Cy=
[x—7cd, x+Tcd] and C,. Thus either y=7cé or M(I')=2=n/ln(y/Tcd). Since
M{I")=KM(T'), we obtain

y = Tede*™ i,

which yields the first inequality of (3.6).

Case 2. |w,—wo|=t<4d. We repeat the argument of Case 1 replacing w, by
wy=(wo+wy)/2. Since S(w,, r) meets J and OD whenever #/2=r=3"%1/2, we ob-
tain the same estimate as in Case 1.

Step 3. We prove that the homeomorphism f|H?*: H?-D 1is BLD. Since
S=ffs" where fi|H? is conformal and f;|H? L-bilipschitz in the hyperbolic metric,
the diffeomorphism f|H? is L-bilipschitz in the hyperbolic metrics of H? and D.
Hence

/Ly = o(f(D)|f" (@)l = Lihl/y

for all z=(x, y)¢H? and hcR? where g is the density of the hyperbolic metric
in D. It is well known that

1/46(w) = o(w) = 1/6(w)

for all weD. Together with (3.6), these inequalities show that f is L,-BLD with
L,=4LM=L,(c). O

3.7. Remark. The proof above shows that the quantitative version of 3.4
is also true: If f: H2—-D is an L-BLD homeomorphism, D is ¢-ICA with c¢=L2.
If D is ¢-ICA and unbounded, there is an L-BLD homeomorphism f: H2—~D
with L=L(c).

3.8. Theorem. A simply connected domain DC R" is BLD homeomorphic to
the unit disk B2 if and only if (1) D is finitely connected on the boundary,
(2) D is ICA, and (3) D is bounded.
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Proof. Suppose that f: B2—~D is a BLD homeomorphism. Then f is L-
Lipschitz and hence d(D)=2L. The conditions (1) and (2) follow from 3.3. More
precisely, since B?is n-ICA, D is nL2?-ICA.

The converse part is proved by modifying the proof of 3.4. Suppose that D
satisfies (1) and (3) and that D is ¢-ICA. Then 90*D is rectifiable. We normalize the
situation by assuming /(0*D)=2r. Then there is a lengthpreserving homeomorphism
g: S1-0*D. Let fi: B2>D be a conformal map. It has an extension to a homeo-
morphism, still written as f;: B2—~D*. Then g~1f|S'=s is a self homeomorphism
of S, and I(se)=I(f,x) for every arcac S We may assume that s|N,=id
where N,= {1, e*™/*, ¢'™l%},

Step 1. We show that f;|S' has the following quasisymmetry property: If «
and B are adjacent arcs of S* with /(x)=I(f), then

(39) I(1B) = al(f1®)

with some constant ¢;=¢;(c).

Assume first that /(x)=nr/3. Then we may assume that «Uf does not meet
the arc A={e'”: 2n/3<@p<4n/3}. Let a be the end point of 4 which has the greater
distance from aupf. Using the terminology of [LV, 1.3.2] we consider the quadrilate-
ral Q consisting of the domain B2, the three end points of « and g, and the point a.
There are two path families I'y, I', associated with Q with moduli M (I'))=1/M(T,).
The length of a path in either family is at least d(x)=7. Hence 2.9 implies M(I'j) =
pe(1) and thus M(I';)=1/p,(1). Let Iy be the family joining « to the opposite
side of Q, and suppose that y¢f,I';=I;. The end points of y divide 9*D into two
arcs. One of these contains f; § and the other f; 4. Since sd=A, we have [(f,A)=
2r/3. Since D is ¢-ICA, this implies c¢/(y)=min (I( f; ), 27/3). Since d(ify)=I1(f,%),
2.9 gives M(I'})=u,(R) with

& = min((AB), 273)
cl(f10) ‘

Since M(I')=M(I'}))=1/u,(1) and since u,(t)—~0 as 7—o, R is bounded by a
universal constant ¢,. Hence either (3.9) holds with ¢;=coc or 2n/3=cycl(f10).
In the latter case (3.9) holds with ¢;=2¢,c.

The case /(x)=>n/3 reduces to the case above by dividing « and f to three
subarcs, cf. [LV, I1.7.1].

Step 2. We want to extend s: S1—>S! to a QC homeomorphism f,: B2~ B2,
To this end we choose an auxiliary Mébius map h with AB?=H? and h(l)=-ce.
Then s;=hsh™'|R! is an increasing homeomorphism onto R'. Moreover, s; is
(weakly) H-QS with H=H(c). This can be seen for example as follows: Since
I(s2)=1(fi2), (3.9) implies that s: S'—S?' is weakly H,-QS in the arc metric,
hence in the euclidean metric, cf. [TV, p. 113]. Since S? is of n-bounded turning,
s is #-QS with n=n, [TV, 2.16]. Hence s is 0-quasimobius with 0=0, by [Vi,,
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3.2]. Consequently, s, is 6-quasimgbius. Since s§;(e0)=-oo, s, is 0-QS and hence
(weakly) H-QS with H=0(1).

Let g: H2—~H? be the Beurling—Ahlfors extension of s;. It induces a homeo-
morphism f,=h"gh: B2-~B2 Then f;|S'=s, and f,|B? is K-QC and L-bi-
lipschitz in the hyperbolic metric of B2 with L=L(c), K=L2

Step 3. The map f=f,f; *: B2~>D* is the desired map. This follows as in
the proof of 3.3 from the inequalities

(3.10) (1=1z)/M = 5(f(2)) = M(1~z])

where z€B2, M=M(c), 6(w)=d(w,dD). This is proved by a rather obvious
modification of the proof of the corresponding inequalities (3.6) of the half plane
case. Omitting other details, we describe the construction of the arcs Cy=f,C,
and C;=f,C,. We may assume that 7cd<1—|z|. As in the proof of (3.6), C, will
be a subarc of 0*D with /(Cy)=14c¢s. This is possible, since 14c6<2(1—|z])=2<
2r=[(0*D). Then C,; is chosen to be the line segment with end points z and

—f"Hwy). O

3.11. The quantitative version of 3.8. If f: B*-~D is an L-BLD homeo-
morphism, D is ¢-ICA with ¢=nL% If D is ¢-ICA and bounded with [(0*D)=r,
there is an L-BLD homeomorphism f: B(r)—~D with L=L(c).
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