HOMEOMORPHISMS OF BOUNDED LENGTH DISTORTION

JUSSI VÄISÄLÄ

1. Introduction

1.1. Let D and D' be domains in the plane \mathbb{R}^2, and let $f : D \to D'$ be a homeomorphism. We let $l(x)$ denote the length of a path x. If $L \geq 1$ and if

$$l(x)/L \leq l(fx) \leq Ll(x) \quad (1.2)$$

for all paths x in D, we say that f is of L-bounded length distortion, abbreviated L-BLD. In a joint article [MV] of O. Martio and the author, we consider more general BLD maps: discrete open maps of domains of \mathbb{R}^n into \mathbb{R}^n satisfying (1.2). For homeomorphisms and, more generally, for immersions, (1.2) is equivalent to the following condition: Every point in D has a neighborhood U such that $f|U$ is L-bilipschitz, that is,

$$|x-y|/L \leq |f(x)-f(y)| \leq L|x-y| \quad (1.3)$$

for all $x, y \in U$. For this reason, the BLD immersions are often called locally bilipschitz maps or local quasi-isometries or just quasi-isometries [Jo], [Ge].

The BLD property can also be defined in terms of upper and lower derivatives. Let $L_f(x)$ and $l_f(x)$ be the upper and lower limits of $|f(x+h)-f(x)|/|h|$ as $h \to 0$. Then a homeomorphism f is L-BLD if and only if $l_f(x) \equiv 1/L$ and $L_f(x) \equiv L$ for all $x \in D$. In particular, if f is differentiable at x, this means

$$|h|/L \leq |f'(x)h| \leq L|h| \quad (1.4)$$

for all $h \in \mathbb{R}^2$.

Every L-BLD homeomorphism is L^2-quasiconformal, but a quasiconformal map is BLD only if its derivative is a.e. bounded away from 0 and ∞.

The purpose of this paper is to identify the domains $D \subset \mathbb{R}^2$ which are BLD homeomorphic to a disk or to a half plane. The corresponding problem for bilipschitz maps was solved in the early eighties by Tukia [Tu_1], [Tu_2], Jerison—Kenig [JK] and Latfullin [La]; see also [Ge]. Their results can be stated as follows: A bounded domain D is bilipschitz homeomorphic to a disk if and only if its boundary ∂D is a rectifiable Jordan curve satisfying the chord-arc condition: There is $c \equiv 1$ such that

$$\sigma(x, y) \equiv c|x-y| \quad (1.5)$$

for all $x, y \in \partial D$; here $\sigma(x, y)$ is the length of the shorter arc of ∂D between x and y. The half plane case is similar; then ∂D is a locally rectifiable Jordan curve through ∞ satisfying (1.5).

We show that the BLD homeomorphic images of the disk and the half plane can be characterized by a somewhat similar condition. However, the euclidean distance $|x - y|$ in (1.5) must be replaced by the internal distance $\lambda_D(x, y)$, which is the infimum of the lengths of all arcs joining x and y in D. Moreover, ∂D need not be a Jordan curve. Hence we shall replace ∂D by the prime end boundary $\partial^* D$. Alternatively, the condition can be expressed in terms of the neighborhood system of ∂D in D. An equivalent condition has been considered by Pommerenke [Po].

In a forthcoming paper I shall apply the results of the present paper to show that a bounded domain is BLD homeomorphic to a disk if and only if $D \times R^1$ is quasiconformally equivalent to a ball.

1.6. Notation. If $x \in R^n$ and $r > 0$, $B(x, r)$ is the open ball with center x and radius r, and $S(x, r)$ is its boundary sphere. We shall write

$$B(r) = B(0, r), \quad B^n = B(1), \quad S(r) = S(0, r), \quad S^{n-1} = S(1).$$

We let $d(A)$ denote the euclidean diameter of a set $A \subset R^n$, and $d(x, A)$ is the distance between A and a point $x \in R^n$.

2. Preliminaries

In this section we introduce the internal chord-arc condition for simply connected domains in R^2. In 2.9 we give a modulus estimate needed in Section 3. Since it may have independent interest, it is formulated for an arbitrary dimension n.

2.1. Jordan domains. A domain $D \subset R^2$ is a Jordan domain if its boundary ∂D in the extended plane $\tilde{R}^2 = R^2 \cup \{\infty\}$ is a Jordan curve (homeomorphic to a circle). Suppose that D is a Jordan domain and that ∂D is locally rectifiable, that is, every compact arc in $\partial D \setminus \{\infty\}$ is rectifiable. If $a, b \in \partial D \setminus \{\infty\}$, we let $\sigma_D(a, b)$ denote the length of the shorter subarc of ∂D with end points a and b. If $x, y \in \tilde{D} \setminus \{\infty\}$, $\lambda_D(x, y)$ will denote the infimum of the lengths of all paths joining x and y in D. We say that D has the internal chord-arc property with parameter $c \geq 1$ if

$$\sigma_D(a, b) \leq c \lambda_D(a, b)$$

(2.2)

for all finite boundary points a, b of D. We abbreviate this by saying that D is c-ICA.

The ordinary chord-arc condition (1.5) clearly implies (2.2). One can show that a Jordan curve through ∞ satisfies (1.5) if and only if both components of its complement have the property (2.2). The domain $D = \{(x, y) \in R^2: x < 0 \text{ or } y > |x|^2\}$ satisfies (2.2) but not (1.5).
2.3. Prime ends. We give a brief summary on some known facts on prime ends. In what follows, we assume that D is a simply connected proper subdomain of \mathbb{R}^2 which is finitely connected on the boundary. This means that every boundary point of D has arbitrarily small neighborhoods U such that $D \cap U$ has only a finite number of components. Equivalently, ∂D is locally connected. Still equivalently, every QC map $f: B^2 \to D$ has a continuous extension $\tilde{f}: \overline{B}^2 \to \overline{D}$. See [Nä, 3.2] and [Po, 9.8].

The prime ends of such a domain D are always of the first kind and can be defined as equivalence classes of tails. By a tail of D we mean a path $\alpha: [a, b) \to D$ such that $\alpha(t) \to z \in \partial D$ as $t \to b$. The point z is written as $h(\alpha)$. A subtail of α is a restriction to a subinterval $[a_1, b_1)$. If U is a neighborhood of $h(\alpha)$, there is a unique component $W(U, \alpha)$ of $U \cap D$ containing a subtail of α. Two tails α and β are equivalent if $h(\alpha) = h(\beta)$ and if $W(U, \alpha) = W(U, \beta)$ for every neighborhood U of $h(\alpha)$. The equivalence class \bar{x} of a tail x is a boundary element of D, and their collection $\partial^* D$ is the prime end boundary of D. The set $D^* = D \cup \partial^* D$ has a natural topology such that $(D^*, \partial^* D)$ is homeomorphic to (\overline{B}^2, S^1). In fact, every QC homeomorphism $f: B^2 \to D$ has a unique extension to a homeomorphism $f^*: \overline{B}^2 \to D^*$. There is a natural continuous impression map $i: D^* \to \overline{D}$, defined by $i(\bar{z}) = h(\alpha)$ for $\bar{z} \in \partial^* D$ and by $i|D = id$. If D is locally connected at a boundary point z, $i^{-1}(z)$ consists of a single point, which is often identified with z. In particular, if D is a Jordan domain, we can identify $\partial D = \partial D^*$ and $D^* = \overline{D}$.

Suppose that α is a subarc of $\partial^* D$. Then $i|\alpha$ is a path in \mathbb{R}^2 and has a well-defined length $l(\alpha) \in (0, \infty]$, called the length of α. If $i(u) = \infty$ for at most one $u \in \partial^* D$, then also written as ∞, and if $l(\alpha) = \infty$ for every compact arc $\alpha \subset \partial^* D \setminus \{\infty\}$, we say that $\partial^* D$ is locally rectifiable. Equivalently, $l(\alpha)$ can be defined as the infimum of all numbers λ such that there is a sequence of arcs $\alpha_j \subset D$ such that (1) $\alpha_j \to \alpha$ in the natural topology of the space of all arcs of D^* and (2) $l(\alpha_j) \to \lambda$.

2.4. The ICA property. Suppose that D is as in 2.3 and that $\partial^* D$ is locally rectifiable. If u and v are finite points in $\partial^* D$, we let $\sigma_D(u, v)$ denote the length of the shorter arc of $\partial^* D$ between u and v. Furthermore, let $\lambda_D(u, v)$ be the infimum of the lengths of all paths α joining u and v in D. By this we mean that α is an open path which has subpaths representing both u and v. One has always $\lambda_D(u, v) \equiv \sigma_D(u, v)$. If there is a constant $c \equiv 1$ such that

\[
(2.5) \quad \sigma_D(u, v) \leq c\lambda_D(u, v)
\]

for all finite $u, v \in \partial^* D$, we say that D is c-ICA.

For Jordan domains D, this definition is equivalent to that given in 2.1. The complement of a ray and a disk with a radial slit are ICA non-Jordan domains.

2.6. Remarks. 1. Pommerenke [Po, Theorem 2] considered domains D satisfying the condition

\[
(2.7) \quad \sigma_D(u, v) \leq c\delta_D(u, v)
\]
where \(\delta_D(u, v) \) is the infimum of the diameters \(d(|x|) \) of all paths \(x \) joining \(u \) and \(v \) in \(D \). Since \(\delta_D \equiv \lambda_D \), (2.7) implies (2.5). Conversely, (2.5) implies that (2.7) is true with \(c \) replaced by a constant \(c_1 = c_1(c) \). This follows easily from the results in Section 3. The half plane with an orthogonal slit is \(2^{1/2} \)-ICA, but satisfies (2.7) only for \(c \geq 2 \).

2. It is possible to characterize the ICA property without mentioning prime ends: Let \(D \subset \mathbb{R}^2 \) be simply connected, \(D \neq \mathbb{R}^2 \). Then \(D \) is \(c \)-ICA if and only if for each pair \(a, b \in \partial D \backslash \{ \infty \} \) and for each \(\varepsilon > 0 \) there is \(r > 0 \) such that if a path \(x \) joins \(x \in D \cap B(a, r) \) and \(y \in D \cap B(b, r) \) in \(D \), there is a path \(y \) joining \(x \) and \(y \) in \(D \cap (\partial D + \varepsilon B^2) \) with \(l(y) \equiv c l(x) + \varepsilon \).

3. One can also show that \(D \) is \(c \)-ICA if and only if the chord-arc condition

\[
\sigma_D(u, v) \equiv c |i(u) - i(v)|
\]

is valid for all \(u, v \in \partial^* D \) which are the ends points of a segmental crosscut of \(D \), that is, the open line segment with end points \(i(u) \), \(i(v) \) lies in \(D \) and represents both \(u \) and \(v \).

2.8. Path families. In Section 3 we shall consider paths \(y \) joining a boundary point \(a \in \partial D \) to a point \(b \in \bar{D} \) in \(D \). Such a path defines an element \(u \in \partial^* D \) with \(i(u) = a \), and we can as well consider \(y \) as a path joining \(u \) to \(b \). If \(\Gamma \) is a family of such paths, the modulus \(M(\Gamma) \) is always well defined. If \(y \) is a path, we let \(|y| \) denote its locus im \(y \).

2.9. Lemma. Let \(t > 0 \) and let \(A \subset \mathbb{R}^n \) with \(d(A) \equiv t \). Let \(\lambda > 0 \) and let \(\Gamma \) be a family of paths in \(\mathbb{R}^n \) such that \(l(y) \equiv \lambda t \) and \(\lambda |y| \cap A \neq \emptyset \) for all \(y \in \Gamma \). Then \(M(\Gamma) \equiv \mu_n(\lambda) \), where \(\mu_n(\lambda) \to 0 \) as \(\lambda \to \infty \).

Proof. We may assume that \(t = 1 \) and that \(A \subset \overline{B}^n \). We may also assume that \(\lambda > 1 \), since otherwise [Vä1, 7.1] gives \(M(\Gamma) \equiv m(B(2))/\lambda^n \). Define \(q_1, q_2 : \mathbb{R}^n \to \mathbb{R}^1 \) by

\[
q_1(x) = \frac{2}{(\ln \lambda)|x|} \quad \text{for} \quad 1 < |x| < \lambda^{1/2}, \quad q_2(x) = 1/\lambda \quad \text{for} \quad |x| < \lambda^{1/2},
\]

and \(q_j(x) = 0 \) for other \(x \in \mathbb{R}^n \). We show that \(q = \max(q_1, q_2) \) belongs to \(F(\Gamma) \), that is, the line integral of \(q \) along any rectifiable \(y \in \Gamma \) is at least one.

If \(|y| \subset B(\lambda^{1/2}) \), we have

\[
\int_y q_2 \, ds \geq l(y)/\lambda \geq 1.
\]

If \(|y| \subset B(\lambda^{1/2}) \), \(|y| \) meets the spheres \(S^{n-1} \) and \(S(\lambda^{1/2}) \), and hence

\[
\int_y q_1 \, ds \geq \int_1^{\lambda^{1/2}} \frac{2 \, dr}{r \ln \lambda} = 1.
\]
Thus \(q \in F(\Gamma) \), which implies
\[
M(\Gamma) \leq \int_{R^n} q^\alpha dm.
\]
Letting \(\Omega \) and \(\omega \) denote the volume of \(B^n \) and the area of \(S^{n-1} \) we have
\[
\int_{R^n} q^\alpha dm \leq 2^{n-1} \omega (\ln \lambda)^{1-n}, \quad \int_{R^n} q^\alpha dm = \Omega \lambda^{-n/2},
\]
and the lemma follows. \(\square \)

3. Main results

3.1. In this section we characterize the BLD homeomorphic images of \(B^2 \) and \(H^2 \). The half plane case is given in 3.4 and the disk case in 3.8. We recall from 1.1 that a homeomorphism \(f : D \to D' \) is L-BLD if
\[
(3.2) \quad l(x)/L \leq l(fx) \leq Ll(x)
\]
for every path in \(D \) or, equivalently, \(f \) is locally L-bilipschitz.

3.3. Theorem. Let \(D \subset R^2 \) be a convex Jordan domain, and let \(f : D \to D' \subset R^2 \) be an L-BLD homeomorphism. Then:

1. \(f \) is L-Lipschitz in the euclidean metric.
2. \(D' \) is finitely connected on the boundary.
3. \(f \) is L-bilipschitz in the metric \(\lambda_{D'} \).
4. \(\partial D' \) is locally rectifiable.
5. \(f \) has a unique extension to a homeomorphism \(f^* : \overline{D} \to \overline{D}^* \), which is L-bilipschitz outside \(\infty \) in the metric \(\lambda_{D'} \).
6. \(f^*|\partial D \) is L-bilipschitz outside \(\infty \) in the metrics \(\sigma_D \) and \(\sigma_{D'} \).

If, in addition, \(D \) has the c-chord-arc property, \(D' \) is \(L^2c \)-ICA.

Proof. Observe that since \(D \) is convex, \(\lambda_D \) is the euclidean metric. The condition (1) follows at once from convexity. Hence \(f \) has a continuous extension \(\tilde{f} : \overline{D} \to D' \). Then (2) follows from [Nä, 3.2]. Since \(D \) is convex, \(\partial D \) is locally rectifiable. The rest of the theorem follows easily from (3.2) and from the considerations in 2.3 and 2.4. \(\square \)

3.4. Theorem. A simply connected domain \(D \subset R^2 \) is BLD homeomorphic to the half plane \(H^2 = \{(x, y) \in R^2 : y \geq 0\} \) if and only if (1) \(D \neq R^2 \), (2) \(D \) is finitely connected on the boundary, (3) \(D \) is ICA, and (4) \(D \) is unbounded.

Proof. Suppose that \(f : H^2 \to D \) is an L-BLD homeomorphism. Since the image of the segment \(\{0\} \times (0, 1] \) has length at most \(L \), (1) is true. Since \(H^2 \) is convex and I-ICA, (2) and (3) follow from 3.3. Since \(f^{-1} \) is locally L-Lipschitz, \(\infty = m(H^2) \leq L^2 m(D) \), which implies (4).
The converse part is considerably harder. We first give an outline of the proof. Suppose that \(D \) satisfies the conditions (1)–(4). Choose a conformal map \(f_1: H^2 \to D \). It has a homeomorphic extension, still written as \(f_1: \overline{H^2} \to D^* \). We may assume that \(f_1(\infty) = \infty \). Choose a homeomorphism \(g: R^1 \to \partial D \setminus \{\infty\} \) such that \(\sigma_D(g(x), g(y)) = |x-y| \) for all \(x, y \in R^1 \) and such that the homeomorphism \(s: R^1 \to R^1 \) defined by \(s(x) = g^{-1}(f_1(x)) \) is increasing. Extend \(s \) by the Beurling–Ahlfors construction [Ah, p. 69] to a homeomorphism \(f_2: \overline{H^2} \to \overline{H^2} \). Then \(f = f_1 f_2^{-1}: \overline{H^2} \to D^* \) is a homeomorphism, and \(f|\overline{H^2} \) will be the desired BLD homeomorphism.

Step 1. We show that \(s \) is quasisymmetric (QS). Let \(x \in R^1 \) and \(t > 0 \). Let \(\Gamma \) be the family of all paths joining the intervals \([x-t, x]\) and \([x+t, \infty]\) in \(H^2 \). Then \(M(\Gamma) = 1 \). If \(\gamma \) belongs to the image \(\Gamma' \) of \(\Gamma \) under \(f_1 \), \(\gamma \) has end points \(a, b \) with \(a \in A = f_1[x-t, x] \) and \(b \in B = f_1[x+t, \infty] \). The \(\sigma \)-diameter of \(A \) is at most its length \(s(x) - s(x-t) \), and hence \(d(iA) \leq s(x) - s(x-t) \). Furthermore, \(\sigma_D(a, b) \equiv s(x+t) - s(x) \). Since \(D \) is c-ICA, this implies \(s(x+t) - s(x) \equiv c \gamma \). From 2.8 we obtain the estimate \(M(\Gamma') \equiv \mu_2(R) \) with

\[
Rc = \frac{s(x+t) - s(x)}{s(x) - s(x-t)}.\]

Since \(f \) is conformal, \(M(\Gamma) = M(\Gamma') = 1 \). Since \(\mu_2(R) \to 0 \) as \(R \to \infty \), we obtain an upper bound for \(Rc \). A lower bound is found similarly, changing the roles of \(x-t \) and \(x+t \). Hence \(s \) is \(H \)-QS with a constant \(H \) depending only on \(c \).

Let \(f_2: \overline{H^2} \to \overline{H^2} \) be the Beurling–Ahlfors extension of \(s \). Then \(f_2|H^2 \) is K-QC and \(L \)-bilipschitz in the hyperbolic metric of \(H^2 \) [Ah, p. 73] with \(L = L(c) \) and \(K = L^3 \). Then \(f = f_1 f_2^{-1}: \overline{H^2} \to D^* \) is a homeomorphism, and \(f|H^2 = g; \) thus

\[
(3.5) \quad \sigma_D(f(x), f(y)) = |x-y|
\]

for all \(x, y \in R^1 \).

Step 2. We write \(\delta(w) = d(w, \partial D) \) for \(w \in D \) and show that there is a constant \(M = M(c) \) such that

\[
(3.6) \quad y/M \equiv \delta(f(z)) \equiv My
\]

for every \(z = (x, y) \in \overline{H^2} \).

Let \(T \) be the line through \(b = i(f(x)) \) and \(f(z) \), let \(R \) be the component of \(T \setminus \{f(z)\} \) not containing \(b \) and let \(C' \) be the component of \(R \cap D \) with end point \(f(z) \). Let \(\Gamma \) be the family of all paths joining the real segment \([x, x+y]\) to \(C = f^{-1}C' \) in \(H^2 \). Then well known modulus estimates show that \(M(\Gamma) \equiv q_0 \) with a universal constant \(q_0 > 0 \), cf. [GV, Lemma 3.3, p. 13]. Assume that \(\delta(f(z)) = \delta > y \). Since (3.5) implies \(\sigma_D(f(x+y), f(x)) = y \), the members of \(\Gamma' = f\Gamma' \) meet the circles \(S(b, y) \) and \(S(b, \delta) \). Hence \(M(\Gamma') \equiv 2\pi/|\ln (\delta/y)| \). Since \(M(\Gamma) \equiv KM(\Gamma') \), we obtain the second inequality of (3.6) with \(M = e^{2\pi k/q_0} \).

We turn to the first inequality of (3.6). Fix \(z = (x, y) \in \overline{H^2} \) and set \(\delta = \delta(f(z)) \). Choose \(w_0 \in \partial D \) with \(|w_0 - f(z)| = \delta \). The segment \([f(z), w_0]\) defines an element
Let $u_0\in\partial^*D$ with $i(u_0) = w_0$. Let C'_0 be the arc on ∂^*D such that u_0 divides C'_0 to two subarcs of length $7c\delta$. Let C_1 be the vertical ray with end point z. Then $C'_1 = fC_1$ joins $f(z)$ to ∞ in D. Let J be the subarc of C'_1 joining $f(z)$ and a point $w_1 \in S(f(z), \delta)$ in $B(f(z), \delta)$.

Case 1. $|w_1 - w_0| \geq \delta$. Set $w_2 = (w_0 + f(z))/2$. For every $r \in [\delta/2, 3^{1/2}\delta/2]$ we can choose an arc α_r of $S(w_2, r)$ with end points $a_r \in J$, $b_r \in \partial D$ and with $\alpha_r \setminus \{b_r\} \subset D$. Let Γ' be the family of all these arcs α_r. A standard estimate gives $M(\Gamma') \leq (\ln 3)/4\pi = q_1$. The arc $\alpha'_r = \alpha_r \setminus \{b_r\}$ defines an element $u_r \in \partial^*D$ with $i(u_r) = b_r$. Moreover, $\alpha_r \cup \{a_r, w_0\}$ joins u_r and u_0 in D. Since D is c-ICA, we have

$$\sigma_p(u_r, u_0) \leq c(l(\alpha_r) + |a_r - w_0|) \leq c(2\pi r + |a_r - w_2| + |w_2 - w_0|) \leq 3^{1/2}c\delta(2\pi + 3^{1/2}/2 + 1/2)/2 < 7c\delta.$$

Hence $b_r \in C'_0$. Consequently, the members of $\Gamma = f^{-1}\Gamma'$ join $C_0 = f^{-1}C'_0 = [x - 7c\delta, x + 7c\delta]$ and C_1. Thus either $y \geq 7c\delta$ or $M(\Gamma) \geq 2\pi/\ln(y/7c\delta)$. Since $M(\Gamma') \equiv KM(\Gamma)$, we obtain

$$y \leq 7c\delta e^{2\pi K/q_1},$$

which yields the first inequality of (3.6).

Case 2. $|w_1 - w_0| = t < \delta$. We repeat the argument of Case 1 replacing w_2 by $w_3 = (w_0 + w_1)/2$. Since $S(w_3, r)$ meets J and ∂D whenever $t/2 \leq r \leq 3^{1/2}t/2$, we obtain the same estimate as in Case 1.

Step 3. We prove that the homeomorphism $f|H^2: H^2 \to D$ is BLD. Since $f = f_1 f_2^{-1}$ where $f_1|H^2$ is conformal and $f_2|H^2$ L-bilipschitz in the hyperbolic metric, the diffeomorphism $f|H^2$ is L-bilipschitz in the hyperbolic metrics of H^2 and D. Hence

$$|h|/Ly \leq Q(f(z))|f'(z)h| \leq L|h|/y$$

for all $z = (x, y) \in H^2$ and $h \in \mathbb{R}^2$, where Q is the density of the hyperbolic metric in D. It is well known that

$$1/4\delta(w) \equiv Q(w) \equiv 1/\delta(w)$$

for all $w \in D$. Together with (3.6), these inequalities show that f is L_4-BLD with $L_4 = 4LM = L_4(c)$.

3.7. Remark. The proof above shows that the quantitative version of 3.4 is also true: If $f: H^2 \to D$ is an L-BLD homeomorphism, D is c-ICA with $c = L^2$. If D is c-ICA and unbounded, there is an L-BLD homeomorphism $f: H^2 \to D$ with $L = L(c)$.

3.8. Theorem. A simply connected domain $D \subset \mathbb{R}^2$ is BLD homeomorphic to the unit disk B^2 if and only if (1) D is finitely connected on the boundary, (2) D is ICA, and (3) D is bounded.
Proof. Suppose that \(f : B^2 \to D \) is a BLD homeomorphism. Then \(f \) is \(L \)-Lipschitz and hence \(d(D) \leq 2L \). The conditions (1) and (2) follow from 3.3. More precisely, since \(B^2 \) is \(\pi \)-ICA, \(D \) is \(\pi L^2 \)-ICA.

The converse part is proved by modifying the proof of 3.4. Suppose that \(D \) satisfies (1) and (3) and that \(D \) is \(c \)-ICA. Then \(\partial^* \overline{D} \) is rectifiable. We normalize the situation by assuming \(l(\partial^* \overline{D}) = 2\pi \). Then there is a lengthpreserving homeomorphism \(g : \overline{B^2} \to \overline{D} \). Let \(\overline{f_1} : \overline{B^2} \to \overline{D} \) be a conformal map. It has an extension to a homeomorphism, still written as \(\overline{f_1} : \overline{B^2} \to \overline{D} \). Then \(g \circ \overline{f_1} \) is a self homeomorphism of \(\overline{G} \), and \(l(\alpha) = l(\beta) \) for every arc \(\alpha \subset \overline{S^1} \). We may assume that \(s|N_3 = \text{id} \) where \(N_3 = \{1, e^{2\pi i/3}, e^{4\pi i/3}\} \).

Step 1. We show that \(f_1|S^1 \) has the following quasisymmetry property: if \(\alpha \) and \(\beta \) are adjacent arcs of \(S^1 \) with \(l(\alpha) = l(\beta) \), then

\[(3.9) \quad l(\overline{f_1} \beta) \leq c_1 l(\overline{f_1} \alpha) \]

with some constant \(c_1 = c_1(e) \).

Assume first that \(l(\alpha) \leq \pi/3 \). Then we may assume that \(\alpha \cup \beta \) does not meet the arc \(A = \{e^{i\theta} : 2\pi/3 < \theta < 4\pi/3\} \). Let \(a \) be the end point of \(A \) which has the greater distance from \(\alpha \cup \beta \). Using the terminology of [LV, I.3.2] we consider the quadrilateral \(Q \) consisting of the domain \(B^2 \), the three end points of \(\alpha \) and \(\beta \), and the point \(a \). There are two path families \(\Gamma_1, \Gamma_2 \) associated with \(Q \) with moduli \(M(\Gamma_1) = 1/M(\Gamma_2) \).

The length of a path in either family is at least \(d(\alpha) = t \). Hence 2.9 implies \(M(\Gamma_1) = \mu_2(1) \) and thus \(M(\Gamma_1) \equiv \mu(1) \). Let \(\Gamma_1 \) be the family joining \(\alpha \) to the opposite side of \(Q \), and suppose that \(g \in f_1 \Gamma_1 = \Gamma_1' \). The end points of \(g \) divide \(\partial^* \overline{D} \) into two arcs. One of these contains \(f_1 \beta \) and the other \(f_1 \alpha \). Since \(s|A = A \), we have \(l(f_1 \alpha) = 2\pi/3 \). Since \(D \) is \(c \)-ICA, this implies \(c \leq l\overline{f_1} \alpha \) and \(2l(\overline{f_1} \alpha) \). Since \(l(\overline{f_1} \alpha) \leq l(\overline{f_1} \beta) \), 2.9 gives \(M(\Gamma_1') \equiv \mu_2(R) \) with

\[
R = \min(l(\overline{f_1} \beta), 2\pi/3) \leq l(\overline{f_1} \alpha) \ ;
\]

Since \(M(\Gamma_1') = M(\Gamma) \equiv 1/\mu(1) \) and since \(\mu(1) \to 0 \) as \(t \to \infty \), \(R \) is bounded by a universal constant \(c_0 \). Hence either (3.9) holds with \(c_1 = c_0 \) or \(2\pi/3 \leq c_0 l(\overline{f_1} \alpha) \).

In the latter case (3.9) holds with \(c_1 = 2c_0 \).

The case \(l(\alpha) > \pi/3 \) reduces to the case above by dividing \(\alpha \) and \(\beta \) to three subarcs, cf. [LV, II.7.1].

Step 2. We want to extend \(s : S^1 \to S^1 \) to a QC homeomorphism \(f_2 : \overline{B^2} \to \overline{B^2} \). To this end we choose an auxiliary Möbius map \(h \) with \(hB^2 = H^2 \) and \(h(1) = \infty \). Then \(s_1 = hsh^{-1}|R^1 \) is an increasing homeomorphism onto \(R^1 \). Moreover, \(s_1 \) is (weakly) \(H \)-QS with \(H = H(c) \). This can be seen for example as follows: Since \(l(\overline{s_1} \alpha) = l(\overline{f_1} \alpha) \), (3.9) implies that \(s : S^1 \to S^1 \) is weakly \(H \)-QS in the arc metric, hence in the euclidean metric, cf. [TV, p. 113]. Since \(S^1 \) is of \(\pi \)-bounded turning, \(s \) is \(\eta \)-QS with \(\eta = \eta_\epsilon \) [TV, 2.16]. Hence \(s \) is \(\theta \)-quasimöbius with \(\theta = \theta_\epsilon \) by [Vä]
3.2]. Consequently, s_1 is θ-quasimöbius. Since $s_1(\infty) = \infty$, s_1 is θ-QS and hence (weakly) H-QS with $H = \theta(1)$.

Let $g: \overline{H^2} \to \overline{H^2}$ be the Beurling—Ahlfors extension of s_1. It induces a homeomorphism $f_2 = h^{-1}g: \overline{B^2} \to \overline{B^2}$. Then $f_2|S^1 = s$, and $f_2|B^2$ is K-QC and L-bilipschitz in the hyperbolic metric of B^2 with $L = L(c)$, $K = L^2$.

Step 3. The map $f = f_1f_2^{-1}: \overline{B^2} \to D^*$ is the desired map. This follows as in the proof of 3.3 from the inequalities

$$
(3.10)
(1 - |z|)/M \subseteq \delta(f(z)) \subseteq M(1 - |z|)
$$

where $z \in B^2$, $M = M(c)$, $\delta(w) = d(w, \partial D)$. This is proved by a rather obvious modification of the proof of the corresponding inequalities (3.6) of the half plane case. Omitting other details, we describe the construction of the arcs $C'_0 = f_1C_0$ and $C'_1 = f_1C_1$. We may assume that $7c\delta < 1 - |z|$. As in the proof of (3.6), C'_0 will be a subarc of ∂^*D with $l(C'_0) = 14c\delta$. This is possible, since $14c\delta < 2(1 - |z|) \leq 2 < 2\pi = l(\partial^*D)$. Then C_1 is chosen to be the line segment with end points z and $-f_1^{-1}(w_0)$. \(\square\)

3.11. **The quantitative version of 3.8.** If $f: B^2 \to D$ is an L-BLD homeomorphism, D is c-ICA with $c = \pi L^2$. If D is c-ICA and bounded with $l(\partial^*D) = r$, there is an L-BLD homeomorphism $f: B(r) \to D$ with $L = L(c)$.

References

[La] **Laflullin, T. G., (Laflullin T. G.):** О геометрических условиях на образы прямой и окружности при квазиизометрии плоскости. - Материалы XVIII всесоюзной научной студенческой конференции, Новосибирск, 1980, 18–22.

[MV] **Martio, O., and J. Väisälä:** Elliptic equations and maps of bounded length distortion. - To appear.

University of Helsinki
Department of Mathematics
SF-00100 Helsinki
Finland

Received 9 April 1987