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ON A CONJECTURE OF H. J. GODWIN
ON CUBIC UNITS

VEIKKO ENNOLA

1. Introduction

Let K be a totally real cubic number field of discriminant D. Let E denote the
group of norm-positive units of K, and take

E, = {ecE| two of the conjugates of ¢ have absolute value > 1}.

For any number ¢ in K we define
S = (E—EP+E -V +E =),

where &, &, £” are the conjugates of £&. We choose a unit A6 EN\{1} for which S(/)
is least, and then another unit u€E, not a power of 4, for which S(u) is least. By
Lemma 1 below we may assume that A and p€E.,, and in the sequel we shall always
do so. In ([5], p. 321) Godwin made the following conjecture:

(G) If S(e)=9 forevery ecEN\{l}, then A, uis a fundamental pair of units.

Brunotte and Halter-Koch [2] showed that 4 and u generate a subgroup of index
=4 in the group E. Furthermore, they showed that the index is =3 if S(u)=>364.
M.-N. Gras [7] proved that (G) is true if K/Q is cyclic. The main result of the present
paper is

Theorem 1. If D is sufficiently large, then (G) is true.

From the proof one can compute an explicit upper bound for D in case (G)
is violated. It is therefore conceivable that one could check the remaining cases by
means of the existing tables of cubic fields, and thus solve the problem completely.

In the classical paper [1] W. E. H. Berwick constructed three units 6,, 6,, 0, in
E so that the absolute value of the ith conjugate of ; is least among all elements
of E such that the absolute values of the other two conjugates are <1. Then 0;'¢E
(i=0,1,2), 6,6,0,=1, and any two of the numbers 8,, 6,, 0, form a fundamental
pair of units. In Lemma 5 below we shall give a simple alternative characterization
of these units. Our proof of Theorem 1 depends upon a connection between the
pair 2, p and the Berwick units. In particular we shall prove
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Theorem 2. If D is sufficiently large and the order of the conjugates of K
has been suitably chosen, then either 2=0;" or 2=05"0,.

For any number ¢ in K, let
S (&) =+

Define 1, , u, in the same way as A, u but using S, instead of S. Cusick [3] conjectured
that A,, p, is always a fundamental pair of units, and Godwin[6] proved this con-
jecture. We shall give yet another proof of Cusick’s conjecture by deriving the
following close relation between the pair 7, u, and the Berwick units:

Theorem 3. If the order of the conjugates of K is suitably chosen, then 7., =0g 1
and p,=070% for some non-negative integer k.

Additional notation. For any number ¢ in K we write Tr &)=C+E+E",
D) =(E—ER(E— &P -2, and M(§=max {|¢], 1], €]}

If g=0, then f=0(g) and f<g both mean that | f|=Cg for some absolute
positive constant C. The symbol ~ means asymptotic equality for D — .

2. The auxiliary lemmas

Lemma 1. Let (€E, .

() We have S(¢~Y)=S(&) with equality only when It (&, @)=x*—sx*—(s+3)x—1
for some integer s=—1.

(ii)y We have S, (&H=S,().

Proof. Let f(x)=Irr (¢, Q)=x3—sx*+gx—1. Since
FOfEED =—-1=-(A-EH(1-LE),

the condition ¢€E, is equivalent to f(1)f(—1)<0. Clearly, —f(1)f(—1)=
S, (67— S, (&), whence (ii) follows. Further,
SENH-S® =(Cs+9b+g+3)=—f(Df(=D—=s+g,

so that S(¢~Y)=>S(¢) if s=q. For s>q we must have —f(—1)=s+q+2<0,
and (i) follows easily.

We find from Lemma 1 that A, u, A, u,€E, save that there is a free choice
between a unit and its reciprocal in the exceptional case. The choice is made so
that A, ucE, also in that case.

Lemma 2. For any (€EN{1} we have

D = min {% S, 4aM (&) (1-M (é)‘“)2}~
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Proof. From the inequality of the arithmetic and geometric means we have
D = D(¢) = (25(¢)/3)°.

In order to prove the second estimate suppose first that ¢€E,. Let x and y
denote those conjugates of ¢ which have absolute value >1. Then D (&)= f(x,y)
where

SO p) = (x=y)PE—x"y )Py —x"ty

Put M=M(&). 1t is a trivial task to investigate the function f(x,y) in the set
{(x, »)ER?|1=|x|=M, 1=|y|=M} and to check that the maximum value is
AME(1— M%)

Suppose next that E€ENE,. If, eg., [{|=M, then |&|"1=|E"]<M,
[€7|71=]¢¢'| <M, and it follows from what we have already proved that

D= DY) =4M8(1 - M52

Lemma 3. If D=5184, then S(&)=>S(&) for every ECEN{1} and every
integer k=1.

Proof. Lemma 2 implies that M(£)*>36 and S(€)>25. From ([5], Lemma 3)

we now have
S(&) =2-37%1.255-18(¢) > S(&),
as asserted.

Lemma 4. Suppose that E€E, and choose the order of the conjugates of &
so that |&”|<1. Then

S(@) = (-8 +&H(1+0M(E)~?).

Proof. For future reference we record here the following obvious inequalities
valid for any real x, y:

323,2_1_2 2}< 2 2<__3_2 2
¢)) maX{4x,Z-y,2(x+y) =X -4yt = 5 ().

Since

S =+t - -,
the assertion follows immediately from (1).

Lemma 5. Let &, &, & be units in E, such that g e,=1. If &, &, &
generate E, then ey, e, &5 are the Berwick units.

Proof. Since &, ¢,8€E, and géee,=1, itis easy to see that for j#k the
same conjugates of ¢; and g cannot both have absolute value <1. Therefore, we
may choose the notation so that [g| <1, [e]|<1, [e;]<1. We contend that 0y=¢;*.

Suppose on the contrary that |0, <[g|™%. Let 0,=:¢} for some integers q, b.
Clearly ab=0. We may assume that b=0, otherwise we write 0,=&3 %, and
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change the order of the conjugates correspondingly. Now a=0 would imply |6;] =1,
and a<O0 would imply [0, =>|¢|~", which are both impossible.

Lemma 6. Let Irr (e, Q)=x3+(—1)x2—Ix—1 where | is an integer =3, and
take K=0Q(g).
(1) The regulator of the units ¢,e—1 is ~(Inl)2
(i) We have S(e)=S(e—1)=SE+)=12+1+1, and S(&/n)=12+I1+1 for any
two distinct £, n€f{e, e—1,e+1}.
(i) If e, e—1 is a fundamental pair of units in K, then ¢ 1, (e—1)"1, (e+/)"1 are
the Berwick units.

Proof. Tt is easy to see that the conjugates of ¢ lie in the following intervals:
)] —It=e<0, 1<& <1417 —l<¢ <-—I+I172
Moreover, one can verify that —e~g’—1~/[~1. Thus

In [g| In |¢]

~ 2
mle—1] Inje—1 |~

and (i) follows.

The assertion (ii) can be proved by a trivial direct computation. To prove (iii)
we note that e(e—1)(e+/)=1, and that ¢, e—1,e+/€E,, by (2). The result then
follows from Lemma 5.

Lemma 7. Let Inr (¢, Q)=x3—kx*—(k+3)x—1, where k is a positive integer,
and take K=Q(¢). Then K/Q is cyclic.
(i) The regulator of the units ¢,& is ~(In k)2
(ii) We have S(e)=S()=S(")=k*+3k+9, and S(E/n)=k*+3k+9 for any two
distinct £, n€fe, &, "}
(iii) If &, & is a fundamental pair of units in K, then £, &'=1, ¢’ are the Berwick
units.

Proof. Since the discriminant of Irr (e, Q) is (k*+3k+9)2, K/Q is cyclic.
The conjugates of ¢ lie in the intervals

—kl<=e<0, —1-k'l<ed<-1 k+l<¢ <k+1+2k-1
Otherwise the argument is similar to that used in the proof of the previous lemma.
Lemma 8. Let Irr (¢, Q) be one of the polynomials
LX) =B -k (k—Dx—1,
fo(x) = XP—kx*+(k+1Dx—1,
f3(x) = x*—kx*—(k+1)x—1,
fai(x) = X¥*—kx*—(k+3)x—1,
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where k is an integer. Suppose that the regulator of K=Q(g) is ~(In|k|)%. Then,
Sor sufficiently large |k|, we have S(E[n)=S(0;1)=SO7)=S(0;") for any two
distinct &, ne{0,, 0,, 0,)}.

Proof. Put f(x)=Irr (¢, Q). We may assume that || is large enough.

First, let f(x)=f,(x). If k<0, we get f(x)=x3+(/—1)x2—Ix—1 where
{=—k+1. It follows from the assumption about the regulator of K and Lemma 6
(i) that &, e—1 is a fundamental pair of units for large |k|. The result now follows
from Lemma 6 (iii) and (ii). If k=0, we have Irr (¢/(¢—1), Q)=x3+(I—1)x2—Ix—1
where /=k—4, and get the same conclusion.

In the next two cases the argument is similar. We have Irr (6, Q)=x3+(/—1)x2—
Ix—1 for a suitable €K and large positive integer / as follows

S =fo(x), k<0: 6=c¢", I=—k;
f®)=f(x), k=0: d=010—¢ Y, I= k-3;
f®)=£(x), k<0: d=¢+1, I=—k-2;
@) =filx), k=0: d=¢14+1, I= k—1.
Suppose finally that f(x)=f,(x). Again the argument is the same but relies

upon Lemma 7 instead of Lemma 6. If k<0 we take Irr (671, Q)=x3+(k+3)x2+
kx—1 which can be written in the required form on replacing k+3 by —*k.

Lemma 9. Let (€E,, |E|<]1, and suppose that & is not a power of 0,. Then
E=6y ”93’. where a and b are positive integers and j=1 or 2.

Proof. Since 0y, 0, is a fundamental pair of units, we can write ¢=60;°67 for
some integers a, b. By assumption, b>0. We may suppose that b=0, otherwise
we pass to the expression ¢=0;°"70;". If now a=0, we would have [&"|=
|6717°167|P <1, which is impossible since E€E, .

3. Proof of Theorem 2

It follows from Lemma 3 that, for large D, A cannot be a nontrivial power in E.
Therefore, Theorem 2 is an immediate consequence of the following

Lemma 10. Let ¢ be as in Lemma 9 with j=1.
W) If S()=S(6,") and D is sufficiently large, then a=1.
(i) If S(©=S0;") and D is sufficiently large, then b=1.
(iii) If the assumptions (i) and (ii) both hold, then we also have 0,"'<1 and 07 <.

Proof. Write x=0;"%, y=0;"", u=607", v=0{"". Then |x|, |p|, |u|, |v| are
all >1.
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(i) We suppose that S(£)=S(0;") and that £=6; “0® where a=2 and b>0.
Since ¢€E. we must have |y|*>|v|®. Put

M = min {M(05"), M(&)}
= min {max {|x|, |y[}, max {|x|*|uv|’, |y|*|v|~*}}.
From Lemma 4 and the assumption S(&)=S(0;") we obtain
3) X200 xAyoyb ¥ o= = (x?—xy +y?)(1+ O(M ).
From (3) and (1) we further infer
(x17+ 1l << Loyl ful® = 5 (0 0 + 520~ ) << x* 432,
Therefore, a=2, uP<1, and x%?<<x®+y2. For large D we thus have (cf. Lemma 2)
¥ = [ofP = M7

Hence |y| becomes arbitrarily large so that x<1. Since M=|y|, the right-hand
side of (3) is »2(1+0(M~Y)). On dividing by x%?|u|* and denoting g=x2y~2|u|"v*
we obtain from (3)

q+q7" —sgn (@) = x7*|u| " (1+O(MY)).
This is clearly possible only if #*>0. Thus
(O (@—DPg+1-x"2u"" = O(M™Y),
which further implies
g=1+0M?), x=+1+0M™), ’=1+0M"), */y=+1+0(M?).
In particular, M ~|y|~|v|’. These results imply the more accurate estimate
—xy+yt =y 12y~ +0(y7Y),

which in turn allows us to replace (4) by an inequality with right-hand side
[¥I"14+0(y~?. It now follows that x=e+d/y, where e=+1 and [§|=1/2+
O(Jy|™". Hence

Tr(0)—eTr(05") = xp+x~ +y~t—e(x~y 1 +x+y)
=5+e—14+0(y|™ ) =e-1
if D is large enough. Put k=Tr(0,). Then

- {x?’—-kx2+kx—1 if e= 1,
5) OO =0kt (k4231 i o= 1.

This is impossible because both these polynomials are reducible over Q.
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(i) We suppose that S(¢)=S(0;") and that ¢=0,°6" where a and b are
positive. From Lemma 4 and (1) we have

©) X2 p? << 1?4 0?
which clearly implies b=1.

(iii) In this case a=b=1, ie. {=0;"0,, and it follows immediately from
(6) that x=0;"'<1. It also follows from (6) that either |u| or |v| is bounded. Sup-
pose that, contrary to the assertion, v=0(1). Denote

M = min {M(65"), M(67), M)}
Then, for large D, M=min {|y|, [u|}. From Lemma 4 we obtain
w0 —xyu+y* o2 (1+ O(M~2) = S(65)S(67Y).

Since S(6;)=)*(1+0(M™Y)) and SO7)=u*(1+0(M-1), we get from this
inequality on dividing by x2y2u? that

(p+p ' =1 = x(1+0(MY),

where p=xuv?[y. Clearly p>0. Writing the result in the form

(M A+p™)(p—1)P+1-x"2= 0(M™)

we can conclude that

p=1+0M?), x=414+0M"1), uly = +1+0(M-12),

From S(¢)=S(0;") we infer on dividing by u2
X*(1—p+pH=1+0M)

so that v=+14+0(M"®) and wu/y=+14+0(M~**). Hence M~|p|~|ul. We

now get for the expression (7) the following more accurate estimate:

x (A =xp)A=v/)=1)+0(»~2) = |y|7 +|u| =+ O(Iy|*?)
= 2[yI7*+0(y|7*?),

which leads to x=e+d/y, where e=+1 and |5|=1 +0(|y|‘1’2) As in (i) above
we can conclude that

Tr(8p)—eTr (O )e{fe—2,e—1, ¢}.

Therefore, Irr (6,, @) must be one of the four polynomials f(x) in Lemma 8 be-
cause the two polynomials in (5) cannot occur. Since 6,, 6, is a fundamental pair
of units, the regulator of K is

1 —1
PEIEINE |n em ne ),

—Inlul In|uy|

and Lemma 8§ leads to a contradiction for large D.
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4. Proof of Theorem 1

Assuming that D is sufficiently large we know that A=6;' or 6,0, if the
notation is suitably chosen. We also know from Lemma 3 that u cannot be a non-
trivial power in E.

Consider first the possibility A=0;'. We may assume that p~! is not one of
the Berwick units because otherwise (G) is true. By Lemma 9, u=0;°6} where
i,j€{0, 1,2}, i#j, and a and b are positive integers. If i=0 then b=1 for large
enough D, by Lemma 10. Hence (G) is true. The same conclusion follows if j=0.
In the remaining case we may assume, e.g., that i=1, j=2. From Lemma 10,
a=b=1, ie. u=07'0,. In this case (G) would be violated, but we shall deduce
a contradiction.

Write u=0;", v=0;"", s=05", t=0,"". Then |u|, |v], |s], || are all >1. By
Lemma 10 (iii), we have v<1, t<1. Take

M = min {M(e(;.l)’ M(el_l)s M(G{l), M(M)},

so that M=min {|u], |s|}if D is sufficiently large. Since S(0;*)=min {S(0;), S(0; 1)},
we obtain from Lemma 4

WPt —us+ s o2 (1+ O(M~2) = S(07H)S(0:Y).

On substituting SO;H=u*(1+0M %) and SO;H=s*(1+0(M1)) in this
inequality and dividing by u%s® we get

(g+g =1 =1+0M™M),
where g=uv*s~1172 As before, it follows that g=1+0(M~'?), and therefore
uls = 2/ +O(M~1?) <« 1.
From the condition S(u)=S(0;") we now find that
®) V2 — s ot (ufs) + 572 (WP)s?) = 1+ O (MY,
ie. v*?=14+0(M™Y). Hence
v=+14+0MY), t=+1+0M™Y), uls=1+0(M-7),
so that M ~|u|~|s|. We can now rewrite (8) in the more accurate form
e~ |s|" 1+ 0(s]7¥) = 1+ 5]~ 1+ O(s™2).

It follows that r=e+d/s, where e=+1 and |6|=14+0(|s|~?), which leads to
the same contradiction as at the end of the proof of Lemma 10.

Suppose next that A=0;"0,. Write x=0;"", y=60,"", u=0;", v=0;"". From
Lemma 10 (iii) we have x<I, u<1. Put

M = min {M(05"), M(67"), M(65), M(2)}.
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Obviously, for large D, M=min {|y, |[v|}. Let u=050" for some integers a,b.
Since u is not a power of A, we must have a-+b>0. We can also assume that
a+bs~+1, because otherwise (G) is true. It then follows that ab=0, by Lemma
3. We cannot have ab<0, because in that case Lemma 10 would imply that u=21
or A~' if D is large enough.

Suppose first that a=>0, b=>0. The condition S(w)=S(6;") gives, by (1),

x2ay2au—2b < 02, x—2au2bv2b < 02.

On multiplying these inequalities and taking into account that |y|=|v] because
JEE,, we obtain v*“ <!, Thus a=b=1, ie. u=0;'. From S(u)=S(0;")=
S(0;") we then find

Xyt —yv+x PP =0} (1 4+ 0 (M)
It is easy to see that yv must be positive. On dividing by yv we can write the above

inequality in the form
pHpt—1—vly< M,

where p=x2pu~2v~1. Since O<v/y<1, we can apply the same argument as before
and deduce that

yo=+1+0M™), p=1+0M"?), xu=+1+0M">.
Now S(A)=S(0;") implies
® v = v*(1+ 0O(MY),
whence x=+14+0(M~Y) and u=+1+0(M~1Y). Applying (9) in a more accu-
rate form and arguing as before we again conclude that Irr (8,, Q) is one of the

four polynomials in Lemma 8 which is impossible.
Suppose finally that <0, b<0. In this case

=y 20 ? < S(p) = SO7Y) < v,

which is absurd. This completes the proof of Theorem 1.

5. Proof of Theorem 3

We may assume the order of the conjugates of K to be chosen so that |A,]<1.
Put p=12, q=X7 x=0,"% y=0;"2 Thenp, ¢, x, y are >1, and we have

(10) S,(004,) =p7'qg ' xy+px~t gy

Suppose that, contrary to the assertion, 644,51, and let f(x,y) denote the right-
hand side of (10). It follows from the definition of 6, that necessarily xy=pq. Put

A={x»ERx =1,y = 1, xy = pq},
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and consider the function f(x,y) for fixed p, ¢ in the set 4. It is an elementary
task to verify that f(x, ») attains its maximum in 4 only at the point (x, y)=(l, 1).
Therefore,

S.(0,4,) < f(1, 1) = S,(4,),

which contradicts the definition of .

We have thus proved that 1,=6;". Consider now u,. We cannot have |u,| <1,
because otherwise the above argument would lead to the contradiction S, (6yu,)<
S, (u,). Interchanging the second and third conjugate if need be we assume that
|| <1. If O,p, is not a power of 6,, the same argument would give S, (0,p,)<
S, (1), contrary to the definition of u,. Hence u,=0;"6;. By the definition of
0, 1151=107"1, ie. |65/*=1. Thus k=0, and the proof is complete.
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