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ON THE HAUSDORFF DIMENSION OF QUASICIRCLES

J. BECKER and CH. POMMERENKE

1. Introduction

For a bounded set I" in C, let N(g, I') denote the minimal number of disks of
radius >0 that are needed to cover I'. The Hausdorff dimension [4, p. 7] satisfies
. _ 4. o logN(e, I)

(1.1) dimTl = lllzllont —W
For sufficiently regular compact sets, the limit exists and is equal to dim I, for
instance if I is a self-similar fractal curve [8, p. 736], [11, p. 29]. 1

We shall study the case that I' is a K-quasicircle where 1=K-<oo. This means
that I is the image of the unit circle under a K-quasiconformal mapping of C. Let
¢, Cs, ... denote suitable positive absolute constants.

Theorem 1. Let 1=K< o and define

0 P = syplim sup—E X

where I’ ranges over all K-quasicircles in C. Then
(1.3) B(K)=2—c, K34
and furthermore, for K close to 1,

K—1
2 < = 2 —_
(1.4) 14+0.36%° = B(K) = 1 +37%%, =« il
It follows from (1.1) and (1.2) that
dimI' = B(X)

for all K-quasicircles. Gehring and Vaisdld [5] were the first to show that f(K)<2.
If Lehto’s form [9] of the Bojarski integrability theorem is used in their proof [5, p.
507/508] one obtains

(1.5) BK) = 2—c,K~°
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with some unspecified c=1. It has been conjectured that ¢=1 which would be

best possible.
The lower estimate in (1.4) follows from Ruelle’s asymptotic expansion [17,

p.- 107]

(1.6) dimJ(A) = 1+ A7

mg—2—+0(lll“’) (4 -0),

where J(4) is the Julia set of the polynomial w?+Aiw.

2. Univalent functions with quasiconformal extension

Let X denote the family of all functions
2.1 g(2) = z+by+byz7 4+ ...

that are analytic and univalent in {l<|z|]<ee}. For 1=K<e<o, let Z¢ denote the
subfamily of functions that have a K-quasiconformal extension to C. We shall
deduce Theorem 1 from the following result.

Theorem 2. Let gcX, and 1<r-—<eo. Then

2r ., ONT - Cl
(22) fo lg (re )I dt = (1_ 1/’.)p—-1
holds with
2.3) p=2—cK™" a= 1+-72t—arc tan2 < 1.705.

If 1=K<1+c; then (2.2) also holds with
2.4) p=1+9.1%% »x=(K—-1)/(K+1).

It seems probable that any a>1 can be chosen in (2.3). Our proof would,
with suitable modifications, give this if, for g€Z,

fo lexp [2¢% log g’ (re")] dt = c(e)(1—1/r)~2=* (1 <r < 2)

is true for real 0 and each ¢=0, with c¢(e) depending only on e. This is a strengthened
version of the Brennan conjecture [2], [15].
We need the following important result [10, p. 69].

Theorem A. Let g€Zy. Then there are functions
2.5) &:€Z, A <1
that depend analytically on A such that
(2.6) g(2) =12 g =8 x=EK-D/[(K+]).
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Proof of Theorem 2. (a) Let
(2.7) (;0(].) = a_11_1+a0+all+ aeey (p(l) = 2, a_1 = 0

map {|4]<1} conformally onto the outer domain of the triangle 4 with the vertices
2, 14i/2 and 1—i/2. We write

(2.8) loggi = u;+iv,, z=re".
The function ¢(4) log g (z) is analyticin {|A|<1}, by (2.6) and (2.7). Hence

1 2 ’ 1 2n 4 Reo—b
2.9 V() = _27{fo 2, (2)° D] dt = _27[0 eUaReo—v Ime Jy

is subharmonic in {|4| <1} for fixed r=>1.
Since g,€X, an inequality of Golusin [14, p. 65] shows that |v,(z)|<
log 1/(1—r~1) for |A|]<1. Hence (2.9) shows that

W) = (1—1/r)=lmod] 51; [ enrear,
Since [14, p. 127]

1 2w 1 2,
5[, s@dt =5 [ Tgi @ dt < cy(1-1/r)7"

we therefore obtain that

(2.10) Y () = (co(1—1/p)~Y)ReeD2(] — 1 /p)=lTme®)]

if |[A|]<1 and 0<Re @ (1)=2. The choice of the triangle 4 shows that
Rep)2+ImeW)] =1 for |i = 1.

Hence we obtain from (2.10) by the maximum principle for subharmonic functions
that

2.11 V() =c(1—-1//)"1 for |A < L.
Since ¢(1)=2 by (2.7), it follows from the Schwarz—Christoffel formula that
(2.12) oA =—a_1 A A= 2pA=2, 21— )»

with |4,|=1 and «=(2/n)arc tan 2 and therefore
0(A) = 2+c¢(1-2+ +o((1=2A)*) as 2 - 1-0.
Hence (2.3) holds if we set p=¢(x)/(¢(%)—1). Furthermore, by (2.6) and (2.9),

1 pon 1r 1 s2n 1000
(g [ 1gvar) " = (5 17 wear) ™ = pyimen

0

and (2.11) therefore shows that

[ 18 @IPde = (1= ny 1o = (1= 1)) P+,
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(b) Since geZX it follows from Golusin’s estimate [7, p, 132] for the class
Z and from Theorem A by Lehto’s majorant principle that

(2.13) !Z,g))l = r26fl = rgftl for z=vre", r=>1.

We conclude as in [13] or [6] that

214 [Z18 @ dt = (-1t

and this implies (2.2) with p given by (2.4) because 9p*»*=p—1 if 0=x<c,.

3. Proof of Theorem 1

(i) Let I' be a K-quasicircle in C. Then there is a K-quasiconformal mapping
w of C mapping {|z|=1} onto I'. Let g be a conformal mapping of {|z|>1} onto
the outer domain of I'; we may assume that g has the form (2.1). If we define

g(z) = w(l/wog(1/2)) for |z] =1

then geZ,, with K*=K2; see e.g. [10, p. 39/40].
It follows from Theorem 2 that (2.2) holds with
p=2—cK*
and, for X close to 1, also with

= 149.1*% = 14+ 373

Hence our upper estimates are an immediate consequence of the following result
which is the analogue of [16, Corollary 2] for the class X.

Theorem B. Let gcX. If {g(2): |z|>1} is bounded by a quasicircle I' and if

2n s it _ 1 ] . -
fo lg’ (re®)|?Pdt = 0(—————-(1_ Tt as r—1+0
then

. logN(e, I') _
lim sup — e (i) =

(ii) We need some known facts from complex iteration theory to prove the
lower estimate; see e.g. [3] or [12] for an overview. We give a brief indication of the

proofs.
Let |A|<1 and letJ(4) be the Julia set associated with w?+Aw; this is a Jordan

curve. If
8:(2) = b_i(Dz+ 3 ba(Hz"
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maps {|z|>1} conformally onto the outer domain of J(4), then
8:(z%) = g:(2) +2g.(2) for |zl =L
It follows that b_,(A)=1 and, by induction, that b,(4) is a polynomial in A. Since
|b,(A)|<1 for n=1 by the area theorem, we conclude that g, depends analytically on A.
Since g, (z) is univalent in {|z|>1} and since gy(z) =2, a deep result of Bers and
Royden [1, Theorem 1] shows that

g},EZKa ® = u‘l‘
Hence J(A) is a K-quasicircle, and B(K)=1+0.36x*> (for K close to 1) follows
from (1.1), (1.2) and Ruelle’s estimate (1.6).
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