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ON THE HAUSDORFF DIMENSION OF QUASICIRCLES

J. BECKER and CH. POMMERENKE

For a bounded set ^f in
radius e >0 that are needed

I. fnfuoduction

C, let N( t, f) denote the minimal number of disks of
to cover J". The Flausdorff dimension 14, p.fl satisfies

(I.1)

§(K) : 'FPlim-suPffi
f ranges ouer all K-quasicircles in C. Then

fr(K) = 2- QI{-a+r

For sufficiently regular compact sets, the limit exists and is equal to dim i-, for
instance if l- is a self-similar fractal curve [8, p. 736], lll, p. 291. ,t

We shall study the case that i- is a K-quasicircle where 1=.(< -. This means
that f is the image of the unit circle under a K-quasiconformal mapping of C. Let
ct, cz,, ... denote suitable positive absolute constants.

Theorem l. Let 1=K= * and dert.ne

(1.2)

where

( 1.3)

and furthermore , for K close to l,

(1.4) 1+0.36x2< fi(X)= 1+37iå,

It follows from (1.1) and (1.2) that

dim r = p(K)

K-l
'v K+l

for all K-quasicircles. Gehring and
If Lehto's form [9] of the Bojarski
50715081 one obtains

( 1.5)

Väisälä [5] were the
integrability theorem

first to show that §(X1--2.
is used in their proof [5, p.

fi{K) 4 2- czK"'

koskenoj
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with some unspecified c>1. It has been conjectured that c:l which would be

best possible.

The lower estimate in (1.a) follows from Ruelle's asymptotic expansion [17,

p. 1071

(r.6) diml(x): r*#+o(l,Us) (,i * o),

where J(,1) is the Julia set of the polynomial wz+Aw,

2. Univalent functions with quasiconformal extension

Let ^ä denote the family of all functions

(2.t) g(z): z+bo+brz-L+...

that are analytic and univalent in {1 = lzl= -}. For 1 =K= -, let X* denote the

subfamily of functions that have a K-quasiconformal extension to C. We shall

deduce Theorem I from the following result.

Theorem 2. Let g€E* and l'r'*. Then

Q.2) []" t{t "u)toat = 6fiy
holds with

Q3) p:2-czK-o, a:l+?arctan2<1.705.
7E

If l<K-l*c, then Q.2) also holds v'ith

(2.4) p:l+9.1x2, x:(K-lY(r+l).
It seems probable that any a>l can be chosen in (2.3). Our proof would,

with suitable modifications, give this if, for g€I,

/'" l.*r l2,eia logg (ret')ll dt = c(e)(l - llfi-r-c (l '< r '< 2)

is true for real 0 and each e>0, with c(e) depending only on e. This is a strengthened

version ofthe Brennan conjecture [2], [15].
We need the following important result [10, p. 69].

Theorem A. Let g€}x. Thenthere arefunctions

(2.5) gt€D, l,U = 1

that depend analytically on )" such that

(2.6) go(z): z, gx: 8, x: (K- l)/(r+ l).



On the Hausdorff dimension of quasicircles 331

Proof of Theorem 2. (a) Let

Q.7) E0) : a-tlu-r qao+arx+ ..., q(l) : 2, d-t > o
map {f ),1< 1} conformally onto the outer domain of the triangle / with the vertices
2, l+|2 and l-i12. Wewrite

(2.8) logg'^: ux*io1, z : reit.

The function E['Slogg'^(z) is analytic in {1,[|=1}, bV (2.6) andQ.7). Hence

(2.s) *(x): * t: k'Q)o{tt1o, : { I}n su^Ree-o,tmo fl1

is subharmonic in {1,11= l} for fixed r>1.
Since g^(8, an inequality of Golusin [14, p. 65] shows that lo{z)l=.

log 1/(1-r-') for l,1l=1. Hence (2.9) shows that

,LQ) 
= 0- t171-tr^t1^tt L f 

2" 
nu^x'o 41-2nJo "

Since [4, p.127]

* I'" ",,^r,, 
n, : * Il" ls;k)|, dt < cn(t - tlD-,

we therefore obtain that

(2.10) {t(1)=("n(t-llr)-t)xeo1t112(l-ll.4-tlna<^)t
if l,tl= 1 and 0= Re EQ,)=2. The choice of the triangle / shows that

ReE(),)12+lIm9(,1)l =1 for l,tl :1.
Flence we obtain from (2.10) by the maximum principle for subharmonic functions
that
(2.11) {t(1)= cs(l-llr)-t for l,lf = l.

Since 9(1):2 by (2.7), it follows from the Schwarz-Christoffel formula that

(2.12) e'Q') : -a-r7-2(l-ly(l-Xr]i1"11-).j,1',
with ltrl:1 and a:(2ln\ arctan2 and therefore

EQ):2+cu(l-1)+r +o((1-l.)c+t) as ,i * 1-0.
Hence (2.3) holds if we set p:E@)l(q(ra)-t). nurthermore, by (2.6) and (2.9),

(* t: ,'to d,)''o =(* f: E'tE",) o,)'''o' : *(x)ue@t

and (2.11) therefore shows that

f '" lr' 11110 61 = c{l - lf r)'oto(xt : cr(l - llr)-o+t.Jo 'o
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(b) Since gQ»K it follows from Golusin's estimate 17, p, l32l for the class

^E and from Theorem A by Lehto's majorant principle that

(2.13) Wl= 
-L 

=- * for z: reit, r = t.

We conclude as in [3] or [6] that

(2.t4) []" V f4f a, = cr(t - tfr)-soaxz

and this implies Q.2) wrth p given by (2.4) because 9p2x2=p- I if 0=z=ca.

3. ProofofTheorem 1

(i) Let .l- be a K-quasicircle in C. Then there is a K-quasiconformal mapping

w of t mapping {lzl:1} onto .l-. Let g be a conformal mapping of {lzl>'1} onto

the outer domain of .l-; we may assume that g has the form (2.1). If we define

s(z): w(ttw iO) for lzl = t

then g€Xa* with .a(*:K2; see e.g. [10, p. 39/40].

It follows from Theorem2that (2.2) holds with

P : 2- czK-zo

and, for K close to l, also with

p:l+9.1x*2<l*37x2.

Hence our upper estimates are an immediate consequence of the following result

which is the analogue of [16, Corollary 2] for the class .8.

TheoremB. Let Ce». If {g(z): lzl=l} ,Sboundedbyaquasicircle f and if

[]" ts'{,,'110 dt : o(itj-) ,, r * I *o
then

limsoupfrffi=r.

(ii) We need some known facts from complex iteration theory to prove the

lower estimate; see e.g. [3] or [2] for an overview. We give a brief indication of the

proofs.
Let l,1l<l andlet"r(,l)betheJuliasetassociatedwith w!+)'w; thisisaJordan

curve. If
st@) = b-rQ)z+ )irb"P,Iz-'
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maps {lzl>.1} couformally onto the outer domain of.I(,t), then

gz(z') : Se@)z + )'St@) for lzl > l.
It follows that b-, (,i) : I and, by induction , that b*(l) is a polynomial in '1' Since

lb^Q)l-.|for n>l by the area theorem, we conclude that g^depends analytically on,t.

§irr"" g^(z) is univalent in {lzl>1} and since go(z):2, a deep result of Bers and

Royden [1, Theorem 1] shows that

g;€Zx, x: lXl'

Hence "7(,1) is a K-quasicircle, and BG)=l*O.36xz (for K close to l) follows

from (1.1), (1.2) and Ruelle's estimate (1.6).
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