A CHARACTERIZATION OF THE λ -INVARIANT OF A *p*-ADIC *L*-FUNCTION

TAUNO METSÄNKYLÄ

1. Let p be a prime, and put q=p if p>2 and q=4 if p=2. Consider the Kubota—Leopoldt p-adic L-function $L_p(s, \theta)$ attached to an even non-principal character θ . Write $\theta = \chi \omega$, where ω is the Teichmüller character mod q and χ is a character with conductor not divisible by pq (all characters are assumed primitive). It is well known that $L_p(s, \chi \omega)$ has a power series expression, say

$$f(X, \chi \omega) = \sum_{j=0}^{\infty} a_j X^j,$$

whose coefficients a_j are integers of the field $\mathbf{Q}_p(\chi)$ generated by the values of χ over the field of *p*-adic numbers.

By the Ferrero-Washington theorem [2], there exists an index j such that a_j is prime to p. The least such index is called the λ -invariant of $f(X, \chi \omega)$ and denoted by $\lambda = \lambda_{\chi}$. Observe that λ is characterized by the statement

(1)
$$\lambda \geq h \Leftrightarrow a_0 \equiv a_1 \equiv ... \equiv a_{h-1} \equiv 0 \pmod{\mathfrak{p}}$$

where *h* denotes a positive integer and \mathfrak{p} is the maximal ideal of the integer ring of $\mathbf{Q}_p(\chi)$. Another characterization of the λ -invariant is given in the present note; see the theorem in Section 2. This has proved useful in some problems concerning λ .

2. To formulate the theorem, we introduce the necessary notation and record some preliminary facts.

Let us write the conductor of the character χ in the form

$$f_{r} = d$$
 or dq , $(d, p) = 1$.

For $n \ge 0$, denote by Γ_n the multiplicative group of those residue classes $a + dqp^n \mathbb{Z}$ for which $a \equiv 1 \pmod{dq}$. Let $\gamma_n(a)$ denote the image of $a + dqp^n \mathbb{Z}$ under the canonical projection $(\mathbb{Z}/dqp^n \mathbb{Z})^x \to \Gamma_n$. Since Γ_n is generated by $\gamma_n(1+dq)^{-1}$, we see that the set $I_n = \{a \in \mathbb{Z} : 0 < a < dqp^n, (a, dp) = 1\}$ can be partitioned into the subsets

$$I_{nk} = \{a \in I_n : \gamma_n(a) = \gamma_n(1+dq)^{-k}\}, \quad k = 0, ..., p^n - 1.$$

The power series $f(X, \chi \omega)$ is defined by the congruences

$$f(X, \chi \omega) \equiv \sum_{k=0}^{p^n-1} c_{nk} (1+X)^k \quad (\text{mod}\,(1+X)^{p^n}-1),$$

where the coefficients c_{nk} are integers of $\mathbf{Q}_p(\chi)$ having the following expressions:

$$c_{nk} = -\frac{1}{dqp^n} \sum_{a \in I_{nk}} a\chi(a)$$

(see [5, § 7.2]; cf. also [3] where the definition of $f(X, \chi \omega)$ differs from the present one by a factor 1/2). Note that the coefficients of $f(X, \chi \omega)$ can be given explicitly as follows:

(2)
$$a_j \equiv \sum_{k=j}^{p^n-1} \binom{k}{j} c_{nk} \pmod{\mathfrak{p}}, \quad j=0,\ldots,p^n-1.$$

Now let b be a positive integer prime to dp. For $n \ge 0$ and $k, j=0, ..., p^n-1$, set

$$S_{nk} = -\sum_{a \in I_{nk}} \chi(a) \left[\frac{ba}{dqp^n} \right], \quad T_j^{(n)} = \sum_{k=j}^{p^n-1} \binom{k}{j} S_{nk},$$

where [z] denotes the largest integer $\leq z$.

- Theorem. Let $n \ge 0$ and $1 \le h \le p^n$.
- (i) If $\lambda \ge h$, then $T_0^{(n)} \equiv T_1^{(n)} \equiv ... \equiv T_{h-1}^{(n)} \equiv 0 \pmod{p}$.
- (ii) If $T_0^{(n)} \equiv T_1^{(n)} \equiv \dots \equiv T_{h-1}^{(n)} \equiv 0$ and $\chi(b) b \neq 1 \pmod{\mathfrak{p}}$, then $\lambda \geq h$.

Note that the expression of $T_j^{(n)}$ is integral, contrary to that of a_j . This makes the theorem suitable for the computation of λ . In fact, Ernvall has carried out such computations by using a similar result which may be regarded as a preliminary version of the above theorem (see [1]). We point out that in that version, proved for p>2 only, the definition of $T_j^{(n)}$ is slightly different and the restriction imposed on h is stronger (the present assumption about h being the natural one). The following proof is completely different; its key idea goes back to the author's article [4] concerning the estimation of λ from above. This shows, conversely, that the present theorem also plays an important role in this estimation result.

3. For the proof of the theorem, we keep $n \ge 0$ fixed. We extend the preceding definition of I_{nk} for all $k \in \mathbb{Z}$ by taking $I_{nk} = I_{nm}$ whenever $k \equiv m \pmod{p^n}$. Choose $t \in \mathbb{Z}$ such that

$$\gamma_n(b) = \gamma_n(1+dq)^{-t}, \quad 0 \le t \le p^n - 1.$$

The crucial formula of the proof reads

(3)
$$S_{nk} = bc_{nk} - \chi(b)^{-1}c_{n,k+t}, \quad k = 0, ..., p^n - 1;$$

this will be verified by an argument similar to [4, Lemma 1]. Indeed, let a run through I_{nk} and write

$$ba = dq p^n \left[\frac{ba}{dq p^n} \right] + r_a.$$

Since

$$\gamma_n(r_a) = \gamma_n(ba) = \gamma_n(1+dq)^{-k-t},$$

we find that r_a runs through $I_{n,k+t}$. Hence we may write

$$c_{n,k+t} = -\frac{1}{dqp^n} \sum_{a \in I_{nk}} r_a \chi(r_a),$$

and the right-hand side of (3) becomes

$$-\frac{1}{dqp^n}\sum_{a\in I_{nk}}\left(ba\chi(a)-r_a\chi(b)^{-1}\chi(r_a)\right)=-\frac{1}{dqp^n}\sum_{a\in I_{nk}}\left(ba-r_a\right)\chi(a).$$

This proves the claim.

It follows from (3) that

(4)
$$T_{j}^{(n)} = b \sum_{k=j}^{p^{n}-1} {k \choose j} c_{nk} - \chi(b)^{-1} \sum_{k=j}^{p^{n}-1} {k \choose j} c_{n,k+t} \quad (j = 0, ..., p^{n}-1).$$

By (2), the first sum on the right-hand side is congruent to $a_j \pmod{p}$. As for the second sum, we show that

(5)
$$\sum_{k=j}^{p^n-1} \binom{k}{j} c_{n,k+t} \equiv a_j - \sum_{i=0}^{j-1} d_i a_i \pmod{p}$$

 $(j=0, ..., p^n-1)$, where the coefficients d_i are rational integers.

We use induction on j. First observe that, as a function of k, c_{nk} is periodic with period p^n . For j=0 the left-hand side of (5) equals

$$\sum_{k=0}^{p^{n-1}} c_{n,k+t} = \sum_{k=0}^{p^{n-1}} c_{nk} \equiv a_0 \pmod{\mathfrak{p}}.$$

Let $j \ge 1$. As usual, set $\binom{k}{j} = 0$ if $0 \le k < j$. Making use of the identity

$$\binom{k+t}{j} = \sum_{u=0}^{j} \binom{k}{u} \binom{t}{j-u} = \binom{k}{j} + \sum_{u=0}^{j-1} \binom{k}{u} \binom{t}{j-u},$$

valid for all non-negative k and t, we obtain

$$\sum_{k=0}^{p^{n-1}} \binom{k}{j} c_{n,k+t} = \sum_{k=0}^{p^{n-1}} \binom{k+t}{j} c_{n,k+t} - \sum_{u=0}^{j-1} \binom{t}{j-u} \sum_{k=0}^{p^{n-1}} \binom{k}{u} c_{n,k+t}.$$

Like c_{nk} , also the binomial coefficient $\binom{k}{j}$ modulo p is periodic with period p^n (apply the above identity and note that j and n are positive). Therefore, by the induction hypothesis,

$$\sum_{k=0}^{p^{n-1}} \binom{k}{j} c_{n,k+t} \equiv a_j - \sum_{u=0}^{j-1} \binom{t}{j-u} \left(a_u - \sum_{i=0}^{u-1} d_{iu} a_i\right) \pmod{p}$$

with $d_{iu} \in \mathbb{Z}$. This gives us (5).

From (4) and (5) we conclude that

$$T_{j}^{(n)} \equiv (b - \chi(b)^{-1})a_{j} + \chi(b)^{-1} \sum_{i=0}^{j-1} d_{i}a_{i} \pmod{\mathfrak{p}}$$

 $(j=0, ..., p^n-1)$. By comparing this with (1) we easily infer the theorem.

References

- [1] ERNVALL, R., and T. METSÄNKYLÄ: A method for computing the Iwasawa λ -invariant. Math. Comp. 49, 1987, 281–294.
- [2] FERRERO, B., and L. C. WASHINGTON: The Iwasawa invariant μ_p vanishes for abelian number fields. Ann. of Math. (2) 109, 1979, 377–395.
- [3] METSÄNKYLÄ, T.: Note on a congruence for p-adic L-functions. Math. Scand. 57, 1985, 225–235.
- [4] METSÄNKYLÄ, T.: A simple method for estimating the Iwasawa λ-invariant. J. Number Theory 27, 1987, 1—6.
- [5] WASHINGTON, L. C.: Introduction to cyclotomic fields. Springer-Verlag, New York—Heidelberg—Berlin, 1982.

University of Turku Department of Mathematics SF-20500 Turku Finland

Received 27 May 1987