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SOME COVERING PROPERTIES OF
LOCALLY UNIVALENT FUNCTIONS

D.A. Brannan and A.K. Lyzzaik

1. Introduction

The whole question of the covering properties of holomorphic functions has
been seminal in complex analysis. In this paper we study some questions that
have received surprisingly little attention until recently, concerning the covering
properties of the functions holomorphic and locally univalent in the unit disc B =
{z: |2| < 1}.

Liouville’s theorem shows that it is not possible for a function f holomorphic
and univalent in B to ‘cover’ the whole complex plane C (that is, f(B) # C);
indeed C\ f(B) must contain an unbounded continuum I'. The study of C\ f(B)
is a major area of univalent function theory.

The investigation into analogous results for locally-univalent functions f holo-
morphic in B, with very precise restrictions on the number of times points of C
may be covered by the Riemann surface f(B), may be said to have been initiated
by [2]. There it was shown that if f is holomorphic, locally-univalent and p-valent
in B, then v(f) # {p—1,p}, where v(f) = {card f~}(w): w € C}. (In particular,
there exists some point wy that is covered by f at most (p—2) times; for example,
if p=2 then f(B)#C.)

The idea of the deficiency of a p-valent holomorphic function in B was intro-
duced in [2]; the deficiency of f at w, é§(w), is defined as

6(w) = max{0,p—1— cardf_l(w)},

where card f ~!(w) takes account of multiplicity, and the deficiency of f isthe sum
Y wec 6(w). Answering conjectures in [2], A. Lyzzaik and D. Styer [6] proved that
(A) alocally-univalent, p-valent holomorphic function in B satisfies the inequality
8(f) > p—1, and (B) a p-valent holomorphic function in B with §(f) = 0 must
have at least (p — 1) critical points. Their technique was to embed the images of
such functions in p-sheeted covering surfaces over the Riemann sphere P.

Some of the work in [2] and [6] was generalized in [14] to functions between
n-dimensional manifolds, in [15] to ramified meromorphic functions in arbitrary
domains, in [16] to analytic functions between Riemann surfaces, and in [17] to
finite-to-one open continuous functions between surfaces.
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Recently, M. Ortel and W. Smith [8] have shown that if f is holomorphic,
locally-univalent and p-valent in B, then v(f) # {1,p}. They also conjectured
that for every ¢ with 1 < ¢ < p, then v(f) # {¢,p}; a main result in this paper
is a proof of a generalization of that conjecture.

1.1. Two covering surface theorems

We will say that a function f satisfies the hypotheses (p,q) if f is holomorphic
and locally univalent in B, p and ¢ are positive integers with p > ¢, and f covers
every point in the image plane either p times or ¢ times, with at most finitely
many exceptions. We will call each of these exceptions an exceptional point; it
turns out (Lemma 2.4) that exceptional points can be covered at most (g — 1)
times.

The first main result in this paper is as follows:

Theorem 1. Let the function f satisfy the hypotheses (p,q) and let
ei,...,er be the corresponding exceptional points. Then the Riemann surface
Y of the image of f can be embedded in a compact, analytic, p-sheeted covering
surface X of P. X has branch points over some of the exceptional points, and
possibly also over infinity.

In our work it will be valuable to have the following notation available.

Definition 1.1. By the letters P, we will denote the sets of all points in
the plane that are covered by f exactly p,q times, respectively, and by E the set
of exceptional points ey, ..., e, (as defined above).

The proof of Theorem 1 follows from a number of lemmas, two of which
(Lemmas 2.7 and 3.4) play a central role. The first shows that P is open, and
that f~1(P) is a disjoint union of exactly p ‘copies’ of P; the second shows that
there is an open neighbourhood V of @ such that f~}(V) contains exactly ¢
copies of V.

The key ideas in the rest of the proof are then essentially the same as those
in the main theorem of [6]. Over V we tack on p — ¢ new copies of V. Then we
adjoin these copies to the surface Y by pasting each copy to one and only one of
the “(p — ¢)th” copies of the components of PNV, and compactify the surface
thus obtained by filling up the finite number of points over E and infinity.

The second main result of the paper offers further useful information about
the covering properties of the surface X of Theorem 1, provided that f satisfies
the additional condition that EU{oo} is arcwise connected in QU EU{co}. This
condition is somehow reasonable in view of Lemma 2.6 in which we show that
QU E U {oo} is connected. To state our result, we extend the deficiency notion
for functions satisfying the hypotheses (p, ¢) as follows. The ¢-deficiency of f at
w is then defined to be

6,() = max{0, ¢ — card f 7 (w)},
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where card f~!(w) takes multiplicity into account, and the g¢-deficiency of f,

8q4(f), is the sum 8,(f) = D, cc dq(w).

Theorem 2. Under the assumptions of Theorem 1, let the points of the set
E U {0} be arcwise connected in the set Q@ U E'U {oo}. Then the surface X of
Theorem 1 can be chosen so that the sum of the orders of the branch points over
each exceptional point e; is at most 64(e;).

In Section 6 we look at consequences of Theorems 1 and 2 relating the cardi-
nality, v, of E and the deficiency é4(f), finding in particular that

r(p—g—1)+6(f)2p—1

for all functions satisfying the hypotheses (p, ¢); and that 6,(f) > p—1, provided
that all the functions satisfy an additional condition (see Theorem 4 in Section 6).

In Section 7 we meet analogous results where analyticity is replaced by con-
tinuity and local injectivity. In particular we prove that there is no continuous
locally one-one function f: B — C whose set of valencies is a doubleton {p, g},
where p > ¢ > 1; this proves a conjecture of Ortel and Smith [8]. We also consider
analogous problems for functions mapping between domains whose connectivity
may be positive.

Finally in Section 8, in a slightly different direction, we present partial results
on the problem of identifying in general those subsets of the non-negative integers
that can occur as the set v(f) for some function f analytic and univalent in B.

2. Some topological considerations

In this section we investigate some of those topological properties of the sets
P, Q and E (as defined in Definition 1.1.) that will be needed later.
A key tool in our work will be

Lemma 2.1. Let f be a holomorphic locally-univalent function in B, and ¥
and ~y simple closed curves in B and C, respectively, such that f(¥) =~. Then,
if G and G are the inner domains of 4 and 7, respectively, f is univalent in GU%

and f(G)=G.

This is very similar to results for ¥ = {|z| = r} in [18; p. 201], [9; Problem 188,
p. 141], [10] and [3; pp. 197 and 198].

Proof. First, we have 8f(G) C f(3G) = f(7) = v since f is open. Therefore
f(G) = G by the Jordan Separation Theorem. Now f(OG) = f(7) =~ = 3f(G)
implies f|5 is a covering map. Finally G is simply connected, hence by the
monodromy theorem f|s is univalent.

We will make much use of the following:
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Lemma 2.2. Let the function f satisfy the hypotheses (p,q) of Section 1;
let zg € B and wo = f(z9). Then for any arc v, with initial point wq, that lies
completely either in the set P or in the set @, there exists a unique arc ¥, with
initial point zg, such that f(¥)=17.

Proof. If a continuation of a branch of f~! along v ends at a point w; which
is inner in v, then the lift of v tends to 0B and hence w; is a cluster point of
f. Therefore, points on 4 which are sufficiently close to w; are covered at least
¢+ 1 times (¢ times by a neighbourhood of f~!(w;) and at least once by points
near 0B), contradicting the assumptions on ~.

Next we use Lemma 2.2 to study the nature of the set P, described in Defi-
nition 1.1, associated with a function f satisfying the hypotheses (p,q).

Lemma 2.3. The set P is open, and each of its connected components is a
simply-connected domain in C,,.

Proof. It is obvious that P is open.

Next, let P, be any connected component of P; since P (and so P;) is open,
P; must be a domain. Let 4 be any simple closed curve in P;; we have to show
that ~ is homotopic in P; to a point.

Since f is locally univalent, it follows from Lemma 2.2 that f~1(y) is the
union of exactly p simple closed curves %;, 1 < j < p, such that if éj is the
inner domain of ¥;, then the domains G ; are disjoint, f is univalent on each set
G;U% = G;, and each image domain f(G ;) is the inner domain of .

It follows that every point in the inner domain of v is covered exactly p times,
and consequently this domain is contained in P;. Therefore v is homotopic in P,
to a point, and the proof is complete.

As an application of this result we can deduce an analogous result concerning
the covering of the set E of Definition 1.1.

Lemma 2.4. Each point of the set E is covered by f at most (¢—1) times.

Proof. Suppose, on the contrary, that there exists some point e € E that is
covered at least ¢ times—and so at least (¢ + 1) times, since e € Q. It follows
from the open mapping theorem that there exists some disc centred at e such that
every point in the punctured disc is covered at least (g + 1) times; the disc can
clearly be chosen sufficiently small that its closure contains no exceptional point
other than e. The finiteness of E and the restriction on valencies then show that
every point in the punctured disc must be covered exactly p times, so that every
point of the punctured disc lies in some connected component of P. The existence
of the ‘isolated’ point e then contradicts the simple-connectivity of the connected
components of P (Lemma 2.3); this contradiction completes the proof.

Our next two results give some information about the location in C of the
set E vis-a-vis P and Q.
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Lemma 2.5. The set E is a subset of 0P N 0Q).

Proof. Suppose, on the contrary, that there exists some point e € E that is
not a common boundary point of P and Q.

Since C = PUQ U E where P, @ and E are disjoint and E is a finite set,
it follows that necessarily either e € 9P or e € 0Q).

Suppose, firstly, that e € OP. Since e ¢ 0Q, the above decomposition of the
plane shows that there exists an open disc D centred at e such that all the points
of D\ {e} liein P; this is impossible, by Lemma 2.3.

Suppose, secondly, that e € 9Q. Just as before it follows that there exists
some open disc D centred at e such that all the points of D\ {e} liein Q. Let v
be a circle centred at e that lies in D. As in the proof of Lemma 2.3, Lemmas 2.1
and 2.2 imply that f~!(y) is the union of exactly ¢ mutually disjoint simple closed
curves in B. Moreover, the inner domains of the curves are also mutually disjoint,
and each is mapped homeomorphically under f to the inner domain of v. It
follows that the exceptional point e must be covered by f at least ¢ times, which
is impossible by Lemma 2.4.

It follows that e € 9P N 0Q.

Lemma 2.6. The set QU EU {oco} is a continuum on the Riemann sphere,
and every connected component of @ U E is unbounded in C.

Proof. The first statement follows from Lemma 2.3 and Theorems 10.2 and
10.3 in [7, p. 154]. The second statement follows at once, since the Riemann
sphere is compact.

Before stating our next result, it is helpful to introduce some convenient ter-
minology.

Definition 2.1. Let X, Y be two topological spaces, and let G, U be open
subsets of X, Y, respectively. Then if a map f: X — Y maps G homeomorphi-
cally onto U, G is said to be a copy of U under f.

For convenience we will often use the notation U to denote a (particular) copy
of an open set U under a function f (such as a function f satisfying hypotheses

(P, q)).

The next result plays a crucial role in our work.

Lemma 2.7. Let the function f satisfy the hypotheses (p,q) of Section 1.
Then the set f~1(P) consists of exactly p mutually disjoint copies of P.

Proof. Let P; be any connected component of P; since P is open, so is P;.
Then clearly it is sufficient to prove the result for P; in place of P.

Let w be an arbitrary point in P;, and let v be an arc in P; with initial
point w. By virtue of Lemma 2.2 every branch of f~! that satisfies the normal-
ization f~!(w) = z; for some j, 1 < j < p, can be continued analytically via f~*
along . By arguing in essentially the same manner as in Lemma 2.1 the desired
result holds. This completes the proof.
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3. The copies of a neighbourhood of @

In this section we continue our discussion of functions satisfying the hypothe-
ses (p,q).

We will construct, in several steps, a particular open neighbourhood of the
set () whose pre-image under f contains ¢ mutually disjoint copies of that neigh-
bourhood.

3.1. A covering of Q

For each point in @ there exists a disc D centred at the point with the
properties that D does not meet E and that f~!(D) contains mutually disjoint
copies of D. Corresponding to each such disc D let B be the open disc concentric
with D that has radius one-third the radius of D. The collection of all such open
discs B then forms an open cover of the set Q.

Since QU E is a closed set in view of Lemma 2.3, @ can be expressed as the
countable union of a collection of compact subsets of C. This implies that @ has
an open subcover of countably many discs B. Let V denote the union of all the
discs in the subcover, and let ¢/ be any connected component of V'; then i is a
domain which is the union of some subcollection of the discs in the subcover. Let
B denote this subcollection of discs B.

Let the disc B € B, and let B be a copy of B (cf. Definition 2.1). Then
there is a branch of f~! that maps B univalently onto B. Let (f~1, B) denote
the function element determined by a branch of f~! on B. Since B has exactly ¢
copies in B, there are exactly ¢ distinct such function elements; whenever we need
to distinguish these, we will denote them as (f;!, B), (f;1,B), ..., (f74,B).

In the remainder of this section we will use theory, definitions and notation
from [11, pp. 316-319].

We will make much use of the following couple of self-evident lemmas which
are given without proofs.

Lemma 3.1. Let B, B' be overlapping discs in B. Then corresponding to
each function element (f~!,B) there exists a unique function element (f~', B')
such that (f~!,B) and (f~!, B') are direct analytic continuations of each other.

For a fixed choice of a disc By in B and a fixed function element (f~!, By),
we deduce the following result.

Lemma 3.2. The function element (f~!, B;) admits unrestricted analytic
continuation in U; that is, (f~!, By) can be continued analytically along every
curve 7 in U that starts at the centre of By. Furthermore, the continuation of
(f~1,B,) along « ends in some function element (f;l,B), where 1 < j < ¢ and
B is some disc in B that contains the endpoint of «.

In general the set &/ may not be simply connected; nevertheless the following
result holds, somewhat surprisingly.
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Lemma 3.3. The given function element (f~!, B;) extends to a single-
valued (analytic) branch of f~! in U.

Proof. Since every function element (f~1,B) in U admits unrestricted ana-
lytic continuation in ¥, it follows, by standard arguments, that it suffices to show
that if ¢ = (f~!,B) is a function element in U, b is a point in B and v is a
simple closed arc in U which starts and ends at b, then the complete lift of
from the point g(b) is a closed arc 4 and f is injective in 7.

Since f is finite-to-one and the continuation of ¢ along v is unrestricted and
can be repeated, it follows that 4 is a closed arc. The injectivity of f|¥ follows
by Lemma 2.1. This completes the proof.

We close this section with our second central lemma, concerning the union V
of open discs in a subcover of Q.

Lemma 3.4. The set f~1(V) contains ¢ mutually disjoint copies of V.

Proof. It is sufﬁcient to prove the result for any given component U of V.

Let (fi',B1), (f5',B1), ..., (f7!, B1) be the ¢ distinct function elements
on B; that are 1nduced by f71; by the previous lemma, each extends to an
analytic function on ¥ which is an inverse to f on U. If we denote by fi ! the

extension of (f ,B1) to U, then f; ~1 is univalent in U and U; ;I(U) is

a copy of U. It remains to show that the copies Uy, Us, .. Z/{ are pairwise
disjoint.

Suppose that in fact there is some point zo which belongs to U iy nu j» » Where
J1 # j2. Let wo = f(20); and let w; be a point of By that is different from wy,
and let @ be an arc in I from w; to wg. Since f is locally univalent, it is easy
to conclude that f;l and f;l must coincide on o and that fﬁl(wl) = f;l(wl).
This implies (qul, B)) = (szl,Bl), which is a contradiction. This completes the
proof of the Lemma.

4. The proof of Theorem 1

In this section we prove Theorem 1 by showing how the image surface of a
function f satisfying the hypotheses (p,¢) can be extended to give a compact,
analytic, p-sheeted covering of the Riemann sphere (as described in Theorem 1).

The image surface of f is an analytic covering of the w-plane. We denote
it by a pair (Y, 7) where Y is the Riemann surface formed from pairs (z, f (z)) ,
with the topological and conformal structures inherited from the unit disc B via
f, and where 7 is the natural projection map defined by (2, f(z)) = f(z). The

map from B onto Y defined by f(z) = (z, f(z)) is conformal.

Let G be an open subset of C. It is easily seen that G has a copy under f if
and only if it has a copy under 7; and the latter is the image of the former under
f. For convenience, we will use the same notation G for both copies of G'. Notice
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that facts about the copies under f of the open sets P and V', such as Lemmas
2.7 and 3.4, will carry over to their copies under .

Now, by virtue of Lemma 3.4 there are exactly g copies V;, Vs, .. 17 of V
in Y. We will construct an additional (p — ¢q) copies as follows. For ea.ch 7 with
¢g+1<j<plet V = {(w,]) w € V}. Let X, be the disjoint union of Y and
the sets Vq_H, Vq+2, .. V Then we extend 7 to the “new copies” V] by the
identification m((w, j )) = w, and we topologize these copies by the topology that
makes the restriction of 7 to 17j, g+ 1< j<p, ahomeomorphism.

Next, let G be any connected component of the open set PN V. Since G
is contalned in P, it follows by Lemma 2.7 that G has exactly p copies in ¥
of which only ¢ of them lie in V4, Vs, ..., V Denote the remaining copies by
Gq+1 , Gq+2, .. G Meanwhile every V], g+1 < j <p, contains a single copy
G- of G. Now for every j, ¢+1 < j < p, we identify points M in G with points
N in G; if 7(M) = n(N), and we do this for all the components G of PN V.

Now let X be the quotient set of Xy with the identification defined above.
For simplicity, we may view Y and each additional copy Vj, g+1<j3<p,as
subsets of X . Similarly we may view 7 as being defined on X. Then if X, is
endowed with the free union topology, it follows that X inherits the identification
topology in which Y and the additional copies f/j , ¢+1 <5 < p, are open
subsets of X (see [4; pp. 120-136]).

It is immediate that X is connected since Y and each f/j, g+1<j<p,are
connected and they intersect in X . Observe from the construction of X that no
two points of ¥ have been identified, and so also no two points of f/] , 1<7<p.
Hence for every w € C\ E the set 7~}(w) consists of exactly p points in X.
Using this, it can be easily verified that X is Hausdorff, and that every point
of X lies in a neighbourhood which is homeomorphic under 7 to an open disc
in C. Therefore S is a surface which with the latter local homeomorphisms as a
conformal structure becomes a Riemann surface.

Now we make the pair (X, 7) a compact, analytic, p-sheeted covering of the
Riemann sphere by attaching the appropriate number of points of X over the
exceptional points on oo (see [1; pp. 39-41]). This is done in the same manner as
in the proof of the main theorem of Lyzzaik and Styer [6; p. 40], and the proof of
Theorem 1 is complete.

5. The proof of Theorem 2

Let P, @ and E be as in Definition 1.1 and X, Y and 7 as in Section 4.
We shall perform a cutting-and-pasting exercise on X that leads to a p-sheeted,
compact, analytic covering W of the Riemann sphere P such that the sum of the
orders of the branch points over each point e; in E is at most §,(e;), and Y is
embedded in W.

If E =0, there is nothing to prove as Theorem 2 then reduces to Theorem 1.
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(As we shall see below, in Section 6, actually this case cannot occur.) So let us
assume that E # 0.

Choose any element e € E, and let e’ be any other element of E U {oo}.
From our hypotheses there exists a simple arc, a say, that joins e to e’ in the
set QU E U {oo}; for the moment we will suppose that a minus its endpoints
lies in Q. In view of Lemma 3.4, it follows that there must exist p — ¢ simple
arcs @i, &s,...,0p—q in X \ Y with mutually exclusive “interiors” such that each
is. a lift of @ under m. It follows that Y is not altered by cutting X along the
arcs aj; but, of course, X may separate. This possibility, however, cannot occur
since every connected component of the slit surface X \ (Ud;) covers every point
of P\ (Uaj) at least once, hence the interior of the connected component of the
slit surface that contains Y covers under m every point of P at most (p—1) times
contradicting the assumption on f.

Now suppose that f covers the point e exactly v times. (Certainly we must
have v < ¢ — 1, by Lemma 2.4.) Let M be any point of m#=(e) N {X \ Y}; if
b(M) denotes the branch order of M, then

M

where the sum is taken over all such points M.

Next, let D be a topological disc satisfying DN E = {e} and DNa = 3,
where f is a simple arc. It follows that #=1(D) is a disjoint union of topological
discs, each of which covers D under 7 the same number of times. In particular,
the disc Dps that contains the point M covers every point of D exactly b(M)+1
times, taking account of multiplicity.

We now define ﬂ] = ajNr~1(B) foreach j, 1 < j < p—g; each BJ isalift of 3,
and lies in Dy for some point M. Let M be fixed; and suppose that D M contains
more than one arc j, j—we choose to denote these arcs as ﬂh , ﬂh, o B 5. (where
s=3s(j) and 1 < s<p—gq)as we go about M in Dy in the positive direction.
Next we cut X along each arc aj, (1 < k < s), starting from M; and, for
each such k, we agree to call the resulting right (left) edge the positive (negative)
edge of aj, . Then for each k we identify crosswise the negative edge of &;, with
the positive edge of a;,,, , with the convenient convention that &;,,, = &;,.

(Observe that this process “partitions” the disc Dz into topological discs each of
which, loosely speaking, contains a single arc B i)

Continuing this process (over e) to all other such points M, as necessary, we
obtain a p-sheeted, compact, analytic covering surface W, that contains Y'; in
terms of the notation associated with X and which extends in the obvious way to
W, the set 7~1(D) consists of connected components each of which covers every
point of D the same number of times and contains at most one copy of the p — ¢
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arcs Bj, 1 < j <p—q. We then have that
p—v= (b)) +1) 2 Y M) +(p-9)
M M

which we rearrange as

S b(M) < g—v < 6y(e).
M

The surface W, contains Y and has the desired bound on the sum of branch
orders over one (arbitrary) point of E. We have now to show how we can apply
such a construction repeatedly over (all) the points of E, so that the resulting
surface contains Y and has the desired bound on the sum of branch orders over
every point of E.

To do this, we use the fact that any two points e, €' in the set EU {0}
are (by hypothesis) arcwise connected in Q U E U {oo}. First, we partition E
inductively into finitely many subsets Ej, as follows. Let E; be the set of all
points e € E such that e and oo are connected by an arc o in QU E U {oo}
such that the “open” arc a does not meet E. Suppose that, for some k>1, Ey
has been defined and that U':=1 E; does not exhaust E. Then we define Ej4; to

be the set of all points e of E \ {U?=1 E;} such that e and some point e’ of Ej
can be connected by an arc a in Q U E U {oc} such that o minus its endpoints
does not meet E. Then clearly Er4; is non-empty; and there must be some
positive integer N such that Ei, E,,...,EN are non-empty and form a partition
of E. Furthermore, corresponding to each point e; of Ey, where 1 < ¢ <r and
1 < k < N, there is some simple arc «; that joins e; to some point of Ey_1
within @, except for its endpoints. (Here we may, without loss of generality, take

We may therefore assume that X has been chosen so that the sum of the
branch orders of X over each point e;, 1 <7 <r, does exceed §,(e;), and so that
the ordering of the points {e;} of E satisfies the following relation: If : <j, then
there are integers p, v, with 1 < u < v < s, such that ¢; € Ey and e; € E,. We
construct W by showing that there is a sequence Wy, Wy, ..., W, of p-sheeted,
compact, analytic coverings of P such that each covering W; contains Y and has
the sum of orders of its branch points over each e;, 1 < j < i, at most §4(e;).

This can be achieved by induction on %, as follows. We construct Wy from
X in the same way as we constructed Wy, by taking e; and oy for e and «a,
respectively. So now suppose that, for some ¢ with 1 <@ <7, we have constructed
the surface W; with the desired properties. Then we can construct Wiy, from W;
just as we constructed Wy from X using eit1 and a4 for e and «, respectively.
Since aiy1N{e1,ez,... e} =0, it follows that Wiy and W; coincide locally over
each point e; with 1 < j <i. Thus Wiy has the desired properties.

This completes the inductive construction, and W, = W as desired.
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We close this section by conjecturing that Theorem 2 holds without the extra
assumption of arcwise connectedness on the set E'U {oo} in Q U EU {oo}.

6. Consequences—the analytic case

In this section we study the consequences of Theorems 1 and 2 for functions
satisfying the hypotheses (p, ¢); in particular, the connection between the cardi-
nality, r, of the exceptional set E and the deficiency, §4(f), of f.

Recall that E = {e1,e2,...,er}, 64(f) = Diz; 6¢(ei), and the coverings X
and W arising in Theorems 1 and 2. Whether dealing with X or W, we define
g(e;) and g(co) to be the sum of the orders of those branch points lying over
e; and oo, respectively. Then g¢(co) < p — 1, with equality if and only if the
associated surface has a single branch point over oo of order (p —1).

We have the following result

Theorem 3. Let the function f satisfy the hypotheses (p,q), and let
E = {e1,...,er}. Then the deficiency of f satisfies the inequality

(%) r(p—g—1)+6(f)2p—1.

In particular, r > 0.

If equality holds in (* ), then the covering surface X of P that embeds the
Riemann surface Y of the image of f is the image Riemann surface of a polynomial
of degree p. That is, f = H o ¢, where H is a polynomial in C of degree p and
¢ is analytic and univalent in B.

Proof. For every point e; in E, the surfaces X and W have at least
card f~1(e;) smooth sheets over e;. In fact, there are card f~!(e;) of these sheets
in Y. Accordingly, if in X there are exactly 1+ card f~!(e;) points over e;, then
q(ei) = p—q+ é4(e;) — 1; otherwise g(e;) < p— g+ 64(ei) — 1.

We proceed by applying the Riemann-Hurwitz relation (see, for example, [5;
p. 16] to X . The genus, g, of X is given by the formula

g= %(q(OO) + ;‘1(61')) -p+1,

where ¢ is some non-negative integer, ¢(c0) < p—1 and

T

> qles) <r(p—g—1)+6,(f).

1=1

From these facts the inequality (*) follows at once.

Suppose that r equalled zero. Then from the definition of deficiency we must
have 6,(f) = 0, which would mean that (*) became the inequality 0 > p — 1.
This contradiction shows that r > 0.
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Suppose next that equality holds in (*). It follows from the above relations
that ¢ must vanish, so that by the uniformization theorem [13; p. 225] X is
conformally equivalent to the Riemann sphere P, and X must be the Riemann
surface of the image of a polynomial H of degree p. Since the Riemann surface,
Y, of the image of f is embedded in X, it follows that f = H o1 where ¢ is

analytic univalent, as desired.

Remark 6.1. The equality in (*) is attained whenever ¢ = p — 1 (see
Example 6.1 below); we conjecture that, if ¢ < p — 1, then equality cannot be
attained. The truth of this conjecture is supported by Theorem 4 below.

Corollary 6.1. If, under the hypotheses of Theorem 3, each deficiency §,(e;)
is equal to s, say, then
p—1
P S . —
p+s—gq-—1
Corollary 6.2. If, under the hypotheses of Theorem 3, ¢ = p — 1, then we
must have

6,(f)=2p—1.

This is the result of Lyzzaik and Styer [6; p. 42] that proved an earlier
conjecture of Brannan and Kirwan [2; top of p. 100].

Next we consider consequences of Theorem 2. It follows from Theorem 2 that
q(e;) < 84(e;) for each point e; of E. Using this fact and the method of proof of
Theorem 3, we can prove the following

Theorem 4. Let the function f satisfy the hypotheses (p,q); assume, in
addition, that any two points of EU{oco} are arc-wise connected in QU E U {co}.
Then 6,(f) >p—1. If 6,(f)=p—1, then f = H oy, where H is a polynomial
in C of degree p and ¢ is analytic and univalent in B.

The following special case of Theorem 4 is of sufficient interest to be stated
independently.

Corollary 6.3. Under the assumptions of Theorem 4, if every exceptional
point is covered by f zero times, then we must have that r > (p —1)/q.

Corresponding to the case ¢ = 0 of Theorem 3 we have the following.
Remark 6.2. If f is analytic and locally univalent in B and v(f) = {p,0}
then p=1.

Since each connected component of P is simply connected (by Lemma 2.3)
and P = f(B) is connected, P is a simply connected domain. But by Lemma 2.7,

f7Y(P) consists of p mutually disjoint copies Py, P,, ..., P, of P. Thus

B =
J

P;

p
=1
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from which it follows that p = 1.

We end this section with an example which shows that equality in Theorem 3
is attained if ¢ = p — 1, and that equality in Theorem 4 is attained for every gq.
It generalizes Example 2 in [2], where ¢ is taken to be (p —1).

Example 6.1. Let p > ¢ > 1 be positive integers. There exists an analytic
univalent function ¢ in B and a polynomial g of degree p such that f =go¢
satisfies the hypotheses (p,q) and 64(f) = p— 1. We show this by constructing
the image surface of f.

Let r be a positive integer; and, for each ¢ with 1 < ¢ < r, let ¢; be a
(distinct) point in C, v(e;) a non-negative integer, and d; a (Euclidean) ray with
initial point e;. Assume further that v(e;) < ¢ —1, Y i_, 84(ei) = p—1 where
84(ei) = ¢ — v(e;), and that the rays d; are mutually disjoint.

Let Cy, C3, ..., C, be p copies of C. For convenience we make the defini-
tion

1, if k=0,
8= {1+2f=15q(e,~) f1<k<r—1.

Now for each k with 0 < k <r —1, cut Cs,, Cs, 41, ..., Cs,,, along the
ray dg41; this procedure ensures that every copy Cs, , with 1 <k <r —1,is cut
twice, once along dr and once along dg41.

Next we sew together the slit planes in the following way. For each k with
0 <k <r—1, sew the copies Cs,, Cs,41, ..., Cs,,, crosswise along the edges of
the cuts over djy; in such a way that a branch point of order §,(ex41) is obtained
over the point egy;. This gives a p-sheeted analytic covering of C with branch
points of order é4(e;) over e;, 1 < i < r; let us call this surface X.

Then we compactify this surface in the usual way by filling up the missing
points over oco. This may lead to branch points over oo, sum of whose orders
is at most (p —1). Since Y.i_,8,(e;) = p— 1, the sum of all the orders of the
branch points of X (which now covers all of P) is at most (2p —2). But by
the Riemann-Hurwitz formula [5; p. 16] X has only one branch point over co of
order p — 1 and is simply connected. Hence by the uniformization theorem [13;
pp. 58-59] X is the image surface of a polynomial of degree p.

Finally, for each 7 with 1 < 7 < r we cut the surface X over the ray d;
exactly (p—q) times; one and only one cut is taken through the branch point over
e;, and the rest elsewhere. If we now denote the resulting surface by Y, then Y is
simply connected. Since Y is clearly hyperbolic, it follows from the uniformization
theorem that there exists an analytic function f: B — C whose image surface is
Y . From the construction of Y, it easily follows that f has the desired properties.
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7. Consequences—the continuous locally-univalent case

In this section we discuss results following from Theorems 3 and 4, where
the assumption of analyticity can be replaced by continuity together with local
injectivity.

First we obtain a generalization of Theorem 3 with B and C being replaced
by simply-connected domains §2; and €2, respectively, and with f being assumed
to be a continuous, locally one-one function from £2; to 5 such that every point
of Q, is covered by f either p times or ¢ times with finitely many exceptional
points ey, €2, ..., e, of 5.

Since a simply-connected domain is homeomorphic to both B and C, we may
assume without loss of generality that 2; = B and Q, = C. Then it follows from
Riemann surface considerations that f = 1 o ¢ where ¢ is a homeomorphism of
B onto B and % is a function analytic in B that covers every point of C either
p times or ¢ times, with the exception of the points e;, ez, ..., e,. This implies
that each exceptional point e; is covered by 3 at most (¢ — 1) times, by Lemma
2.4; and, consequently, by the decomposition f = 1 o ¢ each point e; is also
covered by f at most (¢ — 1) times. Accordingly, we may define the deficiency,
dq(w), of f at points w of Q in the usual way, and similarly the deficiency of f
(in Q1) to be §4(f) = 3 64(w) where the sum is taken over all w € Q5, and the
g-deficiency of f in ©; is §,(f) = Yi; 64(es).

If we apply Theorem 3 to the function ¢, and then pull the results back to
f via ¢, we obtain the following analog of Theorem 3.

Corollary 7.1. Let 1,92 be simply connected domains in C, and let f
be a continuous locally one-one function from ; to Q, such that each point of
2y is covered by f either p times or ¢ times (p > ¢ > 0), with exceptions at the
points ey, €z, ..., e, in Qy. If §,(f) is the g-deficiency of f in Q,, then the
following inequality holds:

r(p—q—1)+6,(f)>2p—1.

In particular, r > 0.

A consequence of this result is the following, which settles in the affirmative
a recent conjecture of Ortel and Smith [8].

Corollary 7.2. There is no continuous locally one-one function between
any two simply-connected domains such that every point of the image domain is
covered by the function either p times or q times.

Notice that the requirement of local injectivity in Corollary 7.2. is essential,
as the following example shows.
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Example 7.1. Let P be a polynomial of precise degree p, all of whose
zeros lie in B, such that P’ has simple zeros (necessarily all in B). Let X be the
Riemann surface of the function P over C. Now slit X from the point 1 radially
outward to oo along (p — ¢) sheets of X, to obtain a new Riemann surface Y.
Then clearly there exists some function f, analytic in B, that maps B one-one
onto Y, and for which v(f) = {p,q}.

An immediate consequence of Corollary 7.2. that is of interest in its own right
is the following curious result.

Corollary 7.3. Let the function f: B — C be continuous, locally one-one,
and onto. Then if card(v(f)) # 1, we must have that card(v(f)) > 3.

We continue our discussion with the function f: Q; — €22 introduced in
Corollary 7.1. Our next result is the analog of Theorem 4 for such a function. We
extend the definitions of P,@Q and E (see Definition 1.1) to this function in the
natural manner, and we define e, = P\ ;. Then we can use the ideas in Section
2 that lead to Lemma 2.6 to prove that the set QU E U es must be connected.

In addition, we will assume that the function f satisfies the following stronger
condition.

Condition A. There exists open arcs a: |0,1[— @ such that

(i) the set union of these arcs and E U {e} is connected, and

(ii) the cluster sets, C(a,0) and C(a, 1), of every arc o at 0 and 1, respectively,
are subsets of different sets e;, j =1,2,...,r and oo.

Clearly Condition A, the hypotheses on f, and 6,(f) are all invariant under
homeomorphism on ©; and Q5. Thus without loss of generality we may assume
that Q] =B and Qz =C.

Under the latter assumption, Condition A says that any two points in EU{co}
are arc-wise connected in Q U E'U {oo}. It follows from the above decomposition
f = ¢ oy where p: B —» B is a homeomorphism that 3 inherits the above
requirements on f, and also that 8,(%) = 64(f). Moreover, 3 is analytic and
locally univalent in B. Therefore by Theorem 4, §,(¢) > p — 1; from which we
deduce the following result:

Corollary 7.4. Let Q; and Q4 be simply connected domains in C, and let
f be a continuous locally one-one function from ; to §2; such that each point
of Q2 is covered by f either p times or ¢ times (p > g > 0), with exceptions at
the points ey, ez, ..., e, in 5. Suppose further that f satisfies Condition (A).
Then 6,(f) > p—1.

Our final result in this section establishes a connection between the covering
properties of a function and the connectivity of its image domain.

Let G be a domain in the plane with connectivity n (this is the number of
bounded connected components of C \ G), and let f: B — G be a continuous
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locally one-one function that covers every point of G either p times or ¢ times.
We find below the ‘best possible’ lower bound for n in the case that ¢ = p—1,
and also in some other cases under a supplementary condition (Condition B below)
imposed on f.

Corollary 7.5. Let f have the above described properties. Then n > 1,
and this is best possible in the case when ¢ = p—1.

Proof. It follows from Corollary 7.2 that n cannot vanish, and so n > 1.

For any positive integer p, the function f(z) = ((1+ 2)/(1 - z))2p covers
in B every point of @ = C\ {0} either p times or (p — 1) times and it never
covers 0. This function has ¢ = p— 1, and f(B) is of connectivity 1; thus the
inequality of the theorem is best possible.

Suppose next that ¢ < p— 1. Let  denote the set of points of G that are
covered by f exactly ¢ times; and let Fy, F;,..., F,, F41 denote the connected
components of P\ G, where F,; is the unbounded connected component. Then
an argument similar to that of Lemma 2.6 shows that the set QUF{UF,U.. . UF, 4
is connected and each connected component of the set QUFyUF,U...UF, is
not separated from Fi4;.

We now make the additional assumption that @ satisfies the following;:

Condition B. There exist open arcs a: ]0,1[— @ such that

(i) the set union of these arcs and z;‘:ll F; is connected, and

(ii) the cluster sets C(a,0),C(a,1) of each arc a at its endpoints are subsets of
different sets F;, 1 <j <n+1.

Next, let a1, as, ..., a, be any n distinct points of C. Then there exists
a homeomorphism h between G and Q = C )\ {ai,az,...,a,} (see, for example,
[4; p. 57]); consequently the function F = ho f: B — § is a continuous locally
one-one function that covers every point of { exactly p times or ¢ times. Notice
that F' does not cover any point of {a;,as,...,a,}, which we may equivalently
view as the fact that §,(a;) =p—1,1<i<n.

It is easy to see that Condition B implies that the points ay, a3, ..., an,
oo are arc-wise connected in the set h(Q) U {a1,as,...,an,00}. Now let §,(F)
be the g-deficiency of F in C, so that from our construction above we have that
84(F) = nq. It follows from Corollary 7.4 that ng > p— 1, so that

n>(p-1)/g.

We can summarize these results as follows.

Corollary 7.6. Let G be a domain in C of connectivity n, n > 0, and let
f: B — G be a continuous locally one-one function that covers every point of G
either p times or ¢ times. If the set Q) satisfies Condition B then n > (p—1)/q,
and this is best possible if ¢ divides (p —1).
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The fact that the estimate is best possible will follow immediately from func-
tions that we construct in Theorem 6 in Section 8.

8. Possible sets for v(f)

A sequence p; < py < --- < pp, n > 3, of non-negative integers is said to be
a valence sequence if there exists a function f analytic and locally univalent in B
such that f covers every point in C p; times for some j, and such that for each
J there exists some point in C that is covered exactly p; times; in other words,
v(f) = {p1,p2,...,Pn}. The sequence {p;}} is called the valence sequence of f.

In view of the results by many authors described in Section 1 and also pre-
sented here in Section 5, it would clearly be of great interest to identify those
sequences that are valence sequences. While this remains an open question, we
supply below two criteria that ensure that a given sequence is a valence sequence.
In each case we do this by exhibiting an appropriate Riemann surface for such a
function f.

Theorem 5. Every sequence p; < py < --- < p, of non-negative integers
satisfying p, = pn—1 + 1 is a valence sequence of a function f: B — C which is a
polynomial of degree p, of a univalent function.

Proof. First we will prove the result in the special case that n = 3. (Note
that we cannot have n = 2, by Corollary 7.3; and the case n = 1 is clearly possible
for an elementary one-one function.)

If py = 0 the result follows at once using the function construction in the
proof of Corollary 7.5.

Now suppose that p; > 0. By the division algorithm, there must exist a
positive integer N such that

p1 < N(p2 — p1) < pa.

Then either (i) N(pz — p1) = p2 or else (ii) N(p2 — p1) < p2. For convenience we
will use the notation

__J N, if case (i) holds,
o(N) = { N +1, if case (i) holds.

Let dy, da, ..., dony be mutually disjoint radial rays that do not pass
through the origin and whose initial points are w;, wz, ..., wq(nN), respectively.
Then we cover C by the copies Cy, Cy, ..., Cp,. Next, for each j with 0 < j <
N — 1, we cut each of the copies Cj(p,—p,)+15 Cjpa—pi)+25 -+ > Cli+1)(pa—p1)+1

along the ray over d;4,.
If case (i) holds, we have then exhausted cutting of all the p3 sheets; if case (ii)
holds, we make more cuts on the remaining copies Cn(p,—p)+15 CN(py—p1)+25 -+
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C,, along the ray over dny41. Then, for each j with 0 < j < N—1 we identify the
copies Cjp,—p)+15 Cjipa—pi)+2> -+ > C(i+1)(p2—p1)+1 crosswise along the edges
of the cuts over dj41; this process yields a branch point of order (p; — p1) over
wj41. If case (i) holds, we have thus joined up all the p3 copies of C; if case
(i) holds, we continue sewing together the remaining copies crosswise along the
edges of the cuts over dy4; in such a way as to obtain a branch point of order
ps — N(p2 —p1) — 1 over wn41.

It is then easy to see that in either case this procedure yields a simply con-
nected, p-sheeted covering X of C; and this covering is the image surface of a
polynomial of degree p3. This surface has branch points only over w;, ws, ...,
wqo(N); and these points have the same order (p; — p;) except in case (ii), where
the branch point over wy4; has order ps — N(p2 — p1).

Next, for each j with 1 < j < a(N), we cut X radially along a ray over d;
and through the branch point of X over w;. In case (ii) where N(p; —p1) > p1,
let Iy, Iy, ..., IN(p,—p1)—p, D€ a pencil of (closed) rays starting from wy4; such
that none of the I; or d; meet, except possibly at their end points; we then also
cut each copy C;, with 1 < j < N(p2 — p1) — p1, along the ray over ;. In either
case, let Y denote the resulting surface.

It is fairly easy to see that Y is a simply connected surface that covers ev-
ery point wj;, with 1 < j < a(N), exactly p; times. Furthermore, if case (i)

holds, then Y covers every point of C \ Uj\f__l d; exactly p3 times, and every

point of U;V=1 d; exactly p, times; if case (ii) holds, then Y covers every point
of C\ ((Uﬁ_j;l dj) U (Uj.v___(fz—pl)_p‘ lj)) exactly p times, and every point of

(U;v:il Int dj) U (U;\;(f’ ~PU=P I lj) exactly p, times. Thenif f: B - C is a

function whose image is Y, it follows that v(f) {p1,p2,ps3}-

Finally we consider the case that n > 3. To begin with we construct, as
described above, a surface Y which is the image surface of a function whose
valence is {pn—2,Pn—1,Pn}. This surface covers mutually disjoint radial rays ~;,
1 < j < n -3, such that each is covered by Y exactly p, times; for each such
J, if we cut Y along p, — p; rays over 7; the resulting surface Z is the image
surface of the desired function f.

This completes the proof.

Notice that the function f of Theorem 5 covers every point of C exactly p,
times, except for points belonging to finitely many rays, disjoint except possibly
for their endpoints, which can be chosen almost ‘at random’.

Theorem 6. A sequence py, ps, ..., Pn Of non-negative integers is a valence
sequence if for some fixed integer k (with 2 < k < n — 1) there is a sequence of
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non-negative integers ny, ng, ..., ng_y such that
k-1

(%) > nj(pk—pj) =pn—1.
i=1

In particular, when (**) holds the sequence is the valence sequence of a function
f which is a polynomial (of degree p, ) of a univalent function.

Proof. We establish the result by simply constructing a suitable Riemann
surface, and then appealing to the uniformization theorem in the usual way.

Some of the integers {n j}f;ll are positive and some are zero; let us assume,
for the moment, that all are positive—we will see at the end of our construction
what changes we have otherwise to make.

Let N =Y 21 nj.

Now choose distinct points wj, wz, ..., wy in C, and mutually disjoint
closed rays d;, dy, ..., dy taken radially from these points, respectively, with
no ray passing through the origin. We now construct a suitable covering of C by
copies Cy, Cy, ..., C, of itself.

Let t,7 be integers satisfying the inequalities 0 < ¢ <r—1and 0 < 7 < ngygy.
We then define two numbers a(t, 7), 5(t,7) by the formulas

1+ 7(pr — p1); ift=0,
t,7) = ;
a(t, ) { 1+ 7(pk = pet1) + Licy ni(pr —pi), if ¢ >0,

1+, ift =0,
Blt.7) = {1+T+E:=ln,’, if t > 0.

For fixed ¢ and all 7 with 0 < 7°< n44;, we cut each of the copies Cyy r),

..y Cq(t,r4+1) along the ray over dgg ), and then we sew together the copies
crosswise along sides of the edges in such a way that we obtain a branch point of
order py — pi4+1 over each point wg(s 7).

Then we repeat this construction for each ¢ with 0 < ¢ < r — 1. Note that,
except for the copy C; = Cy(0,0), every copy Cqe,r) (With 0 < ¢t < r—1 and
0 < 7 < nyy1) has been cut twice along the rays dg( r—1) and dgg ). This
serves via the above sewing to adjoin (for all ¢ and 7 with 0 < 7 < nyyq — 2)

the ‘stacks’ Cq(t,r), -+ -5 Ca(t,r+1) and Cyz,r41), -+ Ca(s,r+2), and (for all ¢
with 0 < ¢ < r —2) the stacks Cqy(t,n,4,-1)) -++» Ca(r+1,0) @a0d Cq(i41,0)5 -+
Ca(t+1,1)-

It is fairly routine to check that this construction yields a simply connected
Prn-sheeted covering of C. We then make this into a Riemann surface X in
the usual way; and, by the uniformization theorem, X is the image surface of a
polynomial of degree p,,. This surface has branch points only over wy,ws,...,wy;
and the order of the branch point over each point wg(;,r) (where 0 <t <r —1
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and 0 < 7 < nyyq) is exactly py — pi41. Furthermore, wgs,r,) = wg(e,r,) for fixed
t and 0 S Ty, T2 < Ngg1.

Now we construct the desired surface Y (the image surface of f) by cutting
X in a suitable way along rays over dy, d2, ..., dy. In what follows, we take
0<t<r-—1and 0 <7 < n¢gt1. So then, for each such pair (¢,7), we cut the
surface X along a single ray over dg(,r), starting from the branch point of X
OVer wWg(¢,r) -

We now suppose that p, > pi + 1; since otherwise py = pp—1 = pp — 1,
and this case is covered in Theorem 5 above. Then for each pair (¢,7) we cut the
surface X along (p, —pi — 1) rays over dg(,r) not starting from the branch point
of X over wgs,ry.

This gives a simply connected smooth, analytic covering S of C with the

following properties. The surface S covers every point of C \ (U;V_'__l dj) exactly

pn times, every point of Uj\;l Int d; exactly px-times, and every point wg(s, r)
exactly pi¢+1 times. Let f: B — C be an analytic function whose image surface
is S f has the valence sequence p,, pn—1, ---, D1, as desired.

We have now to tackle the case that some of the n;’s vanish. We then have
to cut S over additional rays in C that are mutually disjoint with each other and
with the rays d;, in such a way that the remaining valencies p; in the sequence
{p;}T are also attained. If Y denotes the resulting surface, then clearly any
function f: B — C with image surface Y satisfies the conclusion of Theorem 6.
This concludes the proof.

Two special cases of Theorems 5 and 6 merit attention:

Corollary 8.1. Every sequence p; < p2 < -+ < p, of non-negative integers
that contains two consecutive integers is the valence sequence for a function f
which is a polynomial of degree p,, of a univalent function.

Corollary 8.2. Every sequence p; < p2 < -+ < p, of non-negative integers
that contains two distinct entries p; and p;, both less than py, such that |p; — p;|
divides p, — 1 is the valence sequence of a function f which is a polynomial of
degree p, of a univalent function.

Remark. After this paper was submitted for publication, the authors became
aware of the independent work of T. Carne, M. Ortel and W. Smith [Bull. London
Math. Soc. 19, 1987, 438-442] which contains a weaker form of Theorem 1 (where
no exceptional points are allowed) whose proof involves similar ideas.
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