
Annales Academire Scientiarum Fennice
Series A. I. Mathematica
Volumen L3, 1988 , 3-23

SOME COVERING PROPERTIES OF
LOCAI,I,Y UNIVATENT FUNCTIONS

D.A. Brannan and A.K. Lyzzaik

1. Introduction

The whole question of the covering properties of holomorphic functions has
been seminal in complex analysis. In this paper we study some questions that
have received surprisingly little attention until recentlS concerning the covering
properties of the functions holomorphic and locally univalent in the unit disc B :
{z: lzl < t}.

Liouville's theorem shows that it is not possible for a function / holomorphic
and univalent in B to'cover'the whole complex plane C (that is, /(n) I C);
indeed C\/(B) must contain an unbounded continuum l. The study of C\/(B)
is a major area of univaJent function theory.

The investigation into analogous results for locally-univalent functions / holo-
morphic in B, with very precise restrictions on the number of times points of C
may be covered by the Riemann surface /(B), may be said to have been initiated
by [2]. There it was shown that if / is holomorphic,locally-univalent and p-valent
in B, then u(/) * {p-l,p}, where u(f) : {card/-1(ur): to € C}. (In particular,
there exists some point uro that is covered by / at most (p-2) times; for example,
if p:2 then /(B) # C.)

The idea of the deficiency of a p-valent holomorphic function in B was intro-
duced in [2]; the defciency of f at w,6(to), is defined as

6(to) : max{o,p - 1 - card/-r(u')},

where card /-1(tr) takes account of multiplicity, and the dellcien cy of f is the sum

D-ec 6(to). Answering conjectures in [2], A. Lyzzaik and D. Styer [6] proved that
(A) a locally-univalent, p-valent holomorphic function in B satisfies the inequality
6(/) > p - L,and (B) a p-valent holomorphic function in B with 6(/) : 0 must
have at least (p - 1,) critical points. Their technique was to embed the images of
such functions in p-sheeted covering surfaces over the Riemann sphere P.

Some of the work in [2] and [6] was generalized in [1a] to functions between
n-dimensional manifolds, in [15] to ramified meromorphic functions in arbitrary
domains, in [16] to analytic functions between Riemann surfaces, and in [17] to
finite-to-one open continuous functions between surfaces.
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Recently M. Ortel and W. Smith [A] have shown that if / is holomorphic,
locally-univalent and p-valent in B, then u(/) * {I,p}. They also conjectured
that for every g with 1 < q <p, then r(f) + {q,p}; a main result in this paper
is a proof of a generalization of that conjecture.

1.1. Two covering surface theorems

We will say that a function f satisfres the hypotheses (p, q) if / is holomorphic
and locally univalent in B, p and g are positive integers with p ) g, and / covers
every point in the image plane either p times or g times, with at most finitely
many exceptions. We will call each of these exceptions an exceptional point; it
turns out (Lemma 2.4) that exceptional points can be covered at most (q - t)
times.

The first main result in this paper is as follows:

Theorem 1. Let the finction f satisfy the hypotheses (p, q) and let
€!t...re, be the corresponding exceptional points. Then the Riemann surface
Y of the image of f can be embedded in a compact, anaJytic, p-sheeted covering
surface X of P. X has braneh points ovet some of the exceptional points, and
possibly aJso over infnity.

In our work it will be valuable to have the following notation available.

Deffnition 1.1. By the letters P,Q we will denote the sets of all points in
the plane that are covered by / exactly prq lirnes, respectively, and by .E the set
of exceptional points ets..., e" (as defined above).

The proof of Theorem 1 follows from a number of lemmas, two of which
(Lemmas 2.7 and 3.4) play a central role. The first shows that P is open, and
that /-1(P) is a disjoint union of exactly p 'copies'of P;the second shows that
there is arr open neighbourhood I/ of Q such that f -1(V) contains exactly g
copies of V.

The key ideas in the rest of the proof are then essentially the same as those
in the main theorem of [6]. Over I/ we tack on p - g new copies of. V . Then we
adjoin these copies to the surface Y by pasting each copy to one and only one of
the "(p-g)th" copies of the components of PnV, and compactify the surface
thus obtained by filling up the finite number of points over E and infinity.

The second main result of the paper offers further useful information about
the covering properties of the surface X of Theorem 1, provided that / satisfies
the additional condition that .E U {m} is arcwise connected in Q U.E U {m} . This
condition is somehow reasonable in view of Lemma 2.6 in which we show that
Q U E U {*} is connected. To state our result, we extend the deficiency notion
for functions satisfying the hypotheses (p, g) as follows. The g-deficiency of. f at
ur is then defined to be

6o(*) - max {0, q - card f -t (r)},
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where card/-r(to) takes multiplicity into account, and the g-deficiency of J,
6oU), is the sum 6o(/): D-ec 6o@).

Theorem 2. Under the assumptions of Theorem 7,Iet the points of the set
E U {m} be arcwise connected in the set Q U E U {m}. Tåen the surface X of
Theorem 7 ca,n be chosen so that fåe sum of the orders of the branch points over
each exceptional point e; is at most 6o(e;).

In Section 6 we look at consequences of Theorems 1 and 2 relating the cardi-
nality, r, of E and the deficiency 6oU),, finding in particular that

r(p-q -1)+ 6oU)>-p-t

for all functions satisfying the hypotheses (p, q); a,rrd that 6o(/) ) p - L, provided
that all the functions satisfy an additional condition (see Theorem 4 in Section 6).

In Section 7 we meet analogous results where analyticity is replaced by con-

tinuity and local injectivity. In particular we prove that there is no continuous
locally one-one function /: B + C whose set of valencies is a doubleton {p, g},
where p > q > 1; this proves a conjecture of Ortel and Smith [8]. We also consider
analogous problems for functions mapping between domains whose connectivity
may be positive.

Finally in Section 8, in a slightly different direction, we present partial results
on the problem of identifying in general those subsets of the non-negative integers
that can occur as the set u(/) for some function / analytic and univalent in B.

2. Some topological considerations

In this section we investigate some of those topological properties of the sets

P, Q and, E (as defined in Definition 1.1.) that will be needed later.
A key tool in otir work will be

Lemma 2.L. Let f be a holomorphic locally-univaJent function in B, and j
*4 I simple closed curves in B and C, respectively, such that f (1) - 1 . Tlten,
if G and G are the inner domains of I and 7, respectively, f is univalent in GUI
and f (G):6.

This is very similar to results for i : {lrl : r} in [18; p. 20L], [9; Problem 188,

p. 1411, [10] and [3; pp. 197 and 198].

Proof. First, we have 0f (G) c f(AÖ: f ("y) - 7 since / is open. Therefore

f (G) : G by the Jordan Separation Theorem. Now' /(äG) : f 6) : nf : Af (G)
implies /la it a covering map. Finally G is simply connected, hence by the
monodromy theorem /le it univalent.

We will make much use of the following:
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Lemma 2.2. Let the function f satisfy the hypotheses (p,q) of Section 7;
let zs € B and ws : f (zs). Then for any ffic .1, with initial point ws, that lies
completely either in the set P or in the set Q, there exists a unique arc l, with
initial point zs, such that f (j) : 1 .

Proof. If a continuation of a branch of 1-t along 7 ends at a point u.r1 which
is inner in 7, then the lift of 7 tends to 0B and hence ur1 is a cluster point of
/. Therefore, points on 7 which are sufficiently close to to1 are covered at least
gf 1 times (g times by a neighbourhood of /-1(to1) and at least once by points
near äB), contradicting the assumptions on 7.

Next we use Lemma 2.2 to study the nature of the set P, described in Defi-
nition L.L, associated with a function / satisfying the hypotheses (p,g).

Lemma 2.3. The set P is open, and each of its connected components is a
simply-connected domain in C.,.

Proof. It is obvious that P is open.
Next, let Pr be any connected component of P; since P (a,nd so Pl) is open,

P1 must be a domain. Let 7 be any simple closed curve in Pr; we have to show
that 7 is homotopic in P1 to a point.

Since / is locally univalent, it follows from Lemma 2.2 lhat f-'Q) is the
union of exactly p simple closed curves ii, 1 I j I p, such that if Gr. is the
inner domain of ij, then the domains Gi *" disjoint, / is univalent on each set

Gi u i - Gt, and each image domain f G) is the inner domain 9f l.
It follows that every point in the inner domain of 7 is covered exactly p times,

and consequently this domain is contained in Pr. Therefore ,y is homotopic in P1
to a point, and the proof is complete.

As an application of this result we ca,rr deduce an analogous result concerning
the covering of the set -E of Definition L.L.

Lemma 2.4. Each point of the set E is coveted by f at most (q - t) iimes.

Proof. Suppose, on the contrary, that there exists some point e €. E that is
covered at least g times-and so at least (g * 1) times, since e / Q . lt follows
from the open mapping theorem that there exists some disc centred at e such that
every point in the punctured disc is covered at least (C + t; times; the disc can
clearly be chosen sufficiently small that its closure contains no exceptional point
other than e. The finiteness of .E a.nd the restriction on valencies then show that
every point in the punctured disc must be covered exactly p times, so that every
point of the punctured disc lies in some connected component of P. The existence
of the 'isolated' point e then contradicts the simple-connectivity of the connected
components of P (Lemma 2.3); this contradiction completes the proof.

Our next two results give some information about the location in C of the
set .E vis-ä-vis P and Q.
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Lemma 2.5. The set E is a subset of 0P n AQ .

Proof. Suppose, on the contrarg that there exists some point e e E that is
not a common boundary point of P and Q.

Since C: P U QU E where P, Q ar,d E are disjoint and .E is a finite set,

it follows that necessarily either e € 0P or e € 0Q.
Suppose, firstlg that e e 0P. Since e e AQ, the above decomposition of the

plane shows that there exists an open disc D centred at e such that all the points
of D \ {e} lie in P; this is impossible, by Lemma 2.3.

Suppose, secondly that e e 0Q. Just as before it follows that there exists
some open disc D centred at e such that atl the points of D \ {e} lie in Q. Let 7
be a circle centred at e that lies in D. As in the proof of Lemma 2.3, Lemmas 2.1

and2.2 imply that /-1(7) is the union of exactly g mutually disjoint simple closed

curves in B. Moreover, the inner domains of the curves are aJ.so mutually disjoint,
and each is mapped homeomorphically under / to the inner domain of 7. It
follovrs that the exceptional point e must be covered by / at least g times, which
is impossible by Lemma 2.4.

It follows that e e AP n AQ .

Lemma 2.6. The set QU EU {m} is a continuum on the Riemann sphere,
a,nd every connected. component of Q U E is unbounded in C .

Proof. The first statement follows from Lemma 2.3 and Theorems 10.2 and
L0.3 in [7, p. 154]. The second statement follows at once, since the Riemann
sphere is compact.

Before stating our next result, it is helpful to introduce some convenient ter-
minology.

Definition 2.L. Let X , Y be two topological spaces, and let G, U be open
subsets of X, Y, respectively. Thenif amap f: X --+ Y maps G homeomorphi-
cally onto U, G is said to be a copy of U under /.

For convenience.we will often use the notation f to denote a (particular) 
"opyof an open set (/ under a function / (such as a function / satisfying hypotheses

(p, s)).
The next result plays a crucial role in our work.

Lemma 2.7. Let the tunction f satisfy the hypotheses (p, q) of Section 7.

Thenthe set /-1(P) consists of exactly p mutuaJly disjoint copiesof P.

Proof. Let P1 be any connected component of P; since P is open, so is P1 .

Then clearly it is sufrcient to prove the result for P1 in place of P.
Let w be an arbitra,ry point in Pr, md let 7 be an arc in Pr with initial

point tr. By virtue of Lemma 2.2 every branch of 1-t that satisfies the normal-
ization f-t(r): z j for some j ,I < j ( p, can be continued analytically via /-1
along 7. By arguing in essentially the same manner as in Lemma 2.1 the desired
result holds. This completes the proof.
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3. The copies of a neighbourhood of A
In this section we continue our discussion of functions satisfying the hypothe-

ses (p, g).
We will construct, in several steps, a particular open neighbourhood of the

set Q whose pre-image under / contains q mutually disjoint copies of that neigh-
bourhood.

3.1. A covering of Q
For each point in Q there exists a disc D centred at the point with the

properties that D does not meet .E and that f -'(D) contains mutually disjoint
copies of D. Corresponding to each such disc D let B be the open disc concentric
with D that has radius one-third the radius of. D. The collection of all such open
discs B then forms an open cover of the set Q.

Since Q U.E is a closed set in view of Lemma 2.3, Q can be expressed as the
countable union of a collection of compact subsets of C. This implies that Q has
an open subcover of countably many discs B. Let V denote the union of all the
discs in the subcover, and let U be any connected component of I/; then I,l is a
domain which is the union of some subcollection of the discs in the subcover. Let
6 denote this subcollection of discs B.

Let the disc B € B, and lef B be a copy of. B (cf..-Definition 2.1). Then
there is a branch of ;-t that maps B univalently onto B. Let (f-t,B) denote
the function element determined by a branch of 1-t on B. Since B has exactly g
copies in B, there are exactly g distinct such function elementsl whenever we need
to distinguish these, we will denote them as (/r-t,B), (f;t,B), ..., (f;t,A1.

In the remainder of this section we will use theory, definitions a,nd notation
from [11, pp. 316-319].

We will make much use of the following couple of self-evident lemmas which
are given without proofs.

Lemma 3.1.' Let B , B' be overlapping discs in B . Then corresponding to
ea& function element (f-',8) there exists a unique function element (f -',8')
such that (f -t, B) 

^od 
(f -t , B') are direct analytic continuations of each other.

Flor a fixed choice of a disc 81 in B and, a fixed function element (f -t , Br),
we deduce the following result.

Lemma 3.2. Thefunction element (f -t,Br) admits unrestricted anaJytic
continuation in U; that is, ("f-l,.Br) can be continued analyticaJty aJong every
cqr-tte 1 in U that starts at the centre of Br. Furthermore, the continuation of
(f-',Br) along 1 ends in some function element (f;', A1, where L < j < q ar.d
B is some disc in B that contains the endpoint of 1.

In general the set U rnay not be simply connectedl nevertheless the following
result holds, somewhat surprisingly.
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Lemma 3.3. The given function element ("f-t,Bt) extends to a single-
vaJued (anaJytic) branch of f -r in ll.

Proof. Since every function element (f -',, B) in ?,/ admits unrestricted ana-

lytic continuation in U, it follows, by standard arguments, that it suffices to show
that if 9:(f-l,-B) is afunctionelement inU, b is apoint in B and 7 is a
simple closed arc in U which starts and ends at å, then the complete lift of 'y

from the point 9(å) is a closed arc i and / is injective in i.
Since / is finite-to-one and the continuation of g along 'y is unrestricted and

can be repeated, it follows that i is a closed arc. The injectivity of lli follows
by Lemma 2.1. This completes the proof.

We close this section with our second central lemma, concerning the union V
of open discs in a subcover of Q.

Lemma 3.4. The set f -L(V) contains q mutually disjoint copies of V .

Proof. It is sufficient to prove the result for any given component U of. V .

Let (/1r, Br), (frt,B), ..., (Iot,B1) be the g distinct function elements
on 81 that are induced by 

"f 
-t; by the previous lemma, each extends to an

analytic function on // which is an inverse to / on ?,1. If we denote by /r' 1 11r"

extension of (f it,B1) to l,{, then fr is univalent in ll and tt, : 1;1(U1 is
a copy of. l,l. It remains to show that the copies ttr, ttr, ..., ilo are pairwise
disjoint.

Suppose that in fact there is some point ze which belongs to Uir(\Ui, where
jrl jz. Let t s : f(zo);a^nd let ur1 be apoint of .B1 that is different from tr6,
and let c be an arc in U ftom w1 to trs. Since / is locally univalent, it is easy

to conclude that f nt *rd f j"t must coincide on o and that f 7t@t): fi'@t).
This implier (/rlt, Br) : (f ;t , At|, which is a contradiction. This completes the
proof of the Lemma.

4. The proof of Theorern 1

In this section we prove Theorem 1 by showing how the image surface of a
function / satisfying the hypotheses (p,q) 

"uo 
be extended to give a compact,

analytic, p-sheeted covering of the Riemann sphere (as described in Theorem 1).

The image surface of / is an analytic covering of the tu-plane. We denote
it by a pair (I',2') where Y is the Riemann surface formed from pairs (",f(")),
with the topological and conformal structures inherited from the unit disc B via
.f , md where n' is the natural projection map definedby r(2, f (r)) : /(z). The

map from B onto Y defined Av iQ) : Q, f Q)) is conformal.
Let G be an open subset of C. It is easily seen that G has a copy under / if

and only if it has a copy under zr I and the latter is the image of the former under

/. For convenience, we will use the same notation G for both copies of G. Notice
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that facts about the copies under / of the open sets P and V, such as Lemmas
2.7 and 3.4, will carry over to their copies under zr.

Now, by virtue of Lemma 3.4 there are exactly g copies h , W, . . ., to of. V
in Y. Wewill construct an additiond (p-g) copies asfollows. Fbreach j with
q + 1 < j < p Ler ti : {(u,j): w eV}. Let Xs be the disjoint union of I and
the sets to4, toqr, , . ,, tr. Then we extend r to the "new copies" fi by the
identification zr((to, j)) : t , and we topologize these copies by the topology that
makes the restrictionof n toti, q+!< j Sp, ahomeomorphism.

Next, let G be arry connected component of the open set PnV. Since G
is contained in P, it follows by Lemma 2.7 !,hat G has exactly p copies in Y
of which only g of them lie in I/r, Vz, ..., Vo. Denote the remaining copies by
Gc+t, Go*r, ..., Go. Meanwhile every ti, s+L < j <p, contains a single copy
Gi of. G. Now for every j , q*\ < j < p, we identify points M in Gi with points
jV in Gi if r(M): zr(lf ), and we do this for all the components G of P O V.

Now let X be the quotient set of Xs with the identification defined above.
For simplicity, we may view Y and each additional copy ti, l* 1 ( j ( p, as
subsets of X. Similarly we may view n as being defined on X. Then if Xs is
endowed with the free union topologr, it follows that X inherits the identification
topology in which I/ and the additional copies ti, g+ 1 < j I p, are open
subsets of X (see [a; pp. 120-136]).

It is immediate that X is connected since Y and each ti, g* 1 < j < pr af,e

connected and they intersect in X. Observe from the construction of X that no
two points of Y have been identified, and so also no two points of. ti, I < j < p.
Hence for every w € Q \ E the set zr-l(to) consists of exactly p points in X.
Using this, it can be easily verified that X is Hausdorff, and that every point
of X lies in a neighbourhood which is homeomorphic under zr to an open disc
in C. Therefore 5 is a surface which with the latter local homeomorphisms as a
conformal structure becomes a Riemann surface.

Now we make the pair (X, zr) a compact, analytic, p-sheeted covering of the
Riemann sphere by attaching the appropriate number of points of X over the
exceptional points on oo (see [1; pp. 39-a1]). This is done in the sarne manner as
in the proof of the main theorem of Lyzzatk and Styer [6; p. 40], and the proof of
Theorem L is complete.

5. The proof of Theorem 2

Let P, Q *td .E be as in Definition 1.1 and X , Y and zr as in Section 4.
We shall perform a cutting-and-pasting exercise on X that leads to a p-sheeted,
compact, analytic covering W of. the Riemann sphere P such that the sum of the
orders of the branch points over each point e; in .E is at most 6oG), and Y is
embedded in W.

If. E :0, there is nothing to prove as Theorem 2 then reduces to Theorem 1.
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(As we shall see below, in Section 6, actually this case cannot occur.) So let us

assume that El0.
Choose any element e e .8, and let e' be any other element of .OU {m}.

Flom our hypotheses there exists a simple al.c) a say, that joins e to e' in the
set Q U E U {m}; for the moment we will suppose that a minus its endpoints
lies in Q. In view of Lemma 3.4, it follows that there must exist p - g simple
arcs ö1, äzr. . . rdp-c in X \ Y with mutually exclusive "interiors" such that each

is a lift of o under zr. It follows that Y is not altered by cutting X along the
arcs öi;but, of course, X may separate. This possibilitS however, cannot occur
since every connected component of the slit surface X \ (Uåj) covers every point
of P \ (u"i) at least once, hence the interior of the connected component of the
slit surface that contains Y covers under zr every point of P at most (p-1) times
contradicting the assumption on /.

Now suppose that / covers the point e exactly u times. (Certainly we must
have u <-q- L, by Lemma2.4.) Let M be any point of n-t(") n {X\f}; if
b(M) denotes the branch order of M, then

p_u-!(a1uy+r),
M

where the sum is taken over all such points M.
Next, let Dbeatopologicaldiscsatisfying DfiE: {e} and Dia:0,

where B is a simple arc. It follows that z'-l(D) is a disjoint union of topological
discs, each of which covers D under zr the same number of times. In particular,
the disc D u that contains the point M covers every point of D exactly b(M) +L
times, taking account of multiplicity.

We nory define Fi : äinn-l(B) for tiach j, I < i 1 p-q; each piis alift of B,
arrd lies in b u for some point M. Let M be fixed; and suppose.that Dy contains
more than one arc 0i-*. choose to denote these arcs as gjr,/jr,...,f;" (where

s : s(l) and l. ( s ( p- q) as we go about M in Du in the positive direction.
Next we cut X along each a,rc &.io (1 < e ( "), starting fuom M; and, for
each such ft, we agree to call the resulting right (left) edge the positive (negative)
edge of ä;r. Then for each & we identify crosswise the negative edge of äi* with
the positive edge of dj$*r), with the convenient convention that &iG*\ : äi,
(Observe that this process "partitions" the disc byyy into topological discs each of
which, loosely speaking, contains a single arc Bi.)

Continuing this process (over e) to all other such points M, as necessary, we
obtain a p-sheeted, compact, analytic covering surface l4zo that contains I/; in
terms of the notation associated with X and which extends in the obvious way to
Wsrthe set a'-l(D) consists of connected components each of which covers every
point of D the same number of times and contains at most one copy of the p - g
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x

arcs Fi, 1 S i a P - q. We then have that

p - a: t (uew)+ 1)

MM

which we rearrange as

tb@)
M

The surface trffs contains Y and has the desired bound on the sum of branch

orders over one (arbitrary) point of .8. We have now to show how we can apply

such a construction repeatedly over (att) the points of E, so that the resulting

surface contains Y and has the desired bound on the sum of branch orders over

every point of. E.-To 
do this, we use the fact that any two points e, et in the set E u {m}

are (by hypothesis) arcwise connected in Q u E u {m}. First, we partition E
itrdn"t-i"uly into finitely maf,ry subsets E*,6 follows. LeI Et be the set of all

points "å A suchthat e and oo a,reconnectedbyaoa;rc a in QU-EU{oo}
suchthatthe "open" arc a doesnotmeet.8. Supposethat,forsome Ic)'J', Et
has been defined and that l)!=rEi does not exhaust .8. Then we define E*+r to

be the set of all points e of. E \ {Uf=r.Ei} such that e and some point e' of. E6

can be connected by an arc 0 in Q U E U {m} such that a minus its endpoints

does not meet .8. Then clearly Er+r is non-empty; and there must be some

positive integer .lf such that .Er, f,2,...,-E.p are non-empty and form a partition
A n. F\rrthårmore, corresponding to each point e; of. Ex, where 1 S i < r and

t < k ( ff, there is some simple arc @i thai joins ei to some point of .E;'-1

wiihin Q, except for its endpoints. (Here we may, without loss of generality, take

Es : {m}.)
Wb ;;y therefore a^ssume that X has been chosen so that the sum of the

branch orders of x over each point e;, L 1i <-r, does exceed 6o?r), and ry t-hat

the ordering of the points {e;} of E satisfies the following relation: If i < j, then

there are integers p,, v, with 1' < pt < u 3 8, such that e; € Ev and ei € E,,. W9

construct w bv showing that there is a sequence w1rwzr...rw, of p-sheeted,

compact, analytic coverings of P such that each covering l/; contains Y and has

the sum of orders of its branch points over each ei, I I i < i, at most 6oGi).

This can be achieved by induction on i, as follows. we construct l[ from

X in the same way as we constructed Wo, by taking e1 and a1 for e alrd a,
respectively. So now suppose that, for some i with 1 1i < r, we have constructed

the surface w; withthe desired properties. Then we can construcl w;4 ftom w;
just as we constructed,Wo from X using e;a1 and o;a1 for e and a, respectively'

Sit "" 
d;41f1 {"r,"r,. . . ,ei} - 0 ,it follows lhat W;+r and W; coincide locally over

each point ei with I 3 j s i. Thus w;a1 has the desired properties.

This completes the inductive construction, and w, : w as desired.
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We close this section by conjecturing that Theorem 2 holds without the extra
assumption of arcwise connectedness on the set .E u {*} in Q U -B U {m}.

6. Consequences-the analytic case

In this section we study the consequences of Theorems 1 and 2 for functions
satisfying the hypotheses (p, q); in particular, the connection between the cardi-
nalitg r,of theexceptional set E andthedeficiency 60ff),of. f .

Recatl that -E: {er, e2t...,",}, 6c(f): Dl=r 6ok;), and the coverings X
and W arising in Theorems 1 and 2. Whether dealing with X or W , we define
g(e;) and q(oo) to be the sum of the orders of those branch points lying over

e; and oo, respectively. Then q(oo) I p - L, with equality if and only if the
associated surface has a single branch point over oo of order (p- t).

We have the following result

Theorem 3. Let the finction f satisfy the hypotheses (p, q), and let
E : {"r,...,e,}. Then the defrciency of f satisfies the inequality

(*)

In particular, r > 0.

r(p-q-1)+60ff))p-1.

If equality holds in (*), then the covering sudace X of P that embed's the
Riemann surface Y of the image of f is the image Riemann surface of a polynomial
of degtee p. Thatis, f :H og,where H isapolynomialinC of degtee p and
g is analytic a,nd univalent jn B.

Proof. For every point e6 in E, the surfaces X and I'7 have at least

card/-1(e6) smoothsheetsover ei. Infact,thereare card/-1(e;) of thesesheets
in Y. Accordingly, if in X there are exactly 1*card/-l(e;) points over ei, then
q(e): p- q+ 6okn) - 1;otherwise q(e;) 1p- ql6t(e;) -1.

We proceed by applying the Riemann-Hurwitz relation (see, for example, [5;
p. 16] to X. The genus, g , of X is given by the formula

-p*1,

wlrere g is some non-negative integer, q(oo) S p - I and

r(p-ct-1)+6oU).

Flom these facts the inequality (* ) follows at once.

Suppose that r equalled zero. Then from the definition of deficiency we must
have 6o(/):0, which would mean that (*) became the inequality 0 > p-L.
This contradiction shows that r ) 0.

s: +(ttoo) - åa(,n))

i qki)
i:1.
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Suppose next that equality holds in (*). It follows from the above relations
that g must vanish, so that by the uniformization theorem [13; p. 225] X is
conformally equivalent to the Riemann sphere P, a^nd X must be the Riemann
surface of the image of a polynomiat If of degree p. Since the Riemann surface,
Y, of the image of / is embedded in X, it follows that / : H o ry' where ry' is
analytic univalent, as desired.

Remark 6.1. The equality in (x) is attained whenever q: p- 1 (see
Example 6.1 below); we conjecture that, if S < p-L, then equality cannot be
attained. The truth of this conjecture is supported by Theorem 4 below.

Corollary 6.1. 14 under the hypotheses of Theorem 3, eaeh deficiency 6o("r)
is equal to s, say, then

r p-L
P+ s- q-L

Corollary 6.2. If, under the hypotheses of Theorem 3, g : p - L, then we
must have

'o(/) 
> P-L'

This is the result of. Lyzzatk and Styer [6; p. 42] that proved a^n earlier
conjecture of Brannan and Kirwan [2; top of p. 100].

Next we consider consequences of Theorem 2. It follows from Theorem 2 that
Ski)<6oGr) foreachpoint e; of .8. Usingthisfactandthemethodof proof of
Theorem 3, we can prove the following

Theorem 4. Let the function f satisfy the hypotheses (p, q); assume, in
addition, that arry two points of EU {oo} are arc-wise connected in QU.OU {oo}.Then6o(f))p-L. If 6q(f):p-1,then f :Hog,where H isapolynomial
in C of degree p and g is analytic and univaJent in B.

?he following special case of Theorem 4 is of sufficient interest to be stated
independently.

corollary 6.3. Under fåe assumptions of rheorem 4, if every exceptional
point is covered by f zero times, then we must have that r 2 (p - t)/q.

Corresponding to the case g : 0 of Theorem 3 we have the following.

Remark 6.2. If. / is analytic and locally univalent in B and u(/): {p,0}
then p : 1.

Since each connected component of P is simply connected (by Lemma 2.8)
and P : /(B) is connected, P is a simply connected domain. But by Lemma 2.2,
f-'(P) consists of p mutually disjoint copies Fr, Fr, ..., Fo of P. Thus

p

UPj
j:1

B:
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from which it follows that p - [.
We end this section with an example which shows that equality in Theorem 3

is attained if. q : p - L, and that equality in Theorem 4 is attained for every g.
It generalizes Example 2 in [2], where g is ta,ken to be (p- 1).

Example 6.1. Let p > q > 1 be positive integers. There exists an analytic
univalent function g in B and a polynomial g of degree p such that / : g o g
satisfies the hypotheses (p,q) u^rrd 60ff): p-7. We show this by constructing
the image surface of /.

Let r be a positive integerl and, for each i with l, < i < r, let e; be a
(distinct) point in C, u(e;) a non-negative integer, and d; a (Euclidean) ray with
initial point e;. Assume further that u(e5) (-q- 1, Dl=r 6oG;) - p- L where
6o("r) : q - u(e;), and that the rays d,; are mutually disjoint.

Let Cr , Cz, .. . , Cp be p copies of C. For convenience we mafte the defini-
tion

Nowforeach /c wiih 0 <k<r*L, cut C5o, C6*+r,..., C6**, alongthe
ray d7r11 ; this procedure ensures that every copy Co' with 1 < fr < r - L, is cut
twice, once along d; and once along dp41 .

Next we sew together the slit planes in the following way. For each & with
0 < k < r-L,sewthecopies C6*, Ca*+r, ..., Ct*+, crosswisealongtheedgesof
the cuts over dp.r1 in such a way that a branch point of order 6o(e1+t) it obtained
over the point era1. This gives a p-sheeted analytic covering of C with branch
points of order 6oG;) over ei, t 1i ( r; let us call this surface X.

Then we compactify this surface in the usual way by filling up the missing
points over oo. This may lead to branch points over oo, sum of whose orders
is at most (p- t). Since Dl=r6o("1) : p- 1, the sum of all the orders of the
branch points of X (which now covers all of P) is at most (2p-Z). But by
the Riemann-Hurwitz formula [5; p. 16] X has only one branch point over m of
order p - 1 and is simply connected. Hence by the uniformization theorem [1"3;

pp. 58-59] X is the image surface of a polynomial of degree p.

Finalln for each i with I < i < r we cut the surface X over the ray d;
exactly (p- il times; one and only one cut is taken through the branch point over
ei, and the rest elsewhere. If we now denote the resulting surface by Y, then Y is
simply connected. Since Y is clearly hyperbolic, it follows from the uniformization
theorem that there exists an analytic function /: B ---+ C whose image surface is
I/. Fbom the construction of Y, it easily follows that / has the desired properties.

. (L, ifk-O,6P-|r+I!:r6o(rn) if1
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7. Consequences-the continuous locally-univalent case

In this section we discuss results following from Theorems 3 and 4, where
the assumption of analyticity can be replaced by continuity together with local
injectivity.

First we obtain a generalization of Theorem 3 with B and C being replaced
by simply-connected domains Or and O2, respectivelg and with / being assumed
to be a continuous, locally one-one function from O1 to O2 such that every point
of Q2 is covered by / either p times or g times with finitely many exceptional
points e1 t €27 ...1e7 of Oz.

Since a simply-connected domain is homeomorphic to both B and C, we may
assume without loss of generality that O1 : B and Qz : C. Then it follows from
Riemann surface considerations that f : ,h o cp where tp is a homeomorphism of
B onto B and t/ is a function analytic in B that covers every point of C either
p times or g times, with the exception of the points €1, ez t . . . t €r. This implies
that each exceptional point e; is covered by rlt at most (g - 1) times, by Lemma
2.4; a,nd,, consequently, by the decomposition f : ,h o g each point e; is also
covered by / at most (g - L) times. Accordingly, r\re may define the deficienc5
6o(.), of / at points w of Qz in the usual way, and similarly the deficiency of /
(in O1 ) to be 6oU) : D 6o(r) where the sum is taken over all w e dlz, and the
g-deficiency of / in O1 is 6o(/) : Dl:r 6oG).

If we apply Theorem 3 to the function d, ild then pull the results back to
f via g, we obtain the following analog of Theorem 3.

Corollary 7.L. Let dl1,Qz be simply connected domains h C, and let f
be a continuous locally one-one function from dl1 to Qz such that eaeh point of
{12 is covered by f either p times or q times (p > q > 0), with exceptions at the
points att ezt ...t er in Qz. tr 6o$) is the q-deficiency of f in Q1, then the
following inequality holds :

r(p-q-1)+60(/)2 p-1.

Inpafiicular,r)0.

, A consequence of this result is the following, which settles in the affirmative
a recent conjecture of Ortel and Smith [8].

Corollary 7.2. There is no continuous locally one-one fmction between
any two simply-connected domains such that every point of the image domain is
covered by the function either p times or q times.

Notice that the requirempnt of local injectivity in Corollary 7.2. is essential,
as the following example shows.
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Example 7.L. Let P be a polynomial of precise degree p, dl of whose
zeros lie in B, such that P' has simple zeros (necessarily all in B). Let X be the
Riemann surface of the function P over C. Now slit X from the point 1 radially
outwardto oo along (p-q) sheets of X, toobtainanewRiemannsurface Y.
Then clearly there exists some function /, analytic in B, that maps B one-one
onto Y, and for which u(/): {p,q}.

An immediate consequence of Corollary 7.2. lhat is of interest in its own right
is the following curious result.

Corollary 7.3. Let the function /: B --+ C be continuous,locally one-one,
and onto. Then if card(u(/)) f 'J., we must have that card(u(/)) > 3.

We continue our discussion with the function /: O1 + Oz introduced in
Corollary 7.1. Our next result is the analog of Theorem 4 for such a function. We
extend the definitions of P,Q and.E (see Definition L.1) to this function in the
natural ma,nner, and we define €oo : P \O2. Then \Me can use the ideas in Section
2 that lead to Lemma 2.6 to prove that the set Q U E U eoo must be connected.

In addition, we will assume that the function / satisfies the following stronger
condition.

Condition A. There exists open arcs a: 10,1[+ Q such that
(i) the set union of these arcs and E U {e-} is connected, and
(ii) theclustersets, C(o,0) and C(a,L),of everyarc o at 0 and l,respectively

are subsets of different sets ei , i : Lr2r. . . ,r and oo.

Clearly Condition A, the hypotheses on "f , and 6o(/) are all invariant under
homeomorphism on Q1 and O2. Thus without loss of generality rve may assume
that Qr : B and {lz : C.

Under the latter assumption, Condition A says that any two points in .EU{oo}
are arc-wise connected in Q U E U {m}. It follows from the above decomposition

f : ,b o g where g: B ---+ B is a homeomorphism that ty' inherits the above
requirements on /, and also that 6o(r/) : 6cU). Moreover, { is analytic and
locally univalent in B. Therefore by Theorem a, 6o(b) ) p- L; from which we
deduce the following result:

Corollary 7.4. Let O1 and Q2 be simply connected domains in C, and let
f be a continuous locally one-one function from (11 to Qz such that each point
of Q2 is covered by f either p times or q times (p > C > 0), with exceptions at
the points ett €2t ...t €r in Qz. Suppose further that f safisfies Condition (A).
Then6off)>p-L.

Our final result in this section establishes a connection between the covering
properties of a function and the connectivity of its image domain.

Let G be a domain in the plane with connectivity n (this is the number of
bounded connected components of C \ G), and let /: B + G be a continuous
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locally one-one function that covers every point of G either p times or g times.
We find below the 'best possible' lower bound for n in the case that g : p - I,
and also in some other cases under a supplementary condition (Condition B below)
imposed on 

"f 
.

Corollary 7.5. Let f have the above described properties. Then n ) I,
and this is best possible in the case when q : p - L.

Prcof.It follows from Corollary 7.Zthat n cannot vanish, and so n ) 1.
For any positive integer p, the function f(") : ((t + 2111t - ,))'o covers

in B every point of O : C \ {0} either p times or (p - 1) times and it never
covers 0. This function has g : p- L, and /(B) is of connectivity 1; thus the
inequality of the theorem is best possible.

Suppose next that q <p - 1. Let Q denote the set of points of G that are
covered by / exactly q times; and let FrrFzr. . . ,FnrF,"+r denote the connected
components of P \ G, where F,r+r is the unbounded connected component. Then
an a,rgument similar to that of Lemma 2.6 shows that the set QU.F1U FzU. ..UF"+r
is connected a,nd each connected component of the set QU F U FzU... U F" is
not separated from F"+r.

We now make the additional assumption that Q satisfies the following:

Condition B. There exist open arcs c: ]0, t1* Q such that
(i) the set union of these arcs and D;ji Fi is connected, a^nd

(ii) the cluster sets C(c,0),C(a,1) of each arc c at its endpoints are subsets of
different sets .Q, L < j ( n * 1.

Next, let att azt ...s en be any ra distinct points of C. Then there exists
ahomeomorphism å between G and O: C\{ot,a2t...,orr} (see, forexample,
[ ; p. 57]); consequentlythefunction F:hof: B +O isacontinuouslocally
one-one function that covers every point of O exactly p times or g times. Notice
that .t'does not cover any point of {otrorr...,or}, which we may equivalently
view as the fact that 6o(a;) - p- 1, 1 ( i (-n.

It is easy to see that Condition B implies that the points ett az, ..., aft,
oo are arc-wise connected in the set å(Q) U {ot, a2t...,dr,m}. Norn' let 6o(F)
be the g-deficiency of F in C, so that from our construction above we have that
6r(.F') - nq. It follows from Coroll ary 7.4 that ng ) p - 1 , so that

n> (p-r)lq.

We can summarize these results as follows

Corollary 7,6. Let G be a domain in C of connectivity n, n) 0, and let
/: B -r G be a confinuous locally one-one function that covers every point of G
either p times or q times. If the set Q satisfes Condition B tåen n > (p - l)lq,
and tåis is best possible if q divides (p - t).
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The fact that the estimate is best possible will follow immediately from func-
tions that we construct in Theorem 6 in Section 8.

8. Possible sets for u(/)

A sequence ptlpz < 1.. < pnt fl 2 3, ofnon-negativeintegers is saidtobe
a valence sequence if there exists a function / analytic and locally univalent in B
such that .f covers every point in C pi times for some j, and such that for each
j there exists some point in C that is covered exactly pi times; in other words,
u(/) : {pt,pr,...,pn}. The sequence {pi}f ir called the vaJence sequence of f.

In view of the results by many authors described in Section 1 and also pre-
sented here in Section 5, it would clearly be of great interest to identify those
sequences that are valence sequences. While this remains an open question, we
supply below two criteria that ensure that a given sequence is a valence sequence.
In each case we do this by exhibiting an appropriate Riemann surface for such a
function /.

Theorem 5. Every sequence h 1pz
satisfying pn: pn-t * 1 is a vaJence sequence of a function /: B --+ C which is a
polynomial of degree pn of a univaJent function,

Proof. First we will prove the result in the special case that n : 3. (Note
that we cannot have n : 2, by Corollary 7.3; and the case n : 1 is clearly possible
for an elementary one-one function.)

If p1 - 0 the result follows at once using the function construction in the
proof of Corollary 7.5.

Now suppose that pr ) 0. By the division algorithm, there must exist a
positive integer trf such that

pt<N(pz-pr)3p2.

Then either (i) lf@2 -pr): pz orelse (ii) N(pr-pr) < p2. Forconvenience we
will use the notation

a(.nf) : {il'*,, ll:::: [l],Tiff:

Let d1 , dz, ..., do(N) be mutually disjoint radial rays that do not pass
through the origin and whose initial points år€ u1 t tr2s ...r ua(N), respectively.
Then we cover C by the copies Cr, Cz, ..., Cp". Next, for each j with 0 < j S
/V- 1, we cut eac,h of the copies C j(pr-pr)+r, Cj(pr_pr)+2t ...; C134r;1pr*p1)+r
along the ray over diar.

If case (i) holds, we have then exhausted cutting of all the ps sheets; if case (ii)
holds, we make more cuts on the remaining copies CN1or-pr)+r , C/v6r-pr)*2 r . . .r
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Co" along the ray over d.iy.r-1. Then, for eac,h j with 0 < j S /V-1 we identify the
copies C;'*r-pr)+t, C j(pr-pr)*2t ..., C(j+t)fur-pr)*r crosswise along the edges

of the cuts over dial; this process yields a branc.h point of order (p2 - pr) over
uj+t. If case (i) holds, we have thus joined up all the p3 copies of C; if case

(ii) holds, we continue sewing together the remaining copies crosswise along the
edges of the cuts over d;y4r in such a way as to obtain a branch point of order
ps - N(pz-pr) - 1 over urN+r.

It is then easy to see that in either case this procedure yields a simply con-
nected, p-sheeted covering X of. C; and this covering is the image surface of a
polynomial of degree ps. This surface has branch points only over u)tt rD2t ...t
ua(/v); and these points have the same order (p, - pt) except in case (ii), where
the brarrch point over uN+r has order ps - N(pz - pt).

Next, for each j with 1 < j < *(N), we cut X radially along a ray over di
a,nd through the branch point of X over wi . In case (ii) where N(p, - pr) ) h,
let 11, Iz, ...r 1*(o"-o)-r, be apencil of (closed) rays startingfrom u;y..'r-1 such
that none of the I; or d,; meet, except possibly at their end points; we then also
cut each copy C;, with 1 < j < N(p" - pr) - pr, along the ray over li. In either
case, let )f denote the resulting surface.

It is fairly easy to see that I/ is a simply connected surface that covers ev-
ery point u1', with I < i < o(trf), exactly p1 times. Furthermore, if case (i)
holds, then Y covers every point of C \ U!=rdi exactly p3 times, and every

point of Utl, a, exactly p2 times; if case (ii) holds, then Y covers every point

of c \ ((U[1'ar) U(UIf'-"'-" tr)) exactly p times, and every point of

(U,-fit Int d;) U (Uilf'-m)-pr Int ri) exactly p2 times. Then if /: B --+ c is a

function whose image is Y, it follows that u(/) {h,pz,ps}.
Finally we consider the case that n > 3. To begin with we construct, as

described above, a surface I/ which is the image surface of a function whose
valence i" {p,,-r,pn-rrpn}. This surface covers mutually disjoint radial rays 7j,
L < j 1n- 3, such that each is covered by Y exactly pn times; for each such
j, if we cut IZ along pr. - pj rays over 7j the resulting surface Z is lhe image
surface of the desired function /.

This completes the proof.

Notice that the function f of Theorem 5 covers every point of C exactly p,"

times, except for points belonging to finitely maf,ry rays, disjoint except possibly
for their endpoints, which can be chosen almost 'at random'.

Theorem 6. A sequence pt t pz t . . ., p n of non-negative integers is a vaJence

sequenee if for some fxed integer k (with 2 < k 1n-L) therc is asequence of
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noll-n egative integers rtr! s Tt2 t . . . , nk-t such that

(**)
k-L

I ni(px - pj) - pn - !.
j:L

In particular, wåen ( *,,r, ) åolds the sequence is the valence sequence of a function
f which is a polynomial (of degree p") of a univaJent function.

Proof. We establish the result by simply constructing a suitable Riemann
surface, and then appealing to the uniformization theorem in the usual way.

Some of the integerr {"i}f=-i are positive and some are zero; let us assume,
for the moment, that all are positive-we will see at the end of our construction
what changes we have otherwise to ma-ke.

Let N : Dl=|"i.
Now choose distinct points u)lt u)zr ...r toN in C, and mutually disjoint

closed rays d1 , dz, . . ., dx taken radially from these points, respectively, with
no ray passing through the origin. We now construct a suitable covering of C by
copies Ct, C,z, . . ., Con of itself.

Let t,r be integers satisfying the inequalities 0 1t ( r- 1 and Q ( r S n111.
We then define two numbers a(t, ,),p(t,r) by the formulas

iff:0,a(t,r): 
{ 1 + ifi: -ll*"t * D;=,n;(px - p;), if , > 0,

A,. , (L+r, iff:0,
FU,r) : t t * r *Dl=tnr, if r > o.

For fixed t and all r with 0 ( r'1nt+t, we cut each of the copies Co(t,r;,
,,,, Co(t,r+r; along the ray over d,Bp,r1, and then we sew together the copies
crosswise along sides of the edges in such a way that we obtain a branch point of
order p;, - Pt+r over each point toB1r,";.

Then we repeat this construction for each t with 0 < f < r - t. Note that,
except for the copy C1 : Cq(o,g), every copy Cr11,ry (with 0 < t 1r - L and
0 < r 1 nt+r) has been cut twice along the rays d,p6,r-r; and dpe,i. This
serves via the above sewing to adjoin (for all I a^nd r with 0 ( r 1npr1 -2)
the tstacks'Co1t,";, ..., Co(r,r{1) and Cc1t,r+r), ..., Co(t,r*2)1ärrd (for all t
with 0 < t < , -2) the stacks Co1t,rr,1r-1), ..., Colrar,o; and Co1141,0)r ...r
Ca(r*1,1).

It is fairly routine to check that this construction yields a simply connected
prr-sheeted covering of C. We then make this into a Riemann surface X in
the usual wayl and, by the uniformization theorem, X is the image surface of a
polynomial of degree p,". This surface has branch points only over u)7t102t. . . r trrN i
arrd the order of the branch point over each point wBe,) (where 0 ( t ( r - 1

2L
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and 0 1r lnt+t) is exactly pk-pt+t. F\rrthermore, up(t,q):wp(t,r2) forfixed
t arrd 0 ( 1 , :,21n1q1.

Now we construct the desired surface Y (the image surface of / ) by cutting
X in a suitable way along rays over dt, dz, ..., dN. In what follows, we take
0 < t < r - 1 and 0 ( r I nt+t. So then, for each such pair (t,r),we cut the
surface X along a single ray over dB$,r), sta,rting from the branch point of X
ovet uB(t,r).

We now suppose that pr, ) px + 11 since otherwise pk : p,.-t : pn - L,
and this case is covered in Theorem 5 above. Then for each pair (t, r) we cut the
surface X along (p"- px- 1.) rays over d,B1t,r1 not starting from the branch point
of X over uBe,r).

This gives a simply connected smooth, analytic covering ,S of C with the
following properties. The surface ^9 covers every point of C \ (U[, di) exactly

p,, times, every point of Ulrlntdi exactly p1-times, and every point up4,r)
exactly p1a1 times. Let /: B -+ C be an analytic function whose image surface
is S; / has the valence sequence pnt pn-tt ...t pr, as desired.

We have now to tackle the case that some of the ni's vanish. We then have
to cut ,5 over additional rays in C that are mutually disjoint with each other and
wiih the rays d;, in such a way that the remaining valencies p; in the sequence

{pi}T are also attained. If Y denotes the resulting surface, then clearly arry
function /: B --+ C with image surface Y satisfies the conclusion of Theorem 6.
This concludes the proof.

Two special cases of Theorems 5 and 6 merit attention:

Corollary 8.1. Every sequence fu l pz
that contains two consecutive integers js tåe valence sequence fot a function f
which is a polynomial of degree pn of a univalent function.

Corollary 8.2. Every sequence h l pz
that contains two distinct entfies p; and pi , both Jess tåan p,., such that lp;- pil
divides pn - t is the vaJence sequence of a function f which is a polynomial of
degree pn of a univaJent function.

Remark. After this paper was submitted for publication, the authors became
awa,re of the independent work of T. Carne, M. Ortel and W. Smith [Bull. London
Math. Soc. L9, 1987, 438-442] which contains a weaker form of Theorem 1 (where
no exceptional points are allowed) whose proof involves similar ideas.
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