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ON QUASICONFORMAL RIGIDITY
IN SPACE AND PLANE

Kari Astala and Juha Heinonen

1. Introduction

Quasiconformal mappings in space are known to have many rigidity proper-
ties. For instance,

1.1. Theorem (Martio-Sarvas, [MS, 3.17]). Let D C R", n>3, bea
b-uniform domain. There is a constant I{o = Ko(b,n) > 1 such that every locally
K -quasiconformal mapping on D with K < K is injective.

1.2. Theorem (Vaisala, [V4, 6.2, 6.12]). Let D C R™, n > 2, be a bounded
b-uniform domain, and let f: D — R™ be an s-quasisymmetric embedding. There
exists a constant sg = so(b,n) > 0 such that f has a K -quasiconformal extension
to R™, whenever s < sg. In addition, K — 1 as s — 0.

For the undefined notions here and below see Section 2.

In this note we shall study the interrelations of these two aspects of rigidity,
the injectivity and extendability of mappings. We begin with a necessary condition
for the rigidity of a domain and, in particular, show: If D is a domain in R",
n > 3, and if there is a constant Ky > 1 such that every locally Kj-quasiconformal
mapping on D is injective, then D must be linearly locally connected. Next, we
combine this fact with the above extension theorem of Véiisald and obtain the
following result (which has also been announced by Trotsenko in [T1]; for related
topics see [T2]).

1.3. Theorem. Let D C R", n > 3, be a b-uniform domain. There is
a constant Ky = K1(b,n) > 1 such that every quasmonformal mappmg f on
D with K(f) < K; has a quasiconformal extension f R" - R" Moreover,
I{(f) —1as K(f)— 1.

Applying Theorem 1.3, we then get a new and larger class of domains having
the injectivity property of Theorem 1.1. We call these domains uniformly collared
and show that for them also Theorem 1.3 remains valid.

In the plane the Schwarzian norm

(1.4) 1551l p = jgglsf(Z)ld(z,aD)z, Sp=(f"11) - 3(£"1)?
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of a locally conformal mapping plays the same role in rigidity as the maximal
dilatation K'(f) does in space. We shall provide an “explanation” of this analogy
and study how far it works. It turns out that looking at the local quasimdbius
properties of mappings one can introduce a distortion measure xp(f) equivalent
to ||S¢||p in the plane and to log K(f) in space. Especially, with «p(f) we obtain
formulations of 1.1. and 1.3 valid for quasiconformal mappings in all dimensions
n, n>2.

2. Preliminaries

2.1. Notation. We shall adopt the fairly standard notation of [V1]. As
a rule, D is a domain in R" = R" U {00}, n > 2; E@o,?‘) denotes an open
euclidean n-ball; and for a set A C R" we let C(A) =R" \ A. The group of the
Mébius transformations in R will be denoted by Méb(I—{—n).

2.2. Quasimébius and quasisymmetric mappings. Given four distinct
points a, b, ¢, d in R" we denote their cross ratio by

la — ¢||b—d|

la, b, ¢, d| = a—dp—q

If one of these points is oo, the factors containing that point are omitted. An
embedding f: D — R" is said to be (s-)quasimébius, s > 0, if for all points
a,b,c,d € D with |a,b,c,d| <14 1/s it holds

|f(a), £(b), £(c), F(d)] < la,b,c,d| +s.

For s large this definition slightly differs from the original one in [V3].

We similarly arrive at quasisymmetry if, instead of the cross ratio, we consider
the ratio t = |a — z|/|b — z| of distinct points a,b,z € R™. An embedding
f: D - R" D C R",is called ( s-)quasisymmetric, if there exists a number s > 0

such that

@)= f@)] _ la—a

|£(8) = f(z)| ~ [b— 2|
whenever a, b and z liein D and |a — z|/|b— 2| < 14+ 1/s, cf. [TV] and
[V4]. It follows from [V4, 2.3] that if f is quasimdbius or quasisymmetric in the
above sense, then |f(a),f(b),f(c),f(d)‘ < 4(|a,b,c,d|) or, respectively, If(a) -
F®)|/|f(e) - F(®)| < n(la—b|/|c - b]) for some homeomorphisms 6,7: [0, c0) —
[0,00) and for all distinct points a,b,c,d € D.

In comparison with quasisymmetry the quasimdbius mappings have the ad-
vantage (sometimes disadvantage) that they do not single out the point at in-
finity. Both conditions are global, however, contrary to the notion of quasicon-
formality; for example, an s-quasimobius mapping f: D — D' always has an
s-quasimébius extension f: D — D'. Quasisymmetric mappings are always

+ s
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quasimobius, quasimdbius mappings quasiconformal, and the reverse implications
do not hold in general; the maximal dilatation of an s-quasimébius mapping f
satisfies

(2.3) R() <4,
see [V3, 5.2].

2.4. Uniform and linearly locally connected domains. A domain
D Cc R" is called b-uniform if every pair of points z,y € D\ {oco} can be joined
by a b-cigar contained in D. A b-cigar is an open set

cig(7,1/8) = | Bz, 3 min{lz — 21, | ~ y1}),

z€Y

where v is a continuum connecting z to y with
diam(y) < ble — yl.

A related but larger class consists of linearly locally connected domains, cf.
[G2]. A domain D C R" is c-locally connected if for each o € R™ and r > 0

(2.5) points in D N B(zg,r) can be joined in D N B(z,,cr),
(2.6) points in D \ B(zo,r) can be joined in D\ B(zg,r/c).

Furthermore, D is called linearly locally connected if it is c-locally connected for
some c¢. Note that if T € M&b(R") and D is c-locally connected or b-uniform,
then T(D) is c'-locally connected or, respectively, b'-uniform with ¢’ = ¢/(¢) and
b =b'(b), see e.g. [V3].

The following result nicely ties up these notions.

2.7. Lemma ([V3, 5.6 and 4.11]). Let D C R", n > 2, be b-uniform and
let f be K -quasiconformal on D. If fD is c-locally connected for some ¢ > 0,
then f is s;-quasimébius, where s; = s1(K,b,¢,n). If f is s-quasimébius for
some s > 0, then fD is by-uniform, where by = b(s,b).

3. Quasiconformally rigid domains

We assume throughout this section that n > 3. For each domain D ¢ R"
we let K (D) denote the supremum of the numbers K > 1 such that every locally
K -quasiconformal mapping on D is injective. If K(D) > 1, we then say that D
is quasiconformally rigid or, simply, rigid.

The aforementioned result of Martio and Sarvas, Theorem 1.1, tells us that
b-uniform domains are rigid with K (D) > K(n,b) > 1. We also refer to an early
result of V.A. Zori¢ [Z] which implies that K(R") = co. The definition can also
be given by using quasiregular mappings. Indeed, for n > 3 there is a number
K(n) > 1 such that every K(n)-quasiregular mapping is locally homeomorphic;
see [MRV, 4.6].
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3.1. Lemma. Suppose that G is a smooth domain in R" separating two
points z and y in D and suppose that f: R"—=R"is quasiconformal. If f(z) =y
and f(z) =z for z € G, then K(f) > K(D).

Proof. Let D(z) denote the z-component of D\ G. If f is as above, define
a mapping g on D by setting ¢g(z) = f(z) for z € D(z) and g(z) = z for z €
D\ D(z). It is obvious that g is locally quasiconformal on D with the dilatation
K(g) < K(f). On the other hand, ¢ is not injective since g(z) = y = ¢g(y). Hence
K(f)> K(g) > K(D). o

3.2. Remark. If one applies [V2, Theorem 8] in the proof of Lemma 3.1, it
is then possible to choose G to be any compact set separating z, y in D.

Lemma 3.1 gives a necessary condition for a domain to be rigid. In fact, we
obtain

3.3. Theorem. Rigid domains are c-locally connected and ¢ depends only
on n and K(D).

Proof. Suppose that D is rigid. If the condition (2.5) does not hold and
z,y € DN B(zg,r) belong to different components of D N B(xo,cr), apply [GP,
Lemma 3.1]: There exists a quasmonformal mapping f: R” = R" such that
f(z)=y, f(z)=zfor z € R" \ B(zo,cr), and

where kp is the quasihyperbolic metric (see [GP]) in the ball B = B(zg,cr). It
follows from the definition of kg that kp(z,y) < 2/(¢—1). Thus, by Lemma 3.1,
log K(D) <log K(f) <4(n—1)/(c—1) and (2.5) holds whenever ¢ > 1+4(n—1)
(log K(D))""

Since the condition (2.6) can be reduced to (2.5) by an auxiliary Mobius
transformation, the above reasoning proves that D is c-locally connected and
that, in addition, ¢ = c(n,K(D)). o

3.4. Remark. Theorem 3.3 can also be proved by using a method of F.W.
Gehring [G3, Lemma 2], to which only obvious modifications are needed. A third
proof has been given by G. Martin (unpublished). We illustrate the method of
Gehring in an example below in showing that the converse statement for Theorem
3.3 is false.

3.5. Examples. There are linearly locally connected domains which are not
rigid.

a) Consider the domain

D= {(tl,t2,u)) ER"=R x R x R" 2 ltll < 1}
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Clearly D is linearly locally connected. To prove that D is not rigid, apply Lemma
3.1 with G = {z € D: t2 +t2 < 1}. Since the points z; = je; and y; = —jes,
2 <j, liein dlfferent t components of D\ G, it suffices to find quasiconformal
mappings g;: R" - R" such that gj(z;) = yj, g; fixes the points of G and
K(g;) = 1 when j — oo.

For each j € N define the function

¢i(s) = max{0,7(log s)/(log j) }

and then set, using the polar coordinates in the t;t;-plane, g;(r, ¢,w) = (r, ¢+
¢;(r),w) and gj(c0) = co. By arguing as in [G3, Lemma 1], we deduce that g,
is an (1 + 7/log j)-quasi-isometry in R", hence K;-quasiconformal with K; =
(14 7/logj)?(»=Y and so g; does have the required properties.

b) It is equally straightforward to verify that the linearly locally connected
wedge domain

D ={(t;,t5,w) ERxRxR" 2 ¢, >0, 0<|ta] <t?}
is not rigid.

4. Extension of quasiconformal mappings

The following simple observation is the link between the injectivity and ex-
tendability properties needed in the proof of Theorem 1.3.

4.1. Lemma. Suppose that D C R",n>3,is rigid and that f: D — D' is
quasiconformal. If K(f) < K(D), then D' is rigid with

K(D") > K(D)/K(f) > 1.

Proof. If g is locally quasiconformal in D' and K(g) < K(D)/K(f), then
g o f is locally quasiconformal in D with K(go f) < K(9)K(f) < K(D). Thus
g o f, and hence g, is injective. O

4.2. Lemma. Let D C R", n > 3, be b-uniform. There is a number
K (n b) > 1 such that if f is quaswonforma] on D with K(f) < K(n,b), then
= f(D) is b-uniform and f is s-quasimobius. Here b = b(n,b) and s = s(n, b).

Proof. By the Martio—-Sarvas injectivity theorem, D is rigid with K(D) >
Ko(n,b) > 1. If f is a quasiconformal mapping on D such that K(f) < 2(Ko+1),
then D' = fD is rigid by Lemma 4.1 and c-locally connected by Theorem 3.3,
¢ = ¢(b,n). Hence the conclusion follows from Lemma 2.7. o

Lemma 4.2 gives no information about the behaviour of s when K(f) — 1.
However, this can be obtained by a normal family argument, presented in Lemma
4.4, and there 4.2 will be an essential part of the proof. For 4.4 we also need a
quasimobius version of the Carathéodory convergence theorem.
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4.3. Lemma. Let D;,D,,... be a sequence of b-uniform domains in ﬁn,
n > 2, let f; be s-quasimébius mappings on D;, and let aj € D;. Suppose
further that 0,e;,00 € D; and that f; fixes each of these points. Then we can
select subsequences, also denoted by Dj, f; and aj, which have the following
properties:

a) There is a b-uniform domain D C R" such that C(D;) converges to C(D)
in the Hausdorff metric;

b) There is an s-quasimébius mapping f on D such that f; converges to f
uniformly on compact subsets of D;

c) There is a point a € D such that aj — a and fj(a;) — f(a) as j — co.

Proof. Since the sets C(D; ) are compact in R, we may assume that they
converge to a closed set F C R" in the Hausdorff metric when j — oco. Here
F #£ R", since each D; contains a b-cigar connecting 0 to e;. Similarly, it is
easily seen that D = C’(F) is a b-uniform domain, cf. [V5, Theorem 3.6].

Moreover, it follows from Lemma 2.7 that f]D are b-uniform domains with
b= b(s b). Thus, by further reducing to a subsequence, we also obtain C(f;D;) —
C(D), as j — oo, where D is b-uniform. Now [G1, Theorems 2 and 3] provide
a quasiconformal mapping f: D — D such that f; converges to f uniformly on
compact subsets of D. If z,y,2,w € D are distinct points , then

and so f is quasimdbius. Hence a) and b) are proved.

For the case c), take subsequences such that a; — a and f;j(a;) — o' as
J — oo. Here either a # e; or a # 0; we assume the latter. Connect a; to 0
by a b-cigar cig(y;,1/b) C Dj. We may assume that v; — v and f;(v;) — 7,
where v and ¥ are two continua connecting 0 to a and a’, respectively. Clearly
cig(7,1/b) C D and since f;(cig(vj,1/b)) D cig(fj(v;),1/b), cf. [V3, 4.11], we
also have cig(¥,1/b) C D. In addition, a € D and hence f(a) is well defined.

If z € v\{0,a}, then z € D, f(z) € D, and so it follows from b) that
f(¥\{0,a}) c 4. Thus f(a) € 5. If f(a) ¢ {0,a'}, by the above f(a) €
D, a€ D, and b) yields f(a) = a'. Therefore, we only need to show that
f(a) # 0. This follows from the quasimobius properties defined in 2.2. Indeed,
Ifj(el),fj(w),fj(O),fj(oo)I < 0(|z|™*) and thus |f(z)| > 1/6(|z|™!) whenever
re€D\{0}. o

4.4. Lemma. For each s > 0 there exists a constant Ko = Ko(n,b,s) > 1
with the fo]]owmg property: If a mapping f is quasiconformal on a b-uniform
domain D c R", n >3, and if K(f) < Ky, then f is s-quasimébius on D.

Proof. If the claim of the lemma is not true, we can find a number sy > 0 and
. . =n - . .
sequences of b-uniform domains D; C R and Kj-quasiconformal mappings f;
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on Dj, j € N, such that K; — 1 as j — oo but no f; is so-quasimobius on D;.
Without loss of generality we may assume that co € D; and that f;(co) = oo.
Moreover, since the mappings f; are not so-quasimdbius, there is by [V3, Theorem
3.8] a number 79 = 79(s¢) > 0 such that no f; is 7o- quasisymmetric.

Next, we make use of Remark 2.5 in [V4]: There are distinct points aj, b, z; €
D; \ {oo} such that
aj — fila;) = fi(z;)
£i(b) = fi(=;)

We also normalize the mappings f; by similarities uj,v; such that u;(0) = z;,

](el) = b; and v;(fi(z;)) = 0, v;(fi(b; )) = e1. If gj = vjofijou; and
Dj = u_lD], then g; fixes the points 0,e;,00 € D and (4.5) takes the form
|dj| =t; € [ro, 14 1/70] and |g;(@;)| = th > |aj| + 7o, Where aj=uj Ya;).

We can now combine the previous lemmas. According to 4.2, for each j
large enough, g; is sj-quasimdbius with s; = s3(b,n). By 4.3 we can then
assume that g; — ¢ uniformly on compact subsets of a b-uniform domain D.
As K(gj) — 1 and g is non-constant (4.3.b), g is 1-quasiconformal and hence
a Mobius transformation. In fact, g is an isometry, since by 4.3.c) it fixes the
points 00,0 and e;. On the other hand, we have at least for a subsequence that
a; — a, where 19 < |a| < 1+ 1/7. Hence, we may use 4.3.c) again and obtain
la| = |g(a)| = lim|g;(@;)| > lim|@;| + 70 = |a| + 7o, which is a contradiction. o

(4.5)

=1, € [r0,1+1/7] and =t} > t; + 7.

b; —xJ

Proof of Theorem 1.3. Let D C R",n > 3, be b-uniform and let f be
quasiconformal on D. We can assume that 0 € C(D), that co € D, and that
f(c0) = oo. Denote then by Dy the domain D N B(0,2diam C(D)). Since Dy
is bounded and b-uniform, with b depending only on b, we can apply Theo-
rem 1.2 in Dy. Hence, to prove 1.3, it suffices to find for each s > 0 a constant
Ky = Ky(s,n,b) > 1 such that f|p, is s-quasisymmetric whenever K(f) < K.
Because f(oo) 0o, f is s-quasimobius only if it is s-quasisymmetric, and thus
the claim follows from Lemma 4.4. o

Theorem 1.3 yields plenty of rigid domains which are not uniform. We say
that a domain D C R" is ( b-)uniformly collared, if there is a partition of C(D)
into pairwise disjoint compact sets F;, ¢ = 0,1,2,..., such that the following two
conditions hold:

(4.6.2) C(Fp) is a b- uniform domain.
(4.6.b) For : > 1 each F; has a neighbourhood U; such that
U;N D is b- uniform and U; NU; =0 when i # j.

We observe that if D is uniform, then it is also uniformly collared since we
may choose Fy = C(D) and F; = 0 for 1 > 1. On the other hand, it is easy to
exhibit domains which are uniformly collared but not uniform. For example, in
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the plane the complement of the set {0} U {1/n}{° is not uniform. Furthermore,
we obtain a uniformly collared domain if we take any collection of disjoint balls
B(zk,rk), k € N, contained in a uniform domain Dy, choose a number 0 < A < 1,
and set D = DO\U1 B(zk, Ary); cf. Figure 1.

Figure 1.

4.7. Theorem. Suppose that the domain D C R", n > 3, is b-uniformly
collared and that f is locally quasiconformal on D. Then for every K > 1
there is a number Ky = Ky(n,b, K) > 1 such that f is injective and admits a
K -quasiconformal extension to R whenever K(f) < K,.

Proof. If C(D) = |JF; and U; are the neighbourhoods of F; as above in
4.6.a) and b), it follows from Theorems 1.1 and 1.3 that f; = fly,np has a K;-
quasiconformal extension fi: R" — R" as soon as K(f) < Ko = Ko(n,b,K,) <
K;. Then the formula

3 _ fi(x)a S Ui\FO)
f(x)_{f(a:), €D

defines a locally K;-quasiconformal mapping on C(Fp). Finally, since C(Fy) is
b-uniform, another application of 1.1 and 1.3 implies that, if K is small enough
(the smallness depending on n, b and K), then f is injective and extends to a
K -quasiconformal mapping of R".

4.8. Corollary. A uniformly collared domain D in R", n > 3, is quasicon-
formally rigid.
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4.9. Remark. There are also rigid domains which are not uniformly collared.

To obtain particular examples, we only need o note that if E ¢ R" is any
compact set with empty interior, then D = R" \ E is rigid.

5. Rigidity in plane and space

Suppose that either f is locally conformal on a plane domain D or that f is
locally quasiconformal on a domain D C R", n > 3. Then the natural distortion
measures, the Schwarzian norm ||S¢||, in the plane, cf. (1.4), and log K(f) in
space behave in a very similar fashion. For example, if D is uniform and ||S¢||
small, then f is injective ([MS, Theorem 4.24]) and admits a quasiconformal ex-

tension to R (see, for instance, Theorem 5.7 below). Conversely, and in analogy
with Theorem 3.3, if for some A > 0 every locally conformal mapping on D with
IS¢l p < A is injective, then D is linearly locally connected by [G2]. Furthermore,
both ||S¢||, and log K(f) vanish if and only if f is a M6bius transformation.

These facts suggest that there should be a general theory for log K(f) and
|S#]l p which also covers quasiconformal mappings in the plane. A convenient way
to study this problem is to introduce the following distortion measure.

5.1. Definition. Suppose that D C R", n>2,and f: D — R" is contin-
uous. We let

kp(f) =inf{s > 0: f|p is s-quasimdbius for each Médbius ball B C D }.

Here, of course, a Mobius ball is the image of B(0,1) under a Mdbius transforma-
tion.

Clearly 0 < kp(f) < oo and £p(f) = 0 if and only if f is a Mbius trans-
formation. Furthermore, if T,U € M&b(R"), then ky-1p(T o foU) = kp(f).

. 5.2. Lemma. Suppose that f is locally quasiconformal on a domain D C
R, n>3. Then

(53) log K(f) < (n — )rp(f).

Conversely, there is an increasing continuous funtion ¢g: [0,00] — [0,00] which
depends only on n and satisfies

(5.4) kp(f) < pollog K(f)),  o(0) = 0.

Proof. The estimate (5.3) follows from (2.3) and the converse from Theo-
rem 1.3. Indeed, if ¢(7) denotes the infimum of the numbers s > 0 such that
every locally e"-quasiconformal mapping on B(0,1) is s-quasimébius, then ¢ is
increasing, kp(f) < ¢ (log K(f)),¢(0) =0 and ¢(r) — 0 as 7 — 0 by Theorems
1.1 and 1.3. Consequently, we may replace ¢ by an increasing continuous function
o: [0,00] — [0, 00] with ¢(0) =0 and ¢(7) < po(). B
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5.5. Lemma. Suppose that D is a proper subdomain of the finite plane
R? and that f is locally conformal on D. There exist increasing continuous
functions ¢1,p2: [0,00] — [0,00] which are independent of f and D such that

¢1(0) = ¢2(0) = 0 and
(5.6) IS¢l < e1(kp(£)),  wo(f) < @2(lISkll p)-

Proof. Fix the point zo € D and let B = B(z,d(20,8D)). If kp(f) =s <
00, then by Lemma 2.7 fB is a simply connected b-uniform domain, i.e., a Kj-
quasidisk, Ko = Ko(s), [MS, 2.33]. Clearly we may assume that Ko = 1 + ¢(s)
for some continuous increasing function ¢: [0,00) — [0,00) with ¢(0) = 0. Next,
by Lehto’s majorization principle, see [L, p. 73], we can estimate

|Si8ll 5 < 6(K3 —1)/(K3 +1) < 6(Ko — 1).

Thus
|S(20)|d(20,0D)* < ||S115| < 6¢(sD(£)).
Since zo € D was arbitrary, we arrive at the first inequality in 5.6 with ¢ (r) =
6¢(r),p1(00) = oo0.
To obtain the latter inequality, we apply the Ahlfors—Weil extension theorem,
cf. [L,I14.1]. Indeed, if B C D is a disk or a halfplane and if ”Sf|B“B < 1/2,then

f|B has a K-quasiconformal extension to R’ with K = (142 HSfIB“B)/(]' -
2”.5'”3”3). Since ”Sle“B < |ISfllp, K — 1 when ||S¢||, — 0, and so [TV,
heorem 2.6] yields the function ¢,. o

5.7. Theorem. Suppose that D is a b-uniform domain in R", n > 2 and
that f is locally quasiconformal on D. For every K > 1 there is a number ko =
ko(n,b, K) > 0 such that f is injective and has a K -quasiconformal extension to
R" whenever kp(f) < ko.

Proof. We reduce the proof to the previous arguments and results; a direct
proof could, of course, be described along similar lines. In fact, when n > 3, the
theorem is a reformulation of 1.1 and 1.3. When n = 2, we assume that D C ﬁz;
by appealing to the measurable Riemann mapping theorem, see e.g. [L, pp. 68], we
write f as a product f = go®, where &®: RP-Ris quasiconformal, ®(c0) = oo
and g is locally conformal on D' = (D). Since K(®) = K(f) < 1+ &p(f),
it suffices to prove that if kp(f) is small, then ¢ is injective and admits a K-
quasiconformal extension to R with K > 1 as & p(f) — 0.

If kp(f) <1, & is 2-quasiconformal and thus D’ is l;-unifogm, b = b(b).
By [MS, Theorem 4.24] g is injective whenever ||S,||, < o = €o(b). Moreover,
imitating the argument that we used in Lemmas 4.1 and 4.2, we see that if ||S,|| ,,
is small enough, gD’ is first linearly locally connected, then uniform and so g¢
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is sg-quasimdbius, sg = so(i)). Now Lemma 4.3 applies and we deduce as in
Lemma 4.4 that g is s-quasimSbius, where s — 0 when ||Sy|| 5, — 0, and again
the claim follows from Theorem 1.2.

Consequently, it remains to show that ||Sg||p, — 0 as «p(f) — 0. To prove
this, note that Mori’s classical distortion theorem gives an absolute constant A > 0
such that for each z € D' we can find a disk B C D with B(z,Ad(2,8D")) C
®(B). Thus

|S'g(z)|d(z, 0D')2 < A2 ”Sy||q>(3) <A %0 ("4’(3)(9))
= A"2p, (kam)(flB0 @71)),

where ¢, is the function of Lemma 5.5. Moreover, it follows from Theorem 1.2
that f|p o ®|5' has a Kj-quasiconformal extension to R’ with K, depending
only on kp(f) and that Ko — 1 as kp(f) — 0. Therefore, by [TV, Theorem
2.6], ka(p)(flB o ') approaches zero with xp(f). o

5.8. Problem. f D c R’ isa domain, let (D) denote the supremum of
the numbers s > 0 such that every locally quasiconformal mapping f on D with
kp(f) < s is injective. Define similarly (D) for locally conformal mappings and
for ||S¢||p- Is it true that x(D) > 0 if and only if ¢(D) > 07

In the previous section we saw that Theorem 5.7 remains valid also in the
more general uniformly collared domains, when n > 3. However, in the plane the
situation is different.

5.9. Example. Let
D =R?\ U B(m +in, (2\/5)'1).

m,n€Z

If € >0 is given, let f(z) = exp(ez), z € D. Then ||Sy||, =¢/V2 < e, but f is
not injective in D, f(1/2) = f(1/2 + (2r/e)i). Thus Theorem 5.7 does not hold
in all uniformly collared planar domains D.

In conclusion, Theorem 5.7 shows that a general theory with kp(f) or a joint
theory for log K(f) and ||S¢||, is possible in many important cases but, in the
light of the above example, the plane still has its peculiarities.

5.10. Remark. One can obtain injectivity and extendability results for uni-
formly collared planar domains D if additional assumptions are made on the
geometric distribution of the components of C(D). As an example, we mention
that a domain D C R’ is & p-rigid (k(D) > 0) if it is uniformly collared and if in
(4.6) Fy can be so chosen that for some A > 0, d(z, Fo) < d(y, Fy)/A whenever
z,y belong to the same component of

Dy ={z€ D:d(z,0D) < \d(z, Fy) }.
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This can be proved with a combination of the methods of 5.7 and [GO, Theorem
7]; we omit the details.
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