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ON QUASICONFORMAL RIGIDITY
IN SPACE AND PTANE

Kari Astala and Juha Heinonen

1. Introduction

Quasiconformal mappings in space are known to have many rigidity proper-
ties. For instance,

1.1. Theorem (Martio-Sarvas, [MS, 3.17]). Let D C E" , n 2 3, be a
b-uniform domain. There is a constanl Ko - Ks(b,n) > 1 sucå that every IocaJIy
K -quasiconformal mapping on D with K 3 Ko is iryective.

1.2. Theorem (Väisälä, [V4, 6.2,6.12]). Let D c R'" , n 2 2, be a bounded
b-uniformdomain, andlet f : D --+ R' be a,n s-quasisymmetricembedding. There
exisfs a constant so : so(brn) > 0 such that f h* a K -quasiconformal extension
to Rn, whenever s ( ss, In addition, K - t a"s s ---+ 0.

Flor the undefined notions here and below see Section 2.
In this note we shall study the interrelations of these two aspects of rigiditg

the injectivity and extendability of mappings. We begin with a necessa.ry condition
for the rigidity of a domain and, in particular, show: If D is a domain in R',
n 2 3,and ifthere is a constant K0 > 1 such that every locally I(s-quasiconformal
mapping on D is injective, then D must be linearly locally connected. Next, we
combine this fact with the above extension theorem of VåiisäIä and obtain the
following result (which has also been announced by Trotsenko in [T1]; for related
topics see [T2]).

1.3.Theorem. Let D CE, n)3,beab-uniformdomain. Thereis
a constant Kt : K{b,n) ) L sucå that every quasiconformal mapping f on
D with I<(f) S K1 has a quasiconformal extension i,E" -- Tf" . Moreover,
I{(f) - 1 as ^Ir(/) --r 1.

Applying Theorem 1.3, we then get a new and larger class of domains having
the injectivity property of Theorem 1.1. We call these domains uniformly collared
and show that for them also Theorem 1.3 remains valid.

In the plane the Schwa,rzian norm
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of a locally conformal mapping plays the same role in rigidity as the maximal
dilatation K(/) does in space. We shall provide an "explanation" of this analogy
and study how far it works. It turns out that looking at the local quasimöbius
properties of mappings one can introduce a distortion measure "o(f) equivalent
to llSyllp in the plane and to log /{(/) in space. Especially, with rcp(/) we obtain
formulations of 1.1. and 1.3 valid for quasiconformal mappings in all dimensions
n, n) 2.

2. Preliminaries

2.1. Notation. We shall adopt the fairly standard notation of [V1]. As
arule, D isadomainin E : R'U{-}, fl}2; B(xs,r) denotesanopen
euclidean n-ball; and for a set Ä C T[' we let C(,4) : E \ A. The group of the
Möbius transformations in R" will be denoted bV MAb(E").

2.2. Quasimöbius and quasisymmetric mappings. Given four distinct
points a, b, c, d in E" we denote their cross ratioby

la,b,c,dl : l,a - cllb - dl 
-' la - dllb - cl'

If one of these points is oo, the factors containing that point are omitted. An
embedding f: D -+ E' ir said to be (s-)quasimöbius, s ) 0, if for all points
a,b,c,d e D with lo, b,c,,dl < 1+ 1/s it holds

For s large this definition slightly differs from the original one in [V3].
We similarly arrive at quasisymmetry if, instead of the cross ratio, we consider

the ratio t : la - *lllb - cl of distinct points a,b,r e F.n. An embedding
f: D'- R', D C R', is called (s-)quasisymmetric,if there exists a number s ) 0
such that

lf (") - /(') I

l/(ö) - /(") I

whenever a, ö and r lie in D and la- xlllb - rl < L*'J.f s, cf.. [TV] and
[V4]. It follows from [V4, 2.3] that if / is quasimöbius or quasisymmetric in the
above sense, then l,f(a), f(b),f("),/(d)l < 0(la,b,c,dl) or, respectively, lf(") -
f (b)lllf @ - /(ö)l < ry(lo - blll" - öl) for some homeomorphisms 0,r1: [0, oo) -*
[0, -) and for all distinct points a,b,c,,d e D.

In comparison with quasisymmetry the quasimöbius mappings have the ad-
vantage (sometimes disadvantage) that they do not single out the point at in-
finity. Both conditions are global, however, contrary to the notion of quasicon-
formality; for example? an s-quasimöbius mapping f : D ---+ D' always has an
s-quasimöbius extension f : D --. D'. Quasisymmetric mappings are always

It@), /(b), f ("), /(d)l

la-rl
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quasimöbius, quasimöbius mappings quasiconformal, and the reverse implications
do not hold in general; the maximal dilatation of an s-quasimöbius mapping /
satisfies

(2.3)

see [v3 , 5.2f .

K(f)S(1 +')'-"

2.4. Uniform and linearly locally connected domains. A domain
D C E is called b-uniform if every pair of points t,A € D \ {-} can be joined
by a 6-cigar contained in D. A b-cigar is a^n open set

cis(r, 1/b) : 
V"Q,f 

*tr'11' - zl,lz- vl)),

where 7 is a continuum connecting r to y with

di*(r) <bl*-vl.
A related but larger class consists of linearly locally connected domains, cf.

[G2]. A domain D c E' is c-locaJly connected. if for each rs € Rn and r > 0
(2.5) points in D fl B(*o,r) can be joined in D fl B(xs,cr),
(2.6) points in D \ B(*o,r) ca^n be joined in D \ B(rs,r lc).

F\rrthermore, D is called linearly IocaJIy connected if it is c-locally connected for
some c. Note that if. T e Möb(E") and D is c-locally connected or ö-uniform,
then ?(D) is ct-locally connected or, respectivelg å'-uniform with c' : c'(c) and
b' :b'(b), see e.g. [V3].

The following result nicely ties up these notions.

2.7. Lernrna ([V3, 5.6 and 4.11]). Let D C 8", n 2 2, be b-uniforrn and
let f be K-quasiconformal on D. It f D is c-locally connected.for some c) 0,
then f is s1-quasimöbius, where st : sl(/(,b,c,n). If I is s-quasimöbius for
some s )0,then fD isbl-uniform,where ör:ör(s,å).

3. Quasiconformally rigid domains
'We assume throughout this section that n ) 3. For each domain D c F

we let K(D) denote the supremum of the numbers K > L such that every locally
K-quasiconformal mapping on D is injective. If K(D) ) 1, we then say that D
is quasiconformally figid or, simply rigid.

The a,forementioned result of Martio and Sarvas, Theorem 1.1, tells us that
ö-uniform domains are rigid with K(D) ) K(n,å) > 1. We also refer to an early
result of V.A. Zoriö lZl which implies that .I{(R") : *. The definition can also
be given by using quasiregular mappings. Indeed, for n ) 3 there is a mrmber
K(") > 1 such that every K(n)-quasiregular mapping is locally homeomorphicl
see [MRV,4.6].
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3.1. Lemma. Suppose that G is a smooth domain in R'" separating two
points x andv in D *i"uppotethat.fr E" -E' isquasiconformal. If f(x):y
and f(z):z for zeG,then K(f)>-I((D).

Proof. Let D(x) denote the r-component of D \ G. If / is as above, define
a mapping g on D by setting g(z) : f(z) for z e D(x) afi g(z) : z for z e
D \ D(c). It is obvious that 9 is locally quasiconformal on D with the dilatation
I{(g) < K(f). On the other hand, 9 is not injective since 9(c) : y :9(y). Hence
K(f) > K(g) > K(D). o

3.2. Remark. If one applies [V2, Theorem 8] in the proof of Lemma 3.1, it
is then possible to choose G to be any compact set separating r , y in D.

Lemma 3.1 gives a necessary condition for a domain to be rigid. In fact, we
obtain

3.3. Theorem. Rigid domains are c-Iocally connected and c depends only
on n and K(D).

Prcof. Suppose that D is rigid. If the condition (2.5) does not hold and
r,,A Q Dn B(xs,r) belong to different components of Dnflxo,cr)rapply [GP,
Lemma 3.1]: There exists a quasiconformal mapping /: Ff" -r E* such that
f(t): y, f(z): z for z eE" \B(to,cr), and

log K(/) < 2(, - L)ke(x,y),,

follows from the definition of &s that kB(r,V) < 2lG- 1). Thus, by Lemma 3.1,
1og.[f(D) < logK(/) < 4(n-t)/("- 1) and (2.5) holds whenever c> L*4(n-L)
.(loglr(D))-1.

Since the condition (2.6) can be reduced to (2.5) by an auxiliary Möbius
transformation, the above reasoning proves that D is c-locally connected and
that, in addition, c = c(n,X@)). a

g.4. Remark. Theorem 3.3 can also be proved by using a method of F.W.
Gehring [G3, Lemma 2], to which only obvious modifications are needed. A third
proof has been given by G. Martin (unpublished). We illustrate the method of
Gehring in an exa.mple below in showing that the converse statement for Theorem
3.3 is false.

3.5. Examples. There are linearly locally connected domains which are not
rigid.

a) Consider the domain

D - {(tr,tz,@)€ R," - R x R x Rn-z: ltll < 1 }.
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Clearly D is linearly loca'lly connected. To prove that D is not rigid, apply Lemma
3.1 with G : {x e D: t2, +t2r< 1 }. Since the points xi : iez and yi : -iez,
2 < j, lie in different components of D \ G, it suffices to find quasiconformal
mappings gfE -* E" such that gi@i) : aj, gj' fixes the points of G and
K(gi -+ 1 when, -+ oo.

For each, € N define the function

öi@) : ma":r{0, n(log s)/(log j) }

and then set, using the polar coordinates in the t1t2-plane, gi?,Ö,r) : (r,Ö+
Öi@),r) and 91(m) : oo. By arguing as in [G3, Lemma 1], we deduce that gi
is arr (1 +n/logj)-quasi-isometry in R', hence K;-quasiconformal with K; =
(L + r/logj)z(n-t1, and so 9; does have the required properties.

b) It is equally straightforward to verify that the linearly locally connected
wedge domain

D : {(tr,tr,w)€ Rx Rx R"-2: t1 ) 0, 0 < ltzl <t?}

is not rigid.

4. Extension of quasiconformal mappings

The following simple observation is the link between the injectivity and ex-
tendability properties needed in the proof of Theorem 1.3.

4.1. Lemma. Suppose that D CE , n)S,isrigid andthat f: D + Dt is

quasiconformal. If lt(f) < I((D), then Dt is rigid with

K(D')>K(D)IK(/) > 1.

Proof. If 9 is locally quasiconformal in D'and K(g) < K(D)lK(f), then
9 o / is locally quasiconformal in D with K(s o f) < K(g)K(/) < K(D). Thus
g o f , and hence g, is injective. o

4.2. Lemma. Let D C E, n) 3,beb-uniform. There isanumber
K(n,b) ) 1 sucå that it / is quasiconformal on D with /((/) < K(n,b), then
D' : f (D) isl-unifonn md f is s-quasimöbius. Here6:6(n,b) and s : s(n, ö).

Proof. By the Martio-Sarvas injectivity theorem, D is rigid with K(D) >
Ift(n,ö) > 1. If / is a quasiconformal mapping on D such that K(f) S å(/fo+t;,
then D' : f D is rigid by Lemma 4.L and c-locally connected by Theorem 3.3,
c: c(brn). Hence the conclusion follows from Lemma2.7. a

Lemma 4.2 gives no information about the behaviour of s when K(/) + 1.
However, this can be obtained by a normal family argument, presented in Lemma
4.4, and there 4.2 will be a,n essential part of the proof. For 4.4 we also need a
quasimöbius version of the Carathdodory convergence theorem.
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4.3. Lemma. Let Dy,Dzr... be a sequence of b-unifonn domains in E ,
n ) 2, let fi be s-quasimöbius mappings on Di, and let ai e Di. Suppose
further that A,e1,oo € Di and that fi fixes each of these points. Then we can
select subseguences, also denoted by Di, fi *d ai, which have the following
prcperties;

a) There is a b -uniform
in the Hausdorff metric;

domain D CE" sucå that C(D) converges to C(D)

b) There is an s-quasimöbius mapping f on D such that f i converges to f
uniformly on compact subsets of D;

c) There is a point a e D sueh that aj --+ a and fi@) - f(") as j -r oo.

Prcof. Since the sets C(Di) a,re compact in E", we may assume that they
converge to a closed set F C n' in the Hausdorff metric when j -+ oo. Here
F +R", since eaeJn Di contains a ö-cigar connecting 0 to e1. Similarlg it is
easily seen that O : C(F) is a ö-uniform domain, cf. [V!, Theorem 3.6].

Moreover, it follows from Lemma2.7 that f iDi arc b-uniform domains with
6:6G,ö). Thus, by further reducing to a subsequence, we also obtain C(f jDi) +
C(b), as / -) oo, where D is 6-nniform. Now [G1, Theorems 2 and 3] provide
a quasiconformal mapping /: D -, b such that fi converges to / uniformly on
compact subsets of. D.Il xryrzrw Q. D are distinct points, then

lf (*), f(y), f ('), f @)l: r.$l/i(r), f ifu),, f ie),li@)1,

and so / is quasimöbius. Hence a) and b) are proved,.

Flor the case c), take subsequences sue,h that ar. -+ o and f i@) -* a' as
j - q. Here either a * er or a f 0; we assume the latter. Connect a; to 0
by a å-cigar cig(tr,Llb) C D;. We may assume that "yj +.t and fi(1) + j,
where ? a,nd i are two continua connecting 0 to a and a', respectively. Clearly
cis(,y,tlb) c D and since /i(cig(ti,tlb)) > cis(fi}j),116), ct. [V3,4.11], we

also have .i1(i,Llb) C b. ln addition, a e D and hence /(o) is well defined.
If. x € ?\{0,o}, then x e D,f(*) e D, and soit follows from b) that

{(r\ {0,o}) c i. Thus /(o) e i. n f(a) 4 {0,o'}, by the above f(") e
D, a € D, andb)yields f(a): a'. Therefore, weonlyneedtoshowthat
f(") * 0. This follows from the quasimöbius properties defined in2.2. Indeed,

lfik:),fi@),/i(o),/r(*)l < a(l'l-') *d ttrus l/(r)l > Ul(lrl-l) whenever
xe D\{0}.'

4.4. Lemma. Foreaeh s ) 0 thereexists aconstant Ko: Ko(nrö,s) > 1

with the followlng property: If a mapping f is quasiconformal on a b-uniform
domain D CF-" , n) 3, and if K(f) 3 Kg, then / is s -quasimöbius on D.

Proof.,If the claim of the lemma is not true, we can find a number ss ) 0 and
sequences of å-uniform domains Di CR-" and .t(y-quasiconformal mappings fi
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on Di, J € N, such that Kj - 1 as, + oo but no fi is ss-quasimöbius on Di.
Without loss of generality we may assume that m e Di and that fi(m) : oo.
Moreover, since the mappings f i arcnot ss-quasimöbius, there is by [V3, Theorem
3.81 a number z0 = r0(s0) > 0 such that no f i is rs- guasisymmetric.

Next, we make use of Remark 2.5 in [V4]: There are distinct points a5,bi,xi €
Di \ {*} such that

(4.b) lffil:ti€[2s,1*1/16] 
a,nd lffil :rr' ti*rs.

We also norma,lize the mappings "fi by similarities ui,ui such that u;(0) : oi,
uiG): åj and ,1${*)) = o, ,i(fi(b)) : 

"r: lf' si - ui o fi o ui a,nd

fri: ritDi, then g; fixes the points 0,e1,oo € Di and (4.5) takes the form

läil: ti e lrs,I *Llrsl urrd loi(äi)l: t'i > lili+ rs, where äi = u71(o).
We can now combine the previous lemmas. According to 4.2,, for each j

large enough, 9i is s1-quasimöbius with sr : sr(å,n). By 4.3 we can then
assume that gi -+ g uniformly on compact subsets of a ö-uniform domain D6.
AS .Ff(g;) --+ 1 and g is non-constant (4.3.b), 9 is 1-quasiconformal and hence
a Möbius transformation. In fact, g is an isometry, since by 4.3.c) it fixes the
points oo,0 and e1. On the other hand, we have at least for a subsequence that
äi + a, where ro < lal < 1+ Lfrs. Henc-e, we may use 4.3.c) again a,nd obtain
;a; : lo(a)l : fimlgi(äi)l >nmlAjl+rs:lal]rs, whichis a contradiction. o

Prcof of Theorem 7.3. Let D C E",n 2 3, be ö-uniform and let'/ be
quasiconformal on D. We can assume that 0 e C(D), that oo € D, and that
/(*) : oo. Denote then by po t"l" domain D n A(0,2diam C(D)). Since Do

is bounded and å-uniform, with å depending only on ö, we can apply Theo-
rem 1.2 in Ds. Hence, to prove 1.3, it suffices to find for each s > 0 a consta,nt
Ko : Ko(s,n,b) ) 1 such that /l2o is s-quasisymmetric whenever I((f) S Ko.
Because /(*): m, / is s-quasimöbius only if it is s-quasisymmetric, and thus
the claim follows from Lemma 4.4. a

Theorem 1.3 yields plenty of rigid domains which are not uniform. We say

that a domain D c E" is (b-)uniformly collarcd, if there is a partition of C(D)
into pairwise disjoint compact sets .F';, i : 0,112, . .. , such that the following two
conditions hold:

(a.6.a) C(Fo) is a å- uniform domain.

(4.6.b) For i ) 1 each f'; has a neighbourhood U; such that
U;n E is ö- uniform and U;fiUi * 0 when i + j.

We observe that if D is uniform, then it is also uniformly collared since we
may choose Fo: C(D) and f" : 0 for i > l. On the other hand; it is easy to
exhibit domains which are uniformly collared but not uniform. For example, in
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the plane the complement of the set {O} U {t/n}fo is not uniform. F\rrthermore,
we obtain a uniformly collared domain if we tafte arry collection of disjoint balls
B(rxrrp),,k e N, contained in a uniform domain D6, choose a number 0 < ,\ < 1,
arrd set D: Do1[Ji^B(c*,lrr); cf. Figure 1.

Fi.gure 1.

4.7. Theorem. Suppose that the domain D c 8", n) 3, is ö-uniformly
collared and that f is IocaJJy quasiconformal on D. Then for every K > 1

tåere is a number Ko - Rs(n,b,I() > 1 such that f is injective alnd admits a
K -quasiconformal exf ension to R" whenever I((/) S I(0.

Proof. It C(D): UFi and Ui are the neighbourhoods of .F; as above in
4.6.a) and b), it follows from Theorems 1.1 a,nd 1.3 that fi : flu,no has a K1-
quasiconformal extension /;: E" - E" 

"* 
soon as /{(/) < Ks : Ks(n, ö, Kr) S

Kr. Then the formula

n€tlr\Fo,
neD

defines a locally K1-guasiconformal mapping on C(f'o). Finally, since C(.F's) is
ö-uniform, another application of 1.1 and 1.3 impliss that, if K1 is small enough
(the smallness depending on n, ö and K), then / is injective a,nd extends to a'
K-quasiconformal mapping of If". o

4.8. Corollary. A unifortnly collared domain D in E , n) 3, is guasicon-
formally rigid.

i@)-{t',3'

Q\o
\ 

ooooo
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4.9. Remark. There are also rigid domains which are not uniformly collared.

To obtain particular examples, we only need to note that if E C E"-t is any
compact sei with empty inierior, then D : E'\ E is rigid'

5. Rigidity in plane and space

Suppose that either / is locally conformal on a plane domain D or that / is

locally qlasiconformal on a domain D c E" , n ) 3. Then the natural distortion
measures, the Schwarzian norm llslllp in the plane, cf. (1.4), and logl((/) in
space behave in a very similar fashion. For example,if. D is uniform and llSyll,
small, then / is injective ([MS, Theorem 4.2a1) and admits a quasiconformal ex-

-qtension to R' (see, for instance, Theorem 5.7 below). Conversely, and in analogy
with Theorem 3.3, if for some ,\ > 0 every locally conformal mapping on D with

llslll" ( ,\ is injective, then D is linearly locally connected by [G2]. F\rrthermore,
both ll,91ll, and logK(/) vanish if and only if / is a Möbius transformation'

These facts suggest that there should be a general theory for log K(/) and

llslllp which also covers quasiconformal mappings in the plane. A convenient way
to study this problem is to introduce the following distortion measure.

5.1. Definition. Srrppose that D C 8",
uous. We let

n

*o(f): inf{ s ) 0: 
"f la ir s-quasimöbius for each Möbius ball B c D}.

Here, of course, a Möbius ball is the image of B(0,1) under a Möbius transforma-
tion.

Clearly O < rco(/) ( oo and *o(f)j 0 if and only if / is a Möbius trans-
formation. F\rrthermåre , if T,U e Möb(E ;, thet nu-t p(T o f o (I) = *o(f) .

. 5.2. Lemma. Suppose that f is IocaJIy quasiconformal on a domain D c
E , r t S. Then

(5.3)

(5.4)

los I{(f) S (', - 1)'D(/).

Convercely, tåere is an increasing continuous funtion go: [0, m] - [0, m] wåicå
depends only on n and safisfies

rcp(/) Svo(log K(/)) , eo(O) - 0.

Proof. The estimate (5.3) follows from (2.3) and the converse from Theo-
rem 1.3. Indeed, if g(r) der,rotes the infimum of the numbers s 2 0 such that
every locally e"-quasiconformal mapping on B(0,1) is s-quasimöbius, then g is
increasing, "p(f) < p(log.t((/)),p(0):0 and p(r) - 0 as r -r 0 by Theorems
1.1 and 1.3. Consequently, we may replace g by an increasing continuous function
9o: [0, m] - [0, *] with cps(0) : 0 and p(r) 3 po(r). tr
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5.5. Lemma. Suppose that D is a proper subdomain of the finite plane
R2 and that f is IocaJIy conformal on D. There exist increasing continuous
functions gr)g2i [0,m] -r [0,m] wåich a,re independent of f *td D such that
Pr(O) : 9z(0):0 and

(5.6)

Thus

llsrllp S pr ('D(/)) , KD(f) 3 pz(llsrllr).

Prcof. Fix the point zs e D and let B : B(ro,d(zs,0D)). If rco(/) : .e (
oo, then by Lemma 2.7 f B is a simply connected å-uniform domain, i.e., a Ks-
quasidisk, K6 : Ks(s), [MS, 2.33]. Clearly we may assume that I(o : 1 * p(s)
for some continuous increasing function 9: [0,m) -- [0,m) with 9(0) :0. Next,
by Lehto's majorization principle, see [L, p. 73], we can estimate

llsfla ll a s 6(I(3 - L) I @3 + 1) S 6(/(0 - 1).

lsrQo)laQo,aD)'
Since ze € D was arbitrary, we amive at the first inequality in 5.6 with g1(r) :
6p(r),pr(m): *.

To obtain the latter inequality, we apply the Ahlfors-Weil extension theorem,
cf. [L, II 4.1]. Indeed, if B c D is adisk or ahalfplane and if llSlf"ll" < Lf2, then

/lA has a K-quasiconformalextension to E2 with K: (r+Zllslfalla) /(L-
zllsrralla). since llsrr"ll" s llsrlla, K - 1 when llsrlla -' b, uoä-ro [TV,
Theorem 2.61 yields the funition gz. o

5.7. Theorem. Suppose that D is a b-uniform domain in E', n) 2 and
that f is locally quasiconforma,l on D. For every K > 1 there is a number Ks :
rcotn,b,l() > 0 such that f is injective and has a K -quwiconformal extension to
R" whenever *o(f) S *o.

Proof. We reduce the proof to the previous arguments a^nd results; a direct
proof could, of course, be described along similar lines. In fact, when n ) B, the
theorem is a reformulation of 1.1 and 1.3. When n :2, we assume that D C -#;
by appealing to the measurable Riemann mapping theorem, see e.g. [L, pp. 68], we

write / as a product f : go0- rwhere O: E2 -- E' is quasiconformal, O(m) : oo
and g is locally conformal on Dt : O(D). Since K(O) : K(f) < L * nyr(f),
it suffices to prove that if *o(f) is small, then g is injective and'admits a K-
quasiconformal extension to -# with K + 1 as np(f) + 0._

_If no(f) ( 1, Q is 2-quasiconformal and thus D' is 6-unifo1m, 6: b(b).
By [MS, Theorem a.za] g is injective whenever llsrlla, S eo : ro(6). Moreo.rer,
imitating the argument that we used in Lemmas 4.1 and 4.2, we see that if llsellD,
is small enough, gD' is first linearly locally connected, then uniform and sol
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is ss-quasimöbius, so : so(6). Now Lemma 4.3 applies and we deduce as in
Lemma 4.4 lhat g is s-quasimöbius, where s --r 0 when ll^9rll p, + 0, a,nd again
the claim follows from Theorem L.2.

Consequently, it remains to show that ll^9rllr, + 0 as rp(/)'-+ 0. To prove

this, note that Mori's classical distortion theorem gives an absolute constant .\ ) 0

such that for each z € D' we ca,rr find a disk B C D with B(2,)d(2,0D')) c
o(B). Thus

where 91 is the function of Lemma 5.5. Moreover, it follo-n's from Theorem 1.2

that /ls o ölll has a K6-quasiconformal extension to E2 with Ko depending
only on KD(f) and that /(s + 1 as rcp(/) + 0. Therefore, by [TV, Theorem
2.6], rcalsy(/lr o A-1) approaches zero with trD(f). d

5.8. Problem. If .O c E2 is a domain, let rc(D) denote the supremum of
the numbers s ) 0 such that every locally quasiconformal mapping "f on D with
KDU) S s is injective. Define similarly o(D) for locally conformal mappings and
for llSyff r. Is it true that *(D) > 0 if and only if o(D) > 0?

In the previous section we saw that Theorem 5.7 remains valid also in the
more general uniformly collared domains, when n ) 3. However, in the plane the
situation is different.

5.9. Example. Let

D :R2\ U B(m*t",(z'f\-1).
m'nEZ

If e ) 0 is given, let f(z) : exp(ez),, z e D. Then llslllo : e/fr( e, but / is

not injective in D, f (ll2) : f (Llz + (%rle)i). Thus Theorem 5.? does not hold
in all uniformly collared planar domains D.

In conclusion, Theorem 5.7 shows that a general theory with rcp(/) or a joint
theory for log/{(/) and llsllla is possible in many important cases but, in the
light of the above example, the plane still has its peculiarities.

5.10. Remark. One can obtain injectivity and extendability results for uni-
formly collared planar domains D if additional assumptions are made on the
geometric distribution of the components of. C(D). As an example, we mention

that a domain D cF2 is rcp -rigid ( *(D) > 0 ) if it is uniformly collared and if in
(4.6) .F'0 can be so chosen that for some ) > 0, d,(x,f'g) S d(y,Fs)/\ whenever
c,y belong to the sarne component of

lsn Q)laQ,aD')' s Ä-2 llsrll*r"l s Å-2et (o*r"r(g))

- .\-2?, (t" e>Ula o O-t)) ,

Dx= {z € D: d(r,AD)
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This can be proved with a combination of the methods of 5.7 and [Go, Theorem
7l; we omit the details.
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