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1. Introduction

We say that two nonconstant meromorphic functions / and g share the value
o if thezerosof f -a andg-a(Llf andLlgif.a= oo) arethesame. The
following uniqueness theorems are already classical:

Theorem A (R. Nevanlinna [6], p. 372). If two meromorphic functions in
the plane sharc five distinct valaes, then both functions agree.

The number five is best possible as is shown by -f : e" and I : e-z which
sha.re the values -1, 0, 1 and oo.

Theorem B (R. Nevanlinna [6], p. 378). If two distinct nonconstant mero-
morphic functions f *rd g share four values by counting multiplicities, then two
of the values, a1 and o,2, s&!, are Pica,rd values, and

(f,, g, as, on) : (or, ot, as, aa) : -t

holds.

Here, as usual, (a,b,c,d) : (a - ")/(b - c) : (a - d)l(b - d) denotes the
cross-ratio.

For refinements and generalizations of Theorem B the reader is referred to
G. Gundersen [2] and E. Mues (see the booli of G. Jank and L. Volkmann [5]).

In [1] H. Cartan considered the problem whether three functions may share

four values, and he came to the conclusion that this is possible only in the trivial
case that two of the functions are equal.

However, the proof in [1] contains a serious gap, and the first purpose of this
note was to filI out this gap. Short before having reached this goal, it turned out
that the theorem of Cartan is false. Instead of Cartan's theorem the following is

true:
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Theorem L. Let f , g *d h be dinstinct nonconstant meromorphic func-
tions in the plane sharing the values 1,0, oo and -a. Then a + L it a third rcot
of unity and u: frg and h are solutions of the aJgebraic equation

(1)

where

(2)

and the
equation

(B) (#)' : .y',u(u+ 1)(u - a),

where 1 is a nonconstant entire function.

We remark that the general case, where f , g and å share the values clt t a2 t

crs t ctr4 can be reduced to Theorem 1 by the Möbius transform ut r-+ (w, a2, crs, a4) ,

The converse of Theorem 1 is also true.

Theorem 2. Let a I L be a third root of unity and let 7 be a nonconstant
entire function. Then every solution of (3) is meromorphic in the plane, and if U
is an arbitrary nonconstartt solution, then there exjst tåree distinct meromorphic
functions in the plane whieh satisfy equation (1) and share the vaJues 1,,0,oo
and -a.

The simplest case is 7(z) : z, and if f , g a.nd h form a solution of our
problem, then the most general solution is / o.yt g o 7 and ho.y, where 7 is an
arbitrary nonconstant entire function.

Let (l be a solution ot (d,U I d,z)2 : 4U(U+ lXU - a) having a (double) pole
at z:0. Thenthepolesof U formtheperiodmodule of U, andif @1 a\du)2
are poles of / of order four, then clearly @2 - e! is a period of / (and so of g
and /z). Sinceasymptoticallyeverythirdpoleisapoleof / of orderfour, / (*d
so g and h ) are doubly-periodic with elliptic order six, while the elliptic order
of U is two. Thus the area of a parallelogram of primitive periods of / is three
times the areaof the corresponding period parallelogram of. U, and so, if (c,.r,tr,)
is an appropriately chosenbasefor U it followsthat (2c.r -etre *r.r') is apairof
primitive periods of f (g and lz).

This observation leads to a more explicit construction of /, g ard h. Let
p denote the Weierstra^B P-function with a pair of primitive periods 2w - w' and
u * wt. Then

(r'Q) - rt(w l2)) (rr( z) - r'(3, l2))'

e(uQ),r) :0,

P(*,y) : y3 -g((a - L)*, - zr)a2 - g(zr2 - (a - t)x)y - x3,

meromorphic function U is a nonconstantt solution of the öfferential

F(r) -
G(') -

share the values 0, oo , A

p(z) - rr@)
F(, * ,) and H(r) - r( z + ,')
and B, where Al B + -1 is a third root of -1.
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2. ProofofTheorem 2

Fhom a well known theorem of Rellich [7], p. 153, follows that the solutions
of the differential equation (dwld,z)2 : 4w(w + l)(to - a) are either constants
or elliptic functions. Thus, every solution of (3) is meromorphic in the plane,

U(z) : .(lQ)), where tp is an appropriately chosen solution of the equation
mentioned above.

We denote the solutions of P(r, U)': 0 by yt, Az and ge . It is easily seen that
o:0, -L, a and m a,re critical points, where Urt Uz and y3 coincide (having
values 0, -a, 1 and m).

Let us consider the case a : g = 0 in more detail. The Newton-Puiseux
diagram (see E. Hille [4], p. 105) looks very simple (see Figure 1).

0123
Figure 1. Newton-Puiseux diagram near a - A = 0.

Thus the solutions are

(4) y{n):lc1,xh/2, vz(s):L?t)kco*t'tz G, *O)
ft=l lc=l

and.

(4') as(x):Dd**o (dz * o)

whie.h is regular since yg2ys : 03.

A similar behaviour is observed near the critical points oo, a and -1. For
the convenience of the reader we will write down the corresponding equations:

\

\
\

\
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(5)

(6)

and from (a) and (4') it is seen that D(c) - const.03 near r :0, and, similarly,
D(r) - const.(r f 1)3 near x : -I and D(r) - const.(r - a)3 near r: a.

However, at infinitg two of the solutions behave like * const. n6 while the
third has a double pole. Thus, from (5) it follows that D(r) - const. se as c + oo:
and so the discriminant is

D(r): const.cs(c * 1)3(c - a)3,

which shows that there are no critical points other than 0, oo, o and -1.
Now, define locally

iVorbert Steinm etz

i) r =y - m (set r:tlt,y:Iln):
r' - 3((" - L)€' - 2€)n" - z(ze' - @ -t)€)'r - €3 : 0.

ii) x :a, y - I (set r = {+ d,A :f * 1) :

?' - 3((d - 1)€' -2o€)n' - s(2a12 - (a -t[)n - €3 : 0.

iii) c : -L,, A : -a (set r : {- L,A :n - a) :

,f - s((a- 1)€' - za€)n" - t(zag2 - (a - t)f)n - €3 : 0.

The discriminant D(*) of our equation is given by

D(*)- (v'( r) - v2(")) '(rr(') - as(")) '(rr(") - ar(*))',

f -AtoU, g-Uzo(J and h-Uso(J.

The only critical singularities are the zeros, one-points, (-a)-points and poles
of U.

As an example, consider a zero zs of U. Since (/ has only zeros of even mul-
tiplicity (which is two if zs is not a zero of 1'), it follows that tfr is holomorphic
n€ä,r 26, and so from (4) and (4') it follows that /, 9 md å are regular at ze. A
similar reasoning applies at the other points, and so, by the monodromy theorem,
f , g *td lz are meromorphic in the finite plane.

Now it is easy to show that they share the values L, 0, oo and -a. For
example, let zs be a zero of /, say. Then, since / is a solution of (1) we must
have U(zs):0, which implies that every solution of (1) is zero, that is, g(zo)=
h(zs):9.

Thus, Theorem 2 is completely proved.
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3. Remarks on the proof of Theorem 1

The main tool will be Nevanlinna's theory of meromorphic functions, and it
is assumed that the reader is familiar with its basic notations a^nd results (see

\M.K. Hayman t3]).
Our hypothesis is that

(H) three distinct nonconstant meromorphic functions in the plane share four
values.

Fbr technical reasons it is sometimes convenient to denote our functiott /,
g *d ä also by "fr, .fz and /3. This should not give rise to any confusion (the
patient reader is asked to look.t ("ft, fz,fs) as a perlnutation of ("f, s,,h)).

For the same reason the shared values are denoted by or, Qzt as, a4 and are
assumed to be finite in the first part of the proof.

Only in the final part of the proof we will use the normalizatiorl d1 - -a,
az : L t as :0 and d4 : 6 which is then more convenient.

a) In Section 4, Cartan's auxiliary function (7) is used to show that for an
arbitrary c-point zs (c is one of the shared values) with'few'exceptions the
following is true: zs is a simple 6'point of two of the functions, while it is a
multiple c-point of the third one.

b) In Sections 5-7, we will shou' that every derivative fi (1 S i < 3) has

'many' zeros, most of them having multiplicity kj - 1 > 1. Using various
auxiliary functions we will be able to prove that (&1,lrz,lcs) is a solution of
the diophantic equation

\M-rft+\fr+\fr*2,
which has exactly one solution s : y : z : 4.

c) In Section 8, the shared values are assumed to be -a, 1 , 0 and m. With the
aid of a) and b) we will be able to show that there are meromorphic third roots
u, v ar'd. w of rhe functions lIl=rf i, ll]=, (/i - r) Td nl=, Ui * o),
whichareconnectedvia V=a(J -aa and W:9u+Fo (ot:f3:1).
Finally it turns out that a : ot f L . From this, (L), (2) a,nd (3) will easily
follow.

Besides the standard notation of Nevanlinna theory $'e use the abbreviations

and

for c : art a2, ag) a4.

"(") 
: *f T(,',f i)

Ir"(,')-Itr(",#)
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Here, fi , fz alrtd /s denote the functions sharing the values aL, e2, a3 arrd
aa, which are assumed to be finite throughout Sections 4-7.

We write 
"(r) S o("(r)) as r + oo to indicate that, given e > 0, there is a

set .8" c (0, oo) of finite measure such that o(r) < eT(r) outside .8,.
If .F' is a meromo{phic function and p is a positive integer, then lf(r,flp)

denotes the counting function of the p-fold poles of F, each pole counted simply
(as indicated by ). We will say that almost every pole of F has multiplicity
p if ff(r,F): /v(r, F,p)*o(r1r1). Note that this does not imply JV(r,F):
piM(r,F,p) * o(f1r;) t

. Cartants auxiliary function

We will first collect in Lemma L some well known facts which a,re even true if
two functions share four values.

Lemma 1 ([2], p. 547, [6], p. 373). [Jnder the hypothesis (H) the following
is true.'

r(r,f) - (1 +o(1))r(');

(b) *(,#) *",0,#) :o(r1')), i*k;

(")

(")

(d)

Prcof. Fbom Nevanlinna's second main theorem and our hypothesis (H) fol-
lows

(z + oe))r(,) < i,r (,, #)s F (,, #)
1 T(r, f) + rb,/r) + o(r) < (z + o(r))"(r)

(j * k). Thus, the inequality sign must hold, and (a)-(d) are easy consequences
(note that in the third inequality the term rn(r, t/(f i - /r)) + trt (r, tlffi - f *))
has been omitted).
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In [1] H. Cartan considered the auxiliary function

(7),":(Lo--L,-),.(h-*)'.(h-ft)^,
where a is one of the shared vaJues and. where we have written -f , g und h instead
of "fr, f2 and /g. The estimate

(s) r(,,p") < (s + o(t))"(r)

follows immediately from the usual rules, and it is also seen very easily lhat go
vanishes at least twice at every common arc-poinl, ak* o. Thus, if

(e) e"#o
is taken for granted, we have

/(10) , 
E"r",rr) 

< rtr (,,*) < (s + o(r))"(r),

and a symmetry argument shows that

(11) 0f fr,,(r) < (12+o(1))"(r)
lc=1

is true' com?,":fjåI"Ttiiffi;it]u',.nu. 
arso in the common a-points, and ir

this were true we were allowed to replace the constant 6 in (11) by 7 and would
so derive a contradiction to Lemma 1 (d).

However, tpo does not necessarily vanish at the common c-points. (This has
been kindly pointed out to me by Erwin Mues to whom I also would like to express
my thanks for valuable discussions on this topic a few yeärs ago (then we believed
that Cartan's theorem is true).) For, if zs is a common a-point of f , g and lz of
multiplicity ,t, I and n't.) say) then from (7) it follows that -

(L2) vo(zo) : (m - t)f'("0) + & - *)g'('o)+(l- k)h'(zs),

and so ?"(zs):0 exactly in the following cases (up to permutations):
(i)&:l:m--tt
(ii) min(&,l,m) > l,
(iii) e:l>m:1,and.
(iv) m ) k :l : 1 and f'(ro) : g'(zo)
On the other hand, po(zo) *0 if, for examplet Trt) Ic:l:1 and f'(ro)|,'t

g'(zo) .

Before proving (9) we will first draw the consequences from the fact that go
vanishes with 'few' exceptions only in the common aj -points , a j f a.
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f,emma 2. Under the hypothesis (H) tåe following is frue.'

(") &(r) : (å + o(r)) 
"(r) 

for a : etta2tr,sta3.

(b) ÄImost every a-point (a: dtt.. . ,aa) is a simple a-point of two of the func-
tions and a multiple a-point of the third one.

(")

(13')

(13)

(14)

3

I,v'
j:l

fot Q, : al, a2 t ag t &4,

(d) 
å" (,",å) : (2+o(r))"(r).

Praof. We remark that (9) is assumed for a : dt,e2,<r3, tr4 änd will be proved
later.

We already know that in (11) and consequently in (10) the equality sign must
hold, from which assertion (a) follows.

(b) is an immediate consequence of our considerations of Cartan's ingeneously
chosen auxiliary function (7). From this and (a) also (c) and (d) follow, since to
almost every a-point there corresponds a zero ofexactly one ofthe derivatives /j.

Lemma 3. Under the hypothesis (H) we have g" * 0 for a : o4tazrasa,4.

Prcof, Assume go :0 for some a : ai. It is the same to say that

H'(F- c) + G'(H - r) + F'(G - H)E 0,

where F:(f -o)-t, G: (S-")-t and I/: (å-a)-1. Diferentiatingthis
identity yields

(13") H"(F- G) + G"(H - r') + F"(G- fr) : o,

while

H(F -G) + G(H - F) + r(G - H)- Q

holds true trivially. Since the differences F - G, H - F and G- If do not vanish
identically, the linear homogeneous system (13-13") has a nontrivial solution for
all but countably marry z. Thus the Wronskian of H, G and F must vanish
identically and so H, G and -F are linearly dependent:

,Åuu
v,'4.: 

- 

T-T-:v
I-a, g-a, n-a



F,(r) +2 ! iv".{,) . * (,,*) 
= 

B"(r) - zra(')+o(r(r;)
\ tPb/apla,b \

or, equivalentlg

4
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for some nontrivial choice of. \, 1t, z. Since at least one of the other values ox # o
is actually attained, we have

(15) .\*pr*u:O.
It is clear that r/a cannot vanish for every b: att...ta;, thus there is at least
one ö with r/6 10. The estimate

T(r,rl,i < 3"(r) -2N6(r)+o(r(r;)
follows immediately from the definition of ty'a, and from (15) it follows that ry'6

varrishes in every o6-point, ak * b, and even with multiplicity two at least if
ox # o. This gives

(16) 2tN",(') < (s+o(1))"(r)+F"(r).
Ic=1

This is even stronger than (10) which holds if go * 0. Adding up these inequalities
for varying a, we get

4

7tF",(r) < (12+o(1))"(r)+ t &(,).
Ic=l g"*O

This, together with Lemma L (d), leads to F,(r) : o("(r)) if po:0, while from
(16) and Lemma 1 (d) 

"(rxt 
+ o(t)) < F,(r) follows, which is obviously absurd.

Hence, Lemma 3 is proved.

5. Three auxiliary functions

We put II(to) : fll=, (, - a,) and consider the auxiliary functions

(12) F,: -{'i- -$i - f i+iffi-- f i+z)'r - n(/i) fi+t- fi+z

(j : L,2,3), where fa: /1 and ls: fz. The usual rules for the proximity
function give

m(r, F)= - (r, tb) * 2m(r, f ) + m(,,/r+,) *,n(r, f i+z)

+*(,,#) *r1'y
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Here the last relevant term is o(fir;) by Lemma 1- (b), while the first term on the
right hand side is o(f1r\ by Nevanlinna's lemma on the logarithmic derivative
(note that f' /fi6) : D!,=, A,f' /(f = cr,)). Also by Lemma 1 (d) and the second,

main theorem we have m(r,, f n) : o("(r)) ( & : 1, 2, 3 ). On the other hand, the
construction of .Q is made in such a way that the zeros and poles of the nominator
and the denominator cancel out by Lemma L up to a sequence having counting
function o("(r)). Thus, .Q is a small function:

(18) T(r,F): o("(r)).

According to Lemma 2 (d), at least one of the derivatives /j has 'many' zeros in
the sense that

(1e) A'(",å)

.e (", h,r,

I o(rt")) .

(22)

Thus, there exists an integer ki > 2 such that

(20)

Lemma
function K j ,

(:21)

sucå that

- t) I o(r(,))

4. Under the hypotåesis (20) there exists a small meromorphic

p.Fi+t -rFi

Moreover, in almost every zero zs of fj of multiplicity ki - I we have

(23) fj*r* oifj*, - o_ (z - za).

We rema.rk that the last ecluation (22), which is independent of ki, shows
that there are at most two distinct integers k1 2 2 having property (20). If there
are two, the corresponding functions are n7 and -rc;.

Proof of Lemma 4. We may assume j : 1. Let zs be a, zero of /l of
multiplicity h - I such that hQo) € {ot, ...,c.r+} (note that almost every zero
of fl has the last property). Then from (17) follows

('- #)', ft: (#)'tq4z (fi '\' r'Es
n_\R-') ' n-
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a,t, z : zs, and elimination of f il f I yields

(24)

and

(25)

at z: zo.
Flom hypothesis (20), however, it follows that (24) holds throughout the whole

plane (a function, like the difference of the left hand side and the right hand side
of. (24), with characteristic o(f1r;) may not have zeros with counting function

* o(f@)), until it vanishes identicatly). Thus, (22) and (23) follow if we put

2n1=kr+-L-+.'' Fr ' F")

while (21) is a consequence of (18).
We may assume that the statement of Lemma 4 is true for 7 : 1, and we

want to show that it is true for j - 1,2 and 3. This will be done in two steps.

Lemma 5. Fbr j : Lr2,,3 and every lc :2,3,4,,. . . we have

^ft: (*,fr-l - ft)'

,#: fr.l - k,#

Proof. Again we may assume j : L. Since (26) is trivial if (20) is false
(l : 1), we may assume that the statement of Lemma 4 holds for j - I and
ki:k'

Consider the auxiliary function

Fo := (ft, fz,a, fs) : P, #,lz-u J2-J3
where a e {a1,...,a+I is arbitrary. We note that the multiple zeros of fr - a,
fz - o md "fs - a a"te zeros, poles and l-points of .F| , thus

(26)

(27)
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Fbom (23) (j : l,) follows that in almost every cy-point z6 (a I a,) of
order å1

F"(ro) - 1+ K{zo).

Since, by (27), F" * L { rc1, this gives

E"r 
({,#,*,) =' (', '"_+ - ") 

* "(',',)
( ?(r, F,) + o("(r)) S (å + o(r)) 

"(r).
Adding up these inequalities for a : attd2,&ste4t inequality (26) follows.

6. Zeros of the derivatives

As already mentioned we want to prove that (19) and so Lemma 4 is true for
j : L,,2,3 (and appropriate fr;), that is

Lemma 6. For j : lr2r3 we have

-/ r\
" (.', Tj)r o("(r)).

Proof. We may assume that the statement of Lemma 6 is true for 7 - 1, and,
if it is false in general, it is false for j : 3.

If it is false for j : 2, too, we derive a contradiction as follows:
Since .&(r, tlfil < N(r,Llfl 1T(r,fD <Q +o(1))"(r), we have by Lem-

ma 2(d)

.'v (', å,t) 
: 

" (,,å) . o(r1,1)

: i Fr (,,+) . o(r1r)) : (z + o(r))"(r),
i^ \ Ji/

which contradicts Lemma 5 (l:1,/c:2).
Thus, if Lemma 6 is false in general, we may assume that it is false for j - 3

and true for j - 1 and 2.
First case: Assume that, for j : L,2, there is exactly one integer &i with

property (19). Then we find, using Lemma 5,

å" (,",å) : å,v (,, å) 
. o("(r)) 

= (å +,(1)) 
"(,)
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in contrast to Lemma 2 (d).
Second case: There exist, for j : I, say, two different integers having property

(19), denoted by ftr and h (h < /r). As already mentioned;.we have

(22') ,r#=(1-'r)', ,r#: (t - *)', ft: *?,

and ftr and lr are uniquely determined.
The corresponding integer k2 will be chosen minimal (if not uniquely deter-

mined).
The trivial observations

and
(z + o1t;)r1r; >

(el - 1)fi (', å) * (r, - r,,)iv (', h,,,, -r) +,111'1;

lead together with Lemma 2 (d) to the inequality (note that N(r, tl fil : o("(r)) )

#.#>z+"ffi,
where o is some positive constant. Thus we have

(28) min(&1, kz) :2 and h ) h.

Fhom the first equation of (22), j : ! , and of ( 22') follows

(2e)
lq (t+or\2
ä- (ffi/ and so K1 ( o,

105

and from (22), j - 1,2, follows

K1- -6M*l)l\Ar1).
leads to the diophantic equationThis

(30)

Multiplying bV tE and 1fi, respectively, we get two additional diophantic equa-
tions
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(30')

and

(30")

(33)

(34)

Norbert Steinmetz

2(k'* /r71ffi + (+ - (t' - kt)(kr+ l))tÄ t4kLt6 - l,4k1

*'4\M*.4k2'A+(+-(t,-kt)(k,+1)),fr:_2(/r*|,,)kz.
Now (30)-(30") may be regarded as a system of linear equations with solution
1tffi,\6,\F2). The determinant D of this system, however, is given by

+lo : 4k2(h I Ir)' + 1.6hLG - k2)

+ ((r' - k)(kz+ 1) - +)((l' - k)kz* 5Ir + ek, - +),

whieå is easily seen to be positive. Thus, ,16, \6 and yffi are rational
numbere in contrast to (29). This proves Lemma 6.

7. Another diophantic equation

Fbom equations (22), L < j < 3, it is posssible to eliminate the functions Fr,
F2 and .Fs. We obtain

(31) h: n2s(q + 1)', kz: rc\(nz 1!)2 and lcs: nl(ns + L)2

under the constraints

(32) (tt nzns)2 - 1 and min( kt,kz, kr) > 2.

We note that rc1 , fi2 and lc3 ä,r€ constants, because no ,cj assumes the values -1,
0 and oo, but this is of no importance here.

Again, elimination of rc1, rc2 and. rc3 leads to the diophantic equation

agt6\M-(o\A+ BtE*trFt+ 1+d) - o,

where a, L 7 a,nd 6 are allowed to assume the values *1 independently of eaeå
other.

If the left hand side is denoted by aB16fi(kt,k",&3), then ä is strictly
increasing in all its variables in the range ki > 2, and so H(2,2,2) ( 0 gives

z\E S rfz@tt + o$ + aB6) * agt6 * ag.y,

which is only possible if a : 0 : l: 6 : 1.. Thus, only the diophantic equation

,@-'fr-'fr- tfr-2-Q
has to be considered in the range x,y,z )_2.

We remark that a : I : 1 : 6 : 1 corresponds to y@ : re(rr * 1),
'r,6: rcr(nz* 1), and t6: nz(ns+ 1) and K1n2Ks:!.
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Lemma 7. The diophantic equation (34) åas exactly one solution in the
range xtUtz ) 2 : x : A : z : 4.

Remark. It then follows easily that rcr - Kz: rce:1.
Prcof. Let (r, y,z) be a solution. By symmetry we may assume 21o < y

1 z. To obtain an upper bound for y we use the_monotonicity of, H , which implies
0: H(r,a,z) )- H(i,y,y) *d "o 1ffi - tfr-z\fr -2 < 0. This gives the
upper bound

v < 5.83 and so y < 5.

I{ow (34) is equivalent with

(+.

z:(
,rft +,rfi +z
,fr-1 )'

In the range 2 I s I y I S rhowever, z is never an integer except when
(the distance of z to the next integer is at least 0.1.7, except when r
This proves Lemma 7.

n-y
:y:

-4
4).

8. SunrnrarY

The quintessence of what we have proved in Sections 4-7 is that almost every
common c-point zs (ce {ot,...,aa}) isasimple c-pointof twoof thefunctions
and a c-point of multiplicity 4 of the third one. Moreover, the sum of derivatives

f' + g'* Ir' vanishes at zs (we prefer now to write /, g and lr instead of ft, fz
and 

"fs ).
We will call such a c-point 'regular'; the sequence of irregular' c-points has

counting function o(f1r;) .

By the Möbius transform u t+ (u,aztdssd4) the values a2; ds) Q,4 ate

mapped onto 1,0, €, while ar corresponds to -c --(ot,Q2tds,ou)* t,0,oo.
It is convenient to change notations and to assume that

(H.) f , g and h share the values 1,0, oo and -4.
We set

(35)

and

(36)

O - f g + glt, * lrf , iU-f+s*lt

(J-: (f - *)(g * rr)(h - t0) for w - 0rlr-a.
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The meromorphic function iD - t has poles of order at most 4 in regula,r poles
a^nd zeros of order at least 2 in regular zeros and L-points, while UsUl has poles
of order 12 in regular poles and zeros of order 6 in regular zeros a.nd l-points.
The other poles- of o - !tr/ and zeros of. UoUt form a sequence having counting
tunction o(f1r;).

Thus, (O - V)t/%Ur is a small function (its characteristic is o(?(r)) ) which
assumes the value 27 in all regular (-c)-points. Since the counting function of
these points is (r1 + o(f )) fQ),

(37a) (o - v)t :2TUoUt

follows.
In the sarne manner we ff.nd

(37b) (o+ov)t -z7uo(J-o,

O+aV-3UTry,

O+(a-l)V -3a-3v1ry

3U3 * (o - 1)O - 0V - \a[IVW, u3: 1,

(37c) (o + 1a - 1)v - go)t :27(NJ-o

and

(37d) (euo + (a - 1)o - ov)t :ZTUotNJ-o.

Hence, there are meromorphic functions U , V and l7 such that Us : [Jo, V3 :
Ur and Ws : [/-o, which are uniquely determined up to a factor fi. Thns,

(38a) O-\P:3(JV,

(3sb)

(3sc)

and

(38d)

follows from (37 a-d) for suitably chosen branches of U,I/ and 17, while

(3ea)

and

(3eb)

yt -u3-o+ilr-1

147t: U3 +aO+ az',V *a3
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axe consequences of (36).
Now (38a) and (39a) give Vs -U3 +\UV + t:0, hence

(aOa) V:aU-a,
and, similarlS (38b) and (38c) yield

(40b) 1ry : BU * Ba,

where a and I *. third roots of unity.
Since o :\tJ(aV +w)l@ * 1) and 9 :\U(W -v)l@ { 1.), equations

(38c), (40a) and (a0b) lead to an algebraic equation

(41) l7"(r -o) +a(r - P)lu' + lazp1t- CI) + a(dB - "b + d(B -L)lu
* a(a+t)(aP - 1) :0

for U : flQ). Since U is nonconstant, (41) must be trivial, and this leads to

(42) o'P-L:(a-r)(a2*a*1) -a(a-1)+(o-1):6.
(The same result is derived if equation (38d) is used instead of (38c).)

If a:lwehave 0:L andso
!P:"f*g*h:3U,

which is impossible, since, in a regular pole, {r has a pole of order 4, while U has
a double pole there. Thus, a + L and so

a: ot I 1 is a third root of unity.

Now consider
(. - f)(, - s)(w - h) : us - Vwz * Qw - tJg

= n3 -s((a - L)U' * 2U)w2 - 3(2Uz - (a - t)U)u - (J3 : P(U,u).

Then, - : f ,g,h axe solutions of. e(UQ),.) : 0, as stated in Theorem 1

(formulae (t) and (Z)).
What is left is to show lhal U is a solution of equation (3). To this end we

define the function lo by

to,:ffi.
Then 76 * 4^f'' and 7' is entire if we are able to show that U has only zeros,
(-1)-points, a-points a,nd poles of even order.

Fbr example,let zs be a zero of U. Flom P(U,f): P(U,s): P(U,ä) :0
then follows that exactly two of our functions f , g, å behave like const.Ull2
n€ä,r ,z6 (see the proof of Theorem 2), which is only possible if zs is a, zero of U
of even order.

A similar reasoning applies in poles, a-points and (-1)-points of U (one has
to use equations i), ii) and iii) in the proof of Theorem 2).

This proves Theorem 1 completely.
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