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1. Introduction

We say that two nonconstant meromorphic functions f and g share the value
a if the zeros of f —a and g —a (1/f and 1/g if a = co0) are the same. The
following uniqueness theorems are already classical:

Theorem A (R. Nevanlinna [6], p. 372). If two meromorphic functions in
the plane share five distinct values, then both functions agree.

The number five is best possible as is shown by f = e* and g = e~ which
share the values -1, 0, 1 and co.

Theorem B (R. Nevanlinna [6], p. 378). If two distinct nonconstant mero-
morphic functions f and g share four values by counting multiplicities, then two
of the values, a; and a,, say, are Picard values, and

(fagaa3aa4) = (al,a’2,a37a4) =-1

holds.
Here, as usual, (a,b,c,d) = (a —¢)/(b—¢) : (a — d)/(b— d) denotes the

cross-ratio.

For refinements and generalizations of Theorem B the reader is referred to
G. Gundersen [2] and E. Mues (see the book of G. Jank and L. Volkmann [5]).

In [1] H. Cartan considered the problem whether three functions may share
four values, and he came to the conclusion that this is possible only in the trivial
case that two of the functions are equal.

However, the proof in [1] contains a serious gap, and the first purpose of this
note was to fill out this gap. Short before having reached this goal, it turned out
that the theorem of Cartan is false. Instead of Cartan’s theorem the following is
true:
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Theorem 1. Let f, g and h be dinstinct nonconstant meromorphic func-
tions in the plane sharing the values 1,0,00 and —a. Then a # 1 is a third root
of unity and w = f,¢g and h are solutions of the algebraic equation

(1) P(U(z),w) =0,
where
(2) P(z,y) =y —3((@—1)z® — 22)y* — 3(22% — (a — 1)z)y — 23,

and the meromorphic function U is a nonconstant solution of the differential
equation

2
(3) (%9) = 10U + 1)U - a),

where « is a nonconstant entire function.

We remark that the general case, where f, g and h share the values a;, as,
as, a4 can be reduced to Theorem 1 by the Mdbius transform w — (w, az, a3, a4).
The converse of Theorem 1 is also true.

Theorem 2. Let a # 1 be a third root of unity and let v be a nonconstant
entire function. Then every solution of (3) is meromorphic in the plane, and if U
is an arbitrary nonconstant solution, then there exist three distinct meromorphic
functions in the plane which satisfy equation (1) and share the values 1,0, 0
and —a.

The simplest case is y(z) = z, and if f, ¢ and h form a solution of our
problem, then the most general solution is f oy, go~ and h o+, where v is an
arbitrary nonconstant entire function.

Let U be a solution of (dU/dz)? = 4U(U + 1)(U — a) having a (double) pole
at z = 0. Then the poles of U form the period module of U, and if w; and w,
are poles of f of order four, then clearly w; — w; is a period of f (and so of ¢
and h). Since asymptotically every third pole is a pole of f of order four, f (and
so g and h) are doubly-periodic with elliptic order six, while the elliptic order
of U is two. Thus the area of a parallelogram of primitive periods of f is three
times the area of the corresponding period parallelogram of U, and so, if (w,w’)
is an appropriately chosen base for U it follows that (2w — w',w + w') is a pair of
primitive periods of f (g and h).

This observation leads to a more explicit construction of f, g and h. Let
p denote the Weierstrafi P-function with a pair of primitive periods 2w — w' and
w+w'. Then

(p(2) — 9(0/2)) (9(2) = p(3/2))"
p(2) — p(w)

G(z)=F(z+w) and H(z)=F(z+w")

share the values 0, co, A and B, where A/B # —1 is a third root of —1.

F(z)=

b}
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2. Proof of Theorem 2

From a well known theorem of Rellich [7], p. 153, follows that the solutions
of the differential equation (dw/dz)? = 4w(w + 1)(w — a) are either constants
or elliptic functions. Thus, every solution of (3) is meromorphic in the plane,
U(z) = w(y(2)), where w is an appropriately chosen solution of the equation
mentioned above.

We denote the solutions of P(z,y) = 0 by y1, y2 and y3. It is easily seen that
z =0, —1, a and oo are critical points, where y1, y2 and ys coincide (having
values 0, —a, 1 and o0).

Let us consider the case £ = y = 0 in more detail. The Newton-Puiseux
diagram (see E. Hille [4], p. 105) looks very simple (see Figure 1).

3

0 1 2 3

Figure 1. Newton-Puiseux diagram near ¢ =y =0.

Thus the solutions are
[ o] [o ]
(4) yi(z) = chwkﬂ, y2(z) = Z:(—l)kckﬂfk/2 (c1 #0)
k=1 k=1
and
(4" ys(z) =Y drz* (dy #0)
k=2

which is regular since y;y2y3 = z3.

A similar behaviour is observed near the critical points co, a and —1. For
the convenience of the reader we will write down the corresponding equations:
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Jz=y=o00 (setz=1/6,y=1/n):
n® = 3((a — 1) — 26)? — 3(2¢* — (a— 1)€)n — £ = 0.
)z=a,y=1 (setz=E¢+a,y=n+1):
n® —3((a— 1) — 2af)n* — 3(2at* — (a —1)¢)n — €3 = 0.
li)z=—-1, y=—a (setz=¢—1,y=n—a):
n® —3((a — 1)€2 — 2a€)n” — 3(2a€% — (a — 1)¢)n — £ = 0.

The discriminant D(z) of our equation is given by

(5) D(z) = (y1(2) — y2(2))* (v2(2) — y3(2))* (y3(e) — ya(2))?,

and from (4) and (4') it is seen that D(z) ~ const.z® near z = 0, and, similarly,
D(z) ~ const.(z +1)® near z = —1 and D(z) ~ const.(z — a)® near z = a.

However, at infinity, two of the solutions behave like + const./z while the
third has a double pole. Thus, from (5) it follows that D(z) ~ const.z® as z — oo,
and so the discriminant is

D(z) = const. z3(z + 1)*(z — a)?,

which shows that there are no critical points other than 0, co, @ and —1.
Now, define locally

(6) f=y10U, g=y,oU and h=yzoUl.

The only critical singularities are the zeros, one-points, (—a)-points and poles
of U.

As an example, consider a zero zg of U. Since U has only zeros of even mul-
tiplicity (which is two if 2y is not a zero of 4'), it follows that v/U is holomorphic
near 2o, and so from (4) and (4') it follows that f, g and h are regular at z,. A
similar reasoning applies at the other points, and so, by the monodromy theorem,
f, g and h are meromorphic in the finite plane.

Now it is easy to show that they share the values 1, 0, co and —a. For
example, let 2o be a zero of f, say. Then, since f is a solution of (1) we must
have U(z) = 0, which implies that every solution of (1) is zero, that is, g(z9) =
h(Zo) =0.

Thus, Theorem 2 is completely proved.
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3. Remarks on the proof of Theorem 1

The main tool will be Nevanlinna’s theory of meromorphic functions, and it
is assumed that the reader is familiar with its basic notations and results (see
W.K. Hayman [3]).

Our hypothesis is that

(H) three distinct nonconstant meromorphic functions in the plane share four
values.

For technical reasons it is sometimes convenient to denote our functions f,
g and h also by f;, fo and f3. This should not give rise to any confusion (the
patient reader is asked to look at (f1, f2, f3) as a permutation of (f,g,h)).

For the same reason the shared values are denoted by a1, a2, as, a4 and are
assumed to be finite in the first part of the proof.

Only in the final part of the proof we will use the normalization a; = —a,
a; =1, a3 =0 and a4 = co which is then more convenient.

a) In Section 4, Cartan’s auxiliary function (7) is used to show that for an
arbitrary c-point zo (c is one of the shared values) with ‘few’ exceptions the
following is true: z is a simple c-point of two of the functions, while it is a
multiple c-point of the third one.

b) In Sections 5-7, we will show that every derivative f; (1 < j < 3) has
‘many’ zeros, most of them having multiplicity k; — 1 > 1. Using various
auxiliary functions we will be able to prove that (kq, ks, k3) is a solution of
the diophantic equation

Vv =iV

which has exactly one solution ¢ =y = z = 4.

¢) In Section 8, the shared values are assumed to be —a, 1, 0 and co. With the
aid of a) and b) we will be able to show that there are meromorphic third roots
U, V and W of the functions H;=1 £is Hz;=1 (fj —1) and H;f:l (fi+a),
which are connected via V = aU — a@ and W = U + Ba (a® = ° = 1).
Finally, it turns out that a = a # 1. From this, (1), (2) and (3) will easily
follow.

Besides the standard notation of Nevanlinna theory we use the abbreviations
T{r) = m%,lx T(r, f;)
]=

and

for ¢ = aq,a9,as,a4.
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Here, f1, f2 and f3 denote the functions sharing the values a;, as, as and
a4, which are assumed to be finite throughout Sections 4-7.

We write o(r) < o(T(r)) as r — oo to indicate that, given & > 0, there is a
set E, C (0,00) of finite measure such that o(r) < eT(r) outside E..

If F is a meromorphic function and p is a positive integer, then N(r, F,p)
denotes the counting function of the p-fold poles of F', each pole counted simply
(as indicated by 7). We will say that almost every pole of F' has multiplicity
p if N(r,F) = N(r,F,p) + o(T(r)). Note that this does not imply N(r,F) =
pN(r,F,p) + o(T(r)) !

4. Cartan’s auxiliary function

We will first collect in Lemma 1 some well known facts which are even true if
two functions share four values.

Lemma 1 ([2], p. 547, [6], p. 373). Under the hypothesis (H) the following

is true:

(a) T(r, f5) = (1 + o(1))T(r);

(b) m () + () =e@e), i

(d) iﬁf( L >=(2+0(1))T(T).

Proof. From Nevanlinna’s second main theorem and our hypothesis (H) fol-

lows
(2+0)T(r) < SN (r, 7 1 au) <N <r, : L fk)
< T(r, £5) + T(r, fi) + O(1) < (2 + o(1)) T(r)

(J # k). Thus, the inequality sign must hold, and (a)—(d) are easy consequences
(note that in the third inequality the term m(r,1/(f; — fk)) + Ny (r, 1/(f; — fx)
has been omitted).
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In [1] H. Cartan considered the auxiliary function

0 e= () () o G- )

where a is one of the shared values and where we have written f, ¢ and h instead
of fi1, fo and f3. The estimate

(8) T(r,pqa) < (3+0(1))T(r)

follows immediately from the usual rules, and it is also seen very easily that ¢,
vanishes at least twice at every common aj-point, aj # a. Thus, if

9) ©a £ 0

is taken for granted, we have

(10) 2 Z Ng (r)< N (r, i) < (3+40(1))T(r),

ar#a Pa

and a symmetry argument shows that
4

(11) 6  Ne,(r) < (12+0(1))T(r)
k=1

is true, compatible with Lemma 1 (d).

Now it is stated in [1] that ¢, vanishes also in the common a-points, and if
this were true we were allowed to replace the constant 6 in (11) by 7 and would
so derive a contradiction to Lemma 1 (d).

However, ¢, does not necessarily vanish at the common a-points. (This has
been kindly pointed out to me by Erwin Mues to whom I also would like to express
my thanks for valuable discussions on this topic a few years ago (then we believed
that Cartan’s theorem is true).) For, if zy is a common a-point of f, g and h of
multiplicity k, ! and m, say, then from (7) it follows that

(12) ®a(20) = (m — ) f'(z0) + (k = m)g'(20) + (I = k)'(20),

and so ¢,(20) = 0 exactly in the following cases (up to permutations):

) k=l=m=1,

(ii) min(k,l,m) > 1,

(iii) k=1>m=1, and

(ivy m>k=101=1 and f'(20) = ¢'(20).

On the other hand, ¢,(z9) # 0 if, for example, m > k =1=1 and f'(z0) #
9'(20).

Before proving (9) we will first draw the consequences from the fact that ¢,
vanishes with ‘few’ exceptions only in the common a; -points, a; # a.
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Lemma 2. Under the hypothesis (H) the following is true:

(a) No(r) = (£ +0(1)) T(r) for a = a1, az, a3, aq.

(b) Almost every a-point (a = ay,...,a4) is a simple a-point of two of the func-
tions and a multiple a-point of the third one.

3
(c) ENI (r, }-J-ljz) = (3 +0(1)) T(r) for a = ay,a,,as,ay.

J

3
() N (r, %) = (24 o(1))T(r).
=1 J

Proof. We remark that (9) is assumed for a = a1, az, a3, ay and will be proved
later.

We already know that in (11) and consequently in (10) the equality sign must
hold, from which assertion (a) follows.

(b) is an immediate consequence of our considerations of Cartan’s ingeneously
chosen auxiliary function (7). From this and (a) also (c) and (d) follow, since to
almost every a-point there corresponds a zero of exactly one of the derivatives f ;e

Lemma 3. Under the hypothesis (H) we have ¢, %0 for a = a1, az,azay.

Proof. Assume ¢, = 0 for some a = a;. It is the same to say that
(13") H'(F-G)+G'(H-F)+F(G-H)=0,

where F = (f —a)™!, G = (9 —a)”! and H = (h — a)~!. Differentiating this
identity yields

(13") H'"(F-G)+G"(H-F)+F"(G-H) =0,
while
(13) HF-G)+GH-F)+FG-H)=0

holds true trivially. Since the differences F'— G, H — F and G — H do not vanish
identically, the linear homogeneous system (13-13") has a nontrivial solution for
all but countably many z. Thus the Wronskian of H, G and F must vanish
identically and so H, G and F are linearly dependent:

A L v
(14) ¢a'_f—a+g—a+h—a=0
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for some nontrivial choice of A, p, v. Since at least one of the other values ay # a
is actually attained, we have

(15) A+p+v=0.

It is clear that 1, cannot vanish for every b = ai,..., a4, thus there is at least
one b with 1 # 0. The estimate

T(r,s) < 3T(r) — 2Ny(r) + o(T(r))

follows immediately from the definition of 3, and from (15) it follows that
vanishes in every ap-point, a; # b, and even with multiplicity two at least if
ax # a. This gives

_ _ 1 _
Ny(r)+2 aﬁéza’,, Ng (r) N <r, %) < 3T(r) — 2Ny(r) + o(T(r))

or, equivalently,

(16) 2D Nap(r) < (3+0(1)T(r) + Na(r).
k=1

This is even stronger than (10) which holds if ¢, # 0. Adding up these inequalities
for varying a, we get

Ty Noy(r) S (124 0(1)T(r) + Y, No(r).
k=1

Pa ZO

This, together with Lemma 1 (d), leads to N,(r) = o(T(r)) if ¢, = 0, while from
(16) and Lemma 1 (d) T(r)(1+0(1)) < Nu(r) follows, which is obviously absurd.
Hence, Lemma 3 is proved.

5. Three auxiliary functions

We put I(w) = [[:_, (w — a,) and consider the auxiliary functions
fi (fi= fiv)(fi = Fiv2)

II(f5) fivr = figa

(s = 1,2,3), where f4 = f; and fs = f>. The usual rules for the proximity
function give

(17) F; =

!

m(r,Fj) <m (r, —-—-L—> + 2m(r, f;) + m(r, fi+1) + m(r, fj42)

II(f;)
1
m (r’ fi+1— fj+2> +0@).
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Here the last relevant term is o(7'(r)) by Lemma 1 (b), while the first term on the
right hand side is o(T(r)) by Nevanlinna’s lemma on the logarithmic derivative

(note that f'/II(f) = S4_, A, f'/(f —a,)). Also by Lemma 1 (d) and the second
main theorem we have m(r, fx) = o(T(r)) (k =1,2,3). On the other hand, the
construction of F} is made in such a way that the zeros and poles of the nominator
and the denominator cancel out by Lemma 1 up to a sequence having counting
function o(T(r)). Thus, Fj is a small function:

(18) T(r, Fj) = o(T(r)).

According to Lemma 2 (d), at least one of the derivatives f; has ‘many’ zeros in
the sense that

= 1
(19) N(r, =] #o(T(r)).
£
Thus, there exists an integer k; > 2 such that
- 1
(20) N (T, —f7, kj - 1) 75 O(T('f‘))
j

Lemma 4. Under the hypothesis (20) there exists a small meromorphic
function kj,

(21) T(r,k;) = o(T(r)),
such that
F; F; 1\*> F;
29 k. J+1 =(1+k; 2, k. J+2 — <1+ _) , g+l — K2~.
(22) J F; ( Kj) J F; K Fiys J

Moreover, in almost every zero zy of f]' of multiplicity k; — 1 we have

(23) f‘;'+1+K'jf],'+2 =0 (Z=Zo).

We remark that the last equation (22), which is independent of k;, shows
that there are at most two distinct integers k; > 2 having property (20). If there
are two, the corresponding functions are x; and —«;.

Proof of Lemma 4. We may assume j = 1. Let 2z, be a zero of f; of
multiplicity k1 — 1 such that fi(2z9) € {a1,...,a4} (note that almost every zero
of fi has the last property). Then from (17) follows

() e (-8). 50
31 f3 R f3)  F3 f3
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at z = zg, and elimination of f}/f; yields

F ( F F2)2
24 422 - (22 -1-2
24) m-\"E TR
and
'R F.
2 2 2
42 _ 22 41 _p 22
(25) 23{ F3+ 5
at z = zp.

From hypothesis (20), however, it follows that (24) holds throughout the whole
plane (a function, like the difference of the left hand side and the right hand side
of (24), with characteristic o(T(r)) may not have zeros with counting function
# o(T(r)), until it vanishes identically). Thus, (22) and (23) follow if we put

Fy F
k=122
261 =k 2 7
while (21) is a consequence of (18).

We may assume that the statement of Lemma 4 is true for j = 1, and we

want to show that it is true for j = 1,2 and 3. This will be done in two steps.

Lemma 5. For j =1,2,3 and every k =2,3,4,... we have

(26) N (r, fl,' k- 1) < (§ + 0(1)) (r).

Proof. Again we may assume j = 1. Since (26) is trivial if (20) is false
(j = 1), we may assume that the statement of Lemma 4 holds for j = 1 and
kj=k.

Consider the auxiliary function

fi-a fi—fs
F, := 1 J2, @y = : )
U fae fs) = 5 0 s
where a € {ai,...,a4} is arbitrary. We note that the multiple zeros of f; — a,

f2 —a and fs — a are zeros, poles and 1-points of F,, thus
(27) T(r, Fy) > (% + 0(1)) T(r)
by Lemma 2 (c). On the other hand,

T(r,F,) <m (r, f2_i¢;) + N; (r, f_21:5> + o(T(r))
=T(r) — No(r) + o(T(r)) = (3 + o(1)) T(r).
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From (23) (j = 1) follows that in almost every a,-point 2z (a # a,) of
order k;
Fa(ZO) =1 + h‘,l(Zo).

Since, by (27), Fy # 1 + k1, this gives

1
N ki) S N{r,=— ) +o(T(r
P e e e e R
< T(r,F,) + o(T(r)) < (% + o(1)) T(r).
Adding up these inequalities for a = a1, as, as, aq, inequality (26) follows.

6. Zeros of the derivatives

As already mentioned we want to prove that (19) and so Lemma 4 is true for
7 =1,2,3 (and appropriate k;), that is

Lemma 6. For j =1,2,3 we have

N (r, 71]-) 4 o(T(r)).

Proof. We may assume that the statement of Lemma 6 is true for j = 1, and,
if it is false in general, it is false for j = 3.
If it is false for j = 2, too, we derive a contradiction as follows:

Since N(r,1/f{) < N(r,1/f1) < T(r, f1) < (2 + o(1))T(r), we have by Lem-

ma 2(d)
N (r, ll, 1) - N ( f1> +o(T(r))
g ( ) +o(T(r)) = (2 + o(1))T(r),

which contradicts Lemma 5 (j = 1,k = 2).

Thus, if Lemma 6 is false in general, we may assume that it is false for j = 3
and true for j =1 and 2.

First case: Assume that, for j = 1,2, there is exactly one integer k; with
property (19). Then we find, using Lemma 5,

23: (r ) 2::57( f,)+o(T(r)) (+o(1)>T(r)

Jj=1
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in contrast to Lemma 2 (d).
Second case: There exist, for j = 1, say, two different integers having property
(19), denoted by kq and I (k1 < l1). As already mentioned, we have

12 13 1 ? 12
' — 2 =2 N £ = k2
(22 ) ll Fl = (1 K,l) , ll E] (1 lil) 5 X K1,

and k; and [l; are uniquely determined.

The corresponding integer k; will be chosen minimal (if not uniquely deter-
mined).

The trivial observations

(+o)T()2 N (r5) 2 (e = DN (1, 77) +o(T()
f2 f2
and
(2+0(1))T(r) >
(ks = )N (r, -}-) +(h — k)N <r, Tl - 1) +o(T(r))
1 1
lead together with Lemma 2 (d) to the inequality (note that N(r,1/f3) = o(T(r)))
2 2 Iy —ky
e

where « is some positive constant. Thus we have
(28) min(kl,kz) =2 and Ly > k.

From the first equation of (22), j = 1, and of (22') follows

kl <1+f€1

2
(29) — = and so k1 <0,
1- K1

and from (22), j = 1,2, follows

k1 = —(Vkiks £1)/(VE F 1),
This leads to the diophantic equation
(30) :l:4\/ klkg + 4\/ kl + 2(1-‘,1 + ll)\/ k’2 ES (ll - kl)(kg + 1) — 4.

Multiplying by v/k; and v/ks, respectively, we get two additional diophantic equa-
tions
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(30")  2(ky+ 1)V kiks + (4 — (I — k1) (k2 + 1)) VEr & 4k11/Ey = T4k,
and

(30")  #4v/kiky £ 4ko/hr + (4= (I — k1)(ks + 1)) Vhe = =2(I1 + k).

Now (30)—(30") may be regarded as a system of linear equations with solution
(Vk1k2,Vk1,/k2). The determinant D of this system, however, is given by

:*:%D = 4k2(k1 + 11)2 + 16k1(1 - kz)
+ ((11 —ki)(ky+1)— 4) ((11 — k1)ks + 501 + 3k1 — 4),
which is easily seen to be positive. Thus, k1, k2 and +/ki1k, are rational

numbers in contrast to (29). This proves Lemma 6.

7. Another diophantic equation

From equations (22), 1 < j < 3, it is posssible to eliminate the functions F},
F, and F3. We obtain

(31) k1= &3(k1 +1)%, ko =«ki(ko+1)? and ks =kZ(k3+1)2
under the constraints
(32) (K1k2k3)2 =1 and min(ky, ke, k3) > 2.

We note that k;, k3 and k3 are constants, because no «; assumes the values —1,
0 and oo, but this is of no importance here.
Again, elimination of x;, k2 and k3 leads to the diophantic equation

(33) aByé/kikaks — (av/k1 + By/ks + 7V ks + 1+ 6) =0,

where a, , v and § are allowed to assume the values +1 independently of each

other.
If the left hand side is denoted by afvy6H(ky,k2,k3), then H is strictly
increasing in all its variables in the range k; > 2, and so H(2,2,2) < 0 gives

2V2 < V2(B6 + aré + afb) + afv6 + ap,
which is only possible if a = 3 =+ = § = 1. Thus, only the diophantic equation
(34) Vayz == y-vz-2=0

has to be considered in the range z,y,z > 2.
We remark that @ = 8 = v = § = 1 corresponds to vk; = k3(x; + 1),
Vky = k1(ka + 1), and k3 = ka(ks + 1) and kqkoks = 1.
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Lemma 7. The diophantic equation (34) has exactly one solution in the
range z,y,z > 2:x =y =z =4.
Remark. It then follows easily that k1 = k; = k3 = 1.

Proof. Let (z,y,2) be a solution. By symmetry we may assume 2 <z <y
< z. To obtain an upper bound for y we use the monotonicity of H , which implies

0 = H(z,y,z) > H(2,y,y) and so /2y% — \/‘—— 24/y —2 < 0. This gives the
upper bound

- 2
yg(‘/?§+,/g+\/§> <58 andso y<5.

Now (34) is equivalent with

In the range 2 < z < y < 5, however, z is never an integer except when z =y =4
(the distance of z to the next integer is at least 0.17, except when z = y = 4).
This proves Lemma 7.

8. Summary

The quintessence of what we have proved in Sections 4-7 is that almost every
common c-point z¢ (¢ € {a1,...,as}) is a simple c-point of two of the functions
and a c-point of multiplicity 4 of the third one. Moreover, the sum of derivatives
f'+ ¢’ + h' vanishes at zo (we prefer now to write f, g and h instead of fi, fo
and f3). '

We will call such a c-point ‘regular’; the sequence of ‘irregular’ c-points has
counting function o(7'(r)).

By the Mobius transform w — (w,az,as,as) the values az, a3, a4 are
mapped onto 1, 0, co, while a; corresponds to —a = (a1, az,a3,a4) # 1,0, 0.

It is convenient to change notations and to assume that
(H*) f, g and h share the values 1, 0, co and —a.

We set
(35) ®=fg+gh+hf, V=f+g+h
and

(36) Upw=(f-w)g—w)h—w) for w=0,1,-a.
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The meromorphic function ® — ¥ has poles of order at most 4 in regular poles
and zeros of order at least 2 in regular zeros and 1-points, while UyU; has poles
of order 12 in regular poles and zeros of order 6 in regular zeros and 1-points.
The other poles of ® — ¥ and zeros of UpU; form a sequence having counting
function o(T(r)).

Thus, (® —¥)*/U,U; is a small function (its characteristic is o(T(r)) ) which
assumes the value 27 in all regular (—a)-points. Since the counting function of
these points is (2 + o(1)) T(r),

(37a) (® — T)® = 27U, U,

follows.
In the same manner we find

(37b) (@ + al)® = 27U, U_,,

(37¢) (@ +(a—1)¥ - 30)° =270, U_,
and

(37d) (3Uo + (a — 1)® — a¥)® = 27U, U1 U _,.

Hence, there are meromorphic functions U, V and W such that U® = U,, V3 =
Ui and W3 = U_,, which are uniquely determined up to a factor /1. Thus,

(38a) ® - ¥ =30V,

(38b) ® +al = 3UW,

(38c) ®+(a—1)¥—3a=3VW

and

(38d) U+ (a—1)® —a¥ = 30UVW, w®=1,

follows from (37 a—d) for suitably chosen branches of U, V and W, while
(39a) V3I=U3—-04+0 -1
and

(39b) W3 =U®+ad + o’V + o°
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are consequences of (36).

Now (38a) and (39a) give V3 — U3 +3UV + 1 =0, hence

(40a) V=aU - a,
and, similarly, (38b) and (38c) yield
(40Db) W = BU + Ba,

where o and 3 are third roots of unity.
Since ® = 3U(aV + W)/(a+ 1) and ¥ = 3U(W — V)/(a + 1), equations
(38c), (40a) and (40b) lead to an algebraic equation

(a1) [ﬁa(l —a)+a(l- ﬂ)]U2 + [azﬁ(l —a)+a(ap — af) +a(B - 1)]U
+ala+1)(af-1)=0
for U = U(z). Since U is nonconstant, (41) must be trivial, and this leads to
(42) af-1=(a-1)(a®+a+1)=a(a—1)+(a—1)=0.
(The same result is derived if equation (38d) is used instead of (38c).)
If a =1 we have =1 and so
U=f+g+h=23U,

which is impossible, since, in a regular pole, ¥ has a pole of order 4, while U has
a double pole there. Thus, @ # 1 and so

a = a # 1 is a third root of unity.
Now consider

(w— f)(w = g)(w — h) = w? — Vw? + dw - U?
=w® —3((a—-1)U% - 2U)w? - 3(2U% — (a — )U)w — U* = P(U, w).

Then, w = f,g,h are solutions of P(U(z), w) = 0, as stated in Theorem 1
(formulae (1) and (2)).

What is left is to show that U is a solution of equation (3). To this end we

define the function 7, by
UI2
= TO+ )T —a)
Then v, = 49’2 and 7' is entire if we are able to show that U has only zeros,
(—1)-points, a-points and poles of even order.

For example, let zy be a zero of U. From P(U, f) = P(U,g9) = P(U,h) =0
then follows that exactly two of our functions f, g, h behave like const. Uiz
near zo (see the proof of Theorem 2), which is only possible if 2 is a zero of U
of even order.

A similar reasoning applies in poles, a-points and (—1)-points of U (one has
to use equations i), ii) and iii) in the proof of Theorem 2).

This proves Theorem 1 completely.
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