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MORI'S THEOILEM FOR n-DIMENSIONAL
QUASTCONFORMAL MAPPTNGS

Richard Fehlmann and Matti Vuorinen

1. Introduction

In this paper we shall study distortion properties of quasiconformal mappings
in two cases. The first case deals with quasiconformal mappings of the unit ball
B" in R,' for which we generalize a classical theorem of Akira Mori (see l2l, p. 47,
or [16], p. 66). The second case deals with quasiconformal mappings of the whole
space R' which keep the c1-axis pointwise fixed. In both cases our results will
have the cortect limiting behavior as .I( -+ 1. F\rrthermore, all the estimates
involved are explicitly computable. We shall also study conformal rnappings onto
quasidisks.

In 1956 the following theorem of A. Mori appeared [18].

1.1. Theorem. A K -quasiconformal mapping f of the unit dis.k 82 onto
itself with /(0) : 0 satisfies

for aJI o,a € 82. Flnthermore, the constant 16 in (1.2) cannot be rcplaced by
any smaller constutt independent of I{ .

The main result of this paper is the following generalization of Theorem 1..1.

1.3. Theorem. Let f be a K -quasiconformal mapping of B" onto Bn ,

n ) 2, witå /(0) : 0. ?hen

(1.4) lr(') - /(y)l < Mr(n,K)l* * vl"

for aJl o,a € Bn where a - Kt /(r-n) and the constant M1(n,K) åas the following
three properties:

(1) Mr(r,I{) + L as K -+ J., uniformly in n;

(1.5) (2) Mr(n,K) remains bounded for fixed K and varying n;

(3) M{n,I{) remains bounded for frxed n and varying K.

An n-dirnensional version of Mori's theorern has already been given in [20].
In [11], Remark 1 on p. 235, it is said that this theorem holds with a constarrt

(1.2)
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satisfying (3) (namely Mr(n, K) < 4^2" in our notation of Section 2), a^nd in [14]
the inequality (1.a) is also proved, but with a constant that does not satisfy any of
these three properties. In Section 2 (Theorem 2.28) we shall give explicit bounds
from above for the constant Mt(n,K) which actually hold in a wider class of
mappings of the unit ba^ll (cf. (2.15)). Fbr an extension of Mori's theorem to more
general domains the reader is referred to [12], Corollary 3.30, and, for a recent
application of it, to [8], Section L0.

In Section 3 we shall prove

1.6. Theorem. tef "f , R" -r R' be a K -quasiconfortnal mapping which
J<eeps the ar -a>tis pointwise fixed. If K > I , then

( 1.7) lrt'll <)?I-'zffiw|

for aJI r € R' where P : I{/@-t) and ),n is the Grötzsch ring constant (see
Section 2).

This theorem is a sharpened version of Corollary 2.I7 in [a]. Observe that
the constant in (1.7) tends to one as I( -+ L. Finally in the last section, we
apply these results to plane conformal mappings of the unit disk onto bounded
K-quasidisks, again paying attention to the limiting behavior as K --r 1.

It is conjectured (cf. [f0], p. 68) that the best constant in (1.2) ir 16r-r/rr,
in place of 16. E. Reich has kindly informed us that his student G.P. Schwartz
proved Mori's theorem (1.2) with the consta,nt 36gt-t/K in place of 1.6, in an
unpublished Ph.D. thesis in 1970. Schwartz'work relies heavily on the parametric
representation of plane quasiconformal mappings and is therefore restricted to the
two-dimensional case. A further improvement in the plane case has also been given
in [1e].

We shalladopt therelatively standardnotation of.l22l,i.e., e1, ..., en denote
the orthogonal unit basis vectors, Bn(rrr) the ball with center r and radius r ) 0,
S'-t(t,r):08"(r,r), B"(r): B"(0,r), ^9"-r(r) = 08"(r), B" = 8"(1),
,5"-1 - 08" and, ar4-1 the (n - l)-dimensional Lebesgue measure of ^9'-1. In
particular, we employ the definition of If -quasiconformal mapping given in [22],
p. 42.

2. Mori's theorem

We shall next introduce some notation and some estimates necessary for the
sequel.

A domain .R in R" is called a ring or a ring domain if its complement in
E" consists of two components. Its conformal capacity is denoted by cap^R. By
Rc,"(t), f ) 1, we denote the Grötzsch ring whose complementary components
consist of the closed unit ball B" and the ray [te1,oo] : {se1: s ) t}, md
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by Ra,,r(t), t ) 0, the Teichmöller ring whose complementary components are

[-er,O] : {se1: -1 ( s < 0} and [te1,m]. For their capacities we write

7"(t) : caP R6,"(t),
rn(t) : cap 'Ra,"(t)'

These functions are related by the functional identity

(2.1) %(t) :2"-1rn(t" - I)

(cf. [9], Lemma 6). Later we shall also use the estimation ([9], Lemma 8)

(2.2) l,(t) > c.r2-1(log \nt)t-", t ) 1,

where I, e [4, z"'-rf is the Grötzsch ring constant (cf. [10]; for these estimations
from above see [3] and from below [?], [13]; note also that 12 :4 [16])'

For K ) 0 we define a homeomorphism Px,n:10,1] -+ [0,1] with 9K,"(0)
:0r gK,n(l): t and

(2.3) pK,,(t):1 , 0(t<1.

Throughout this paper we use a and B to denote the following numbers

o-6gt/(r-n), g:Lla.

The following important estimates (due to Wurrg [26] for n:2 and general-
ized to n ) 2 in [A]) are essential for the sequel

9 K,"(t)

91 1X,*G)

where K > 1 . For n : 2, (2.4) is given also in [16] p. 65.

The Poincar6 metric A@,y) on Bn is defined by ("f.t6])

(2.4)

(2.5)

(2.6) l* - al'
tanh2 *e@,a) :2 r.\e t a / - 

@ _ ylz + (r _ l"lr) (r _ lvlr)'

It is easy to show (see [5J, 3.2) that

(2.7)

for all nrU e Bn.

l* - vl S ztanh *e(n,y)

The following theorem, a quasiconformal counterpart of the Schwarz lemma,
is a conformally invariant formulation of Theorem 3.L in [17] (cf. [23], 3.3).
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2.8. Theorern. Let f be a R -quasiregular mapping of the unit baJI B" into
8". Then

(2.9) t",r'hlo(/(*),f(s)) 3eK,n(t""t'|e(',v))

for aJl x,y € Bn.

2.1O. Corollary. Let f z E * E" b" a K -quasiconformal mapping with
/(0) :0, "f(-) : oo and fB" c 8". Ifs ) L and |tl < ", then

l/(')l <'v;'Q"G)/K).

Prcof. This inequality follows easily by inversion, application of Theorem 2.8
to the inverse mapping and formula (2.3).

As in [4] we define

(2.11)

where the supremum is taken over all If -quasiconformal mappings J: Ro -+ R'
with /(0):0 and over all pairs of points r, y in R" with lrl : lyl ) 0. Fbom

[2Al and (2.5) we have

(2.r2) Hn(/() S Llpt/K,,(1 Irn)'

Since ),, 3 ze"-t we get as in [4] a dimension-free bound for H^(K), namely
llr-' < 2t-r/K6, and hence H"(I{) < 2tK-zy2K. Therefore this number re-
mains bounded for fixed K and varying n. We also observe that ,\l-o -r 1 as
K + L, uniformly in n. Next we shall use the fact that

$9, fl"(fr) : 1

for every n ) 2. This can be concluded by a normal family argument. A quarrti-
tative inequality with this property has been given in [25], namely

(2.13) H*(K) < Ä!e'-t) exp(en(r + thfll ),

for all K > l and n ) 2. Hence, ffi lL-o and c, also ä,.(K) tends to one for
I( -r 1, uniformly in n.

Taking into account that a .If -quasiconformal mapping /: ff -r E" with
/(0) : 0 and "f(*) = oo maps the ball B"(") into B"(ä"(/()l/(se1)l), we note
that by Corollary 2.10 we get

Hn(/() - supl+tr#
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2.L4. Corollary. Let f : E" -t E bu a I( -quasiconformal mapping with
/(0):0 and /(*): oo. rf |tl S rlvl, s ) 1, then

l/(')l < H"(Khi' 0"G) I I{) l/(v)1.

We observe that this estimation is similar to Theorem 2.L2 in [4] where the
constant is

L * r^t (r*(s)/K) 
('J) 

17;' (t^6ffi)/I<))' ,

which is better in general and applies to all values s ) 0. However, the constant
in Corollary 2.14 has the advantage that it tends to s for K --+ L, it is hence

sharp. Finally, we want to add the remark that in [1] it is shown that for n :2
the sharp constant is rfl(rr(s)lK) for a"ll s 21.

Every mapping satisfying the assumptions of Theorem 1.3 ca^n be extended
by reflection to a K-qo.ri"orrformul mapping of the whole ,pu."" E'. This leads

us to the

2.15. Deffnition. Mt(n,I{) is tåe smaJlest number such thqt (1.4) åolds for
aJI t,y € B" andfor aJl I( -quasiconformal mappings 

"f ' 
E - Tf' witå /(0) : 0,

/(*):mand fB"cB".
We prove now that Mt(n,.I() satisfies (1.5) from which Theorem 1.3 then

follows. tet / be as in the definition above and fix trA € 8n. First we prove part
(3) of (1.5) (and in particular that M{1t,,/f) < 3,\å). To this end we employ a

fairly straightforward generalization of the 2-dimensional argument in [16]' p. 66.

Proof of part (3). The proof is divided into two cases. Consider first the case

when

l* - yl'+ (1 - l'l')(t - lyl') >-rlt6.
Then by (2.6)

(2.16) tanh tp@,y) < 4l* - yl.

F\rrthermore,by (2.7) and Theorem 2.8

lf(') - /(s)l < 2tanhåp(.f('), f fu)) s 2tanh ipU@),f@))
1 2pK,n (tanh la(r, u)) ,

and by (2.4) and (2.16)

(2.17) ll(') - /(y)l < 2^t-" (tanh |o(c, v)) " < 2^r;"4'ln - yl" .

In the remaining second case we have lr - yl < L/4 and, (1 - lrlt)(1- lvl') S
1/16. We may a,ssume that L - l*l' < Ll4, so lcl > ,fS1Z 2 0.85. Hence
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Then the ring domain

A: {z €P.n tl* -yl < lz - *(* + y)l < å }

separates the origin and infinity from r md y, so /Ä separates 0 and oo from
/(c) and /(y). By performing a spherical symmetrization we obtain by [9]
(Lemma 2.6 in [ ]) / l/(s)l \capfA>. r'-l i- "\l/(')- r@l)'
F\rrthermore, we have

cap f A I K cap A = I{wn-r(tog(r/lr - sl))t-" .

The firnctional identity (2.1) gives

zn-'Kr-.-r(tos Ftlx -yl)) 
7-n 2 -yn( 

)

Then we use l/(')1, lf (y) | s L,
that the right side !s larger than

Lon-L (t"* (

the fact that ln is decreasing and (2.2) to infer

It@)- f@l<3Å71*-vlo.

Hence part

f maps the
f (tt)lc and

Å,,

Hence

and finally

(2.18)

Since 4 ( 1,,, the inequality (2.18) holds in both cases (cf. (2.17)).
(3) of (1.5) is proved with M{n,K) < 3^2".

Prcof of part (1) and (2). Fix s > 1. Corollary 2.10 implies that
ball B"(s) into B"(c) where c:^tir0"G)ll{). We define g(r):
note that g maps B"(Lls) into B"(Llc). We put

lf@) - ftu)l

ros ås 2Bros(^"
l/(') - f@)t

a - tn(:,i)
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Llt we have

l*l'-vlsl
By (2.6)

(2.19) tanh a I -, slr - yl
: 

s2 -1'
gives

2g x,"(tanh a)

1+ 1 - g2r{,n(tanh a)

(1 - l* I'l'X1 - lv l'l')
Application of Theorem 3.4 in t5l to the mappittg g

(2.20) lf @) - f @l - clg(*l') - s@l41 1 c

and hence we get

(2.2s) lro) -/(v)l < ^o-'"0 
2\f,-"("/("' - r))"1* - v!'

1 * tl, - min{1, x2,-2"1"1(", - t))"1* - vl,'}
This inequality holds for all s ) 1. We choose s (which depends on K) such that

"9+o 
1(s2 - 1)o becomes minimal. This amounts to putting

Fbom (2.3) and (2.5) we use

(2.2r)

from (2.4) and (2.19)

(2.22)

(2.24)

where

(2.25)

For K
0(n, K) -

w'
Part ( 1) is
depend on

eK,n(ranho) S min 
{t, 

)l-' (,,-t) 
" 

@ -rl"}

c 1 
^fl-t 

s9,

s:

A straightforward computation shows that we have proved that
r nz , 119/2*a/zM{n, I() 1 0(n, x1 t*- " ffiry=;n

O(n,K): .r*@
1, )l-' tends to one, uniformly in n, as well as o and B do. Hence
1 uniformly in n and so does M1QI,.I(), since

- I)P lz-a lz : (g + L19 /z-o lz pr tr-" t, @.
proved and part (2) is now evident, since the following bounds do not
n:

o(n, K) < 2, 
^n-" 

< (2t-r I It Jgln+r ,

Z-,(92 +t19lz+o/" <gf, +L1I{/z+r12, (8" _L)"/r-p/2 <exp(_l/e).
The proof is complete
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Finally we derive a

2.28. Corollary. Let f:E -r F b" K-qua,siconfornal witå /(0) : 0,

"f(ur) 
: e1 ar'd /(oo) : m. ?åen

(2.27) It@)- f@)l < M2@,K)lx-vl'

for aJI t,A € Bn where the constant M2(n,K) ha"s the properties

(1) Mz(r,It) < H"(It)M{n,I{);
(2) Mz(n,K) - L as K r 1, uniforrnly in n;

(3) Mz(r,K) rcmains bounded for fixed K and varying n.

Proof. Since such a mapping / maps B" into B"(O,H"(K)), the former
result applied to f(z)lH"(K) yields (2.27) and (1). Ffom (1), the properties of
Mr(n,I{), (2.L2) and (2.13) we get (2) as well as (3).

Remark. For any constant Mz(r,If) satisfying (2.27) clearly M2(n,K)
-r oo for fixed n and ff + oo as the example /s shows where /o is the identity
in the right half space and an a,ffine stretching in the left half space. A quantitative
better lower bound is obtained by observing that (2.27) with c : 0, lyl : 1 implies
that

Mz(n,I()> H"(K) > )(B)

where the last inequality is (1.la) in [4]. Here Ä(If) is a well-known tra,nscendental
function (cf.[16], p. 81). In fact

)(/() : (
PK,pQlln)

)'9t /I{,2G l"n)
and hence Ä(I() --+ 1 as .I( --+ 1 and Ä("K) -+ oo as .I( + oo. For the constant
Mt(n,K) we have the lower bound 4l-". This follows by rotation of the extremal
plane quasiconformal mapping between the extremal Grötzsch ring domains (as it
is done in the proof of Theorem a.9 in [ ]) and the fact that lim"*o r-og11o,2(r) =
4r-o (see p. 65 in [16]). In [16], p. 68, it is also shown that M1(2,K) > i6i-tlr.

We collect our results:

2.28. Theorenr. ?åe constant M1(n,,.I() saäisrles M1(n,I{) < 3,\} and

W, + 1yr./z+alz

Z" (p, _ 1)F /z-d lz

where 0(n, K) is given by (2.25), in particular', O(n,I() € [1, 2] and 0(n,K) + I
for K +L
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Remark. It is not known if there exists an upper bound for M1(n,/() which
is independent of n and K.

We close this section by considering the special case ?? : 2 and improving
Theorem 2.28 slightly.

2.29. Theorem. ?he constant Mt(2,I() satisfies M{2,,K) < 16 and

Mr(2,r.1 
= (t 

* ex,z(fr#) ) z'"*t " Wffi.
Proof. M{2r.K) < 16 is the original content of Theorem 1.1, and from its

proof in [16], p. 67, it is clear that this constant also holds for our definition (2.15)
of the constant M{Z,K). For the second part we use the sarne notation as in the
preceding proof and recall (2.20) for n:2:

(2.30) It@)-f(v)l <c
2g x,z(tanh o)

1+ 1 - p?{,r(tanh a)

For two points u,u € B"(r) with 0 ( r ( L we have

(2.31) tanhfo(u, iS#,
because p(u,r) is maximized in .8"(r)for opposite points on ^9'-l(r) (where its
value is 2log((1 + r)/(t - r)) and tanhlog[(l + r)/(t - r)] : 2r/(L + r2). Next
we use the functional identity

(2.32)
1+

: L + gK,z(r').

This can be derived from the identities

1lt-e?1,r,r6ffi),
t - v, tx,r((t - r) lQ, + r))
1 + etl r(,z(tt - r) l(1 + r))

which follow from [16], (2.7) and (2.9) on p. 61, by applying the function p(r) =
2rlyQlr) to (2.33) and (2.3a) and recalling that vr(,z(r) = p-t(p@lt<).

Since lr/sl , lVltl < Llt we have by (2.31) with r :7ls

(2.33)

(2.34)

I K,z(t) -

g K,z(") -

p r{,2( tanlr a ) a g ri,z (#)



L20 Richard Fehlmann and Matti Vuorinen

and with (2.30) and (2.32)

lr(') - /(v)l s "(t + p x,z(t / s2))v x,z(tanh a),

finally (2.4), (2.19) and c 3 4K-rsr( give

ll(') - /(y)l < 4K-t"K (r +,px,z(r/s21) +t-rr (*)''* l* - ylLrx

and, as before, the choice s : yields the desired bound.

3. Mappings keeping an axis pointwise ffxed

In this section we study the distortion of l(-quasiconformal mappings /:
E -* E" with the property

(3.1)

(3.3)

(3.4)

f (trt) : tet forallf€R.

Proof of Theorem 7.6. Let / be a l(-quasiconformal mapping of R' sat-
isfying (3.1). In order to study the qua^ntit1 lt@)lll*l we may evidently as-
sume that lcl '= t and that /(r) is in the right half space (first co-ordinate
non-negative). Then we fix s > 0 and consider the ring Rt whose complement
consiets of [-se1,0] ""rq {f @)+t(f (o) + er): t > 0 }. We put ": lf (*) * se1l,
arrd hence o2 > lf@)l' + "'. By Lemma 2.58 in [23], which is duä to Gehring
(Lemma 2.7 in [4]), we have

(3.2)

On the other hand, we put R = f -1(R') *d conclude by [9] (Lemma 2.6 in [+])

cap R' { rn(: -

rn(i)

1)

capn >

(3.2), (3.3) and cap n S K cap R' then yield

1 + ,;, (",

Fbom the functional identity (2.1) and the definition (2.3) we infer that the left
side in (3.4) is equal to

lr@)l't"

Llt).c i: l lp', /K,"0 I
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and then (2.5) to get

If we choose s : 1, then this proof reduces to the one given in [4], and (3.5)

reduces to the bound given there. To get a bound that gives the right behavior
for K --r 1 we use from (3.5)

l/(')l s ""

lrt"l l

This holds for arry s ) 0. The best choice is s : B - 1 which yields

l/(')l s^T-'&
and Theorem 1.6 is proved.

In the special case n : 2 the set of values which can be taken by .K-quasicon-

formal mappings satisfying (3.1) is known for any subset of R2. Namel5 / then
maps the upper half plane onto itself keeping the boundary points fixed, so Teich-
miiller's Verschiebungssatz [21] then provides the answer. This result easily shows

(see [15]) that the set of values /(c) of such mappings "f at a given point c is a
hyperbolic disk with center c and radius

p(K):2arctanpt-' (t*(fVf +\ /(fr- rl)) ,

where p(r) = zrlyQ/r) as above. Hence the possible set of values attained on
.91 is the set of all points r in the upper half plane with hyperbolic distance to
,51 less or equal p(/f) as well as its mirror image in the lower half plane and
the points t and -1. The euclidean distance of r and /(c) is hence ma:<imal

for x: i and f(*): f expp(/(). Therefore (1.7) holds with the sharp constant
expp(K): (r+ p-'(t)) I G- p-'(t)) instead ot \!-zB0l@- 1)F-1 *he'e
t =ros(6,R + L)/('B - 1)) .

4. Conformal mappings of the unit disk onto quasidisks

A plane domå" ^D 
is called a K-cluasidisk if there exists a K-quasiconformal

mapping gE'-r -# with gD : 82. We first prove

4.1. Lemma. Let D be a K-quasidisk with 0 € D and max{ lzl: z e 0D}
:I. If r:min{lzl:z€0D} thenthereisanumber I{1 :[St1r,K) suchthat
there is a lt1-quasiconforrnal mapping gtE.z -- E' with g{0): 0, 91(oo) : oo

and g1D : 82 where Kr - L a"s I{ --+'J, and r -r L.
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Remark. To achieve Kt -+ 1 it is necessary to let r tend to one, too.
Proof. Let g be the K-quasiconforma.l mapping in the definition of the

bounded K-quasidisk D. By a Möbius transformation we may assume that
g(m) : m. First we find a,n upper bound t"" lo(O)l (and may hence assume
that e(0) I 0).

Let Rt be the ring with complementa,ry components [9(0),9(o)/19(0)l] and

[--, -g(0)/lg(o)l] . rhen

(4.2) cap'':,, (i+11311;

Next we put .R : g-t(Rt) and conclude as in the preceding section by [9] or
Lemma 2.6.in [a]

(4.8) capa 
= " (i)

Flom cap R< K cap.R', a,nd (a.2) and (a.3) we derive that(44) i+l#|j+ 1,t, (å",(i)) ,

By Teichmiiller's Verschiebungssatz there is a K*-quasiconfoimal mapping g*:
82 + .B2 with g*(z): z for z e AB2 and 9.(9(0)):0 with

p(/r.) : 1o* l-L Jg(o)l
'1 - lg(o)l

where p(I{) is as in Section 3. Hence the explicit formula is

The desired mapping 91 is now defined by g{") : g(z) for z e n-' 1 O *ra
9{z): g.(g(t)) fot z G D. Its maximal clilatation Kr S I(K* has the required
property by ( .a) and (4.5).

Remark. Explicit estimates for .I(1(r,.t() can be derived from (4.4) and (a.b)
and

,;, e?/,r,r(ffi)(*",(i) )

-i- 16I(-I/K
(t * 1)rt'-r/K

rI{

g2K,r(ffi)

where (2.L), (2.3) , (2.33) and finally (2.4) and (2.5) have been used.
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4.6. Theorem. Let D be a bounded K -quasidisk, normalized suejn that
0eD andL -rnax{ lzl: z e0D]..Let f: 82 - D beaconforrnaJmappingwith

/(0):0. If r -min{lzl:ze0D},then

ll(') - r(v)l s M{2, r{?)l* - vl'/*?

for all n,a e 82 where Kr : K{r,K) is the constant from Lemma 4'7, in
par:ticular, the constant M{2,K!) tends to one for K and r tending to one.

Proof. Let y be as in Lemma 4.1. Then / has a Kf -quasiconformal ex-

-otension to E' which keeps oo fixed, namely gfl o i o 91 o f o i where i denotes

inversion. By Definition 2.15 the inequality follows, since this extension fixes 0
and oo and sends .B2 into itself.

Acknowledgement. The first author is supported by the Schweizerischer Nationalfonds zur
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