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MORI’S THEOREM FOR n-DIMENSIONAL
QUASICONFORMAL MAPPINGS

Richard Fehlmann and Matti Vuorinen

1. Introduction

In this paper we shall study distortion properties of quasiconformal mappings
in two cases. The first case deals with quasiconformal mappings of the unit ball
B™ in R™ for which we generalize a classical theorem of Akira Mori (see [2], p. 47,
or [16], p. 66). The second case deals with quasiconformal mappings of the whole
space R™ which keep the z;-axis pointwise fixed. In both cases our results will
have the correct limiting behavior as K — 1. Furthermore, all the estimates
involved are explicitly computable. We shall also study conformal mappings onto
quasidisks.

In 1956 the following theorem of A. Mori appeared [18].

1.1. Theorem. A K -quasiconformal mapping f of the unit disk B? onto
itself with f(0) = 0 satisfies

(1.2) |£(2) — f(y)| < 16|z — y|*/¥

for all z,y € B?. Furthermore, the constant 16 in (1.2) cannot be replaced by
any smaller constant independent of IS .

The main result of this paper is the following generalization of Theorem 1.1.
1.3. Theorem. Let f be a K -quasiconformal mapping of B™ onto B",
n > 2, with f(0) =0. Then
(1.4) |f(z) - f()| < Ma(n, K)|z - y|*

for all z,y € B™ where a = K'/(1~™) and the constant M;(n, K) has the following
three properties:

(1) Mi(n,K)— 1 as K — 1, uniformly in n;
(1.5) (2) Mi(n,K) remains bounded for fixed I{ and varying n;
(3) M;(n,K) remains bounded for fixed n and varying K.

An n-dimensional version of Mori’s theorem has already been given in [20].
In [11], Remark 1 on p. 235, it is said that this theorem holds with a constant
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satisfying (3) (namely M;(n, K) < 4)\2 in our notation of Section 2), and in [14]
the inequality (1.4) is also proved, but with a constant that does not satisfy any of
these three properties. In Section 2 (Theorem 2.28) we shall give explicit bounds
from above for the constant M;(n,K) which actually hold in a wider class of
mappings of the unit ball (cf. (2.15)). For an extension of Mori’s theorem to more
general domains the reader is referred to [12], Corollary 3.30, and, for a recent
application of it, to [8], Section 10.
In Section 3 we shall prove

1.6. Theorem. Let f : R® —» R"™ be a K -quasiconformal mapping which
keeps the z; -axis pointwise fixed. If K > 1, then

B
(1.7) 1f(2)] < A?f’*(ﬂ_ﬂwm

for all z € R™ where 8 = K'/("=1) and ), is the Grétzsch ring constant (see
Section 2).

This theorem is a sharpened version of Corollary 2.17 in [4]. Observe that
the constant in (1.7) tends to one as K — 1. Finally, in the last section, we
apply these results to plane conformal mappings of the unit disk onto bounded
K -quasidisks, again paying attention to the limiting behavior as K — 1.

It is conjectured (cf. [16], p. 68) that the best constant in (1.2) is 161~1/K
in place of 16. E. Reich has kindly informed us that his student G.P. Schwartz
proved Mori’s theorem (1.2) with the constant 360'~!/X in place of 16, in an
unpublished Ph.D. thesis in 1970. Schwartz’ work relies heavily on the parametric
representation of plane quasiconformal mappings and is therefore restricted to the
two-dimensional case. A further improvement in the plane case has also been given
in [19].

We shall adopt the relatively standard notation of [22], i.e., €1, ..., e, denote
the orthogonal unit basis vectors, B™(z,r) the ball with center z and radius r > 0,
S*=Y(z,r) = dB™(z,r), B"(r) = B™(0,r), S"~}(r) = dB™(r), B™ = B™(1),
S"~1 = 9B™ and wp—; the (n — 1)-dimensional Lebesgue measure of S®~'. In
particular, we employ the definition of I-quasiconformal mapping given in [22],
p- 42.

2. Mori’s theorem

We shall next introduce some notation and some estimates necessary for the
sequel.

A domain R in R™ is called a ring or a ring domain if its complement in
R" consists of two components. Its conformal capacity is denoted by cap R. By
Rg a(t), t > 1, we denote the Grotzsch ring whose complementary components
consist of the closed unit ball B™ and the ray [te;,00] = {sey:s > t}, and
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by Rra(t), t > 0, the Teichmiiller ring whose complementary components are
[—e1,0] = {se;: =1 < s <0} and [te;,00]. For their capacities we write

Vn(t) = cap Rg,a(1),
Tn(t) = cap Rrn(t).
These functions are related by the functional identity
(2.1) Ya(t) =271, (82 - 1)
(cf. [9], Lemma 6). Later we shall also use the estimation ([9], Lemma 8)
(2.2) n(t) > wn—1(log Ant)' ™", t>1,

where A, € [4,2e™7?] is the Grotzsch ring constant (cf. [10]; for these estimations
from above see [3] and from below [7], [13]; note also that A, =4 [16]).
For K > 0 we define a homeomorphism ¢x »: [0,1] — [0,1] with ¢x (0)
=0, ¢k,n(1)=1 and
1

(2.3) Qxn(t) = T ) 0<t<l.

Throughout this paper we use a and 3 to denote the following numbers

a=KY0"™  g=1/a

The following important estimates (due to Wang [26] for n = 2 and general-
ized to n > 2 in [4]) are essential for the sequel

(2.4) exn(t) < At
(2'5) SOI/K,n(t) 2 ’\}z—ﬂtﬂ’

where K > 1. For n = 2, (2.4) is given also in [16] p. 65.
The Poincaré metric g(z,y) on B" is defined by (cf.[6])

lz —y|? _
lz —yI2+ (1 - |2[?) (1 - |y[?)

It is easy to show (see [5], 3.2) that

(2.6) tanh’® Lo(z,y) =

(2.7) |z — y| < 2tanh 1o(z,y)

for all z,y € B™.
The following theorem, a quasiconformal counterpart of the Schwarz lemma,

is a conformally invariant formulation of Theorem 3.1 in [17] (cf. [23], 3.3).
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2.8. Theorem. Let f be a K -quasiregular mapping of the unit ball B™ into
B™. Then

(2.9) tanh 1o(f(2), f(¥)) < ¢k, (tanh 1o(z,y))

for all z,y € B™.

2.10. Corollary. Let f: R" — R" be a K -quasiconformal mapping with
f(0) =0, f(co) =00 and fB™® C B®. If s > 1 and |z| < s, then

|F(2)] < 72" (7n(s)/K) -

Proof. This inequality follows easily by inversion, application of Theorem 2.8
to the inverse mapping and formula (2.3).
As in [4] we define

(2.11) H,(K) = sup M

|F(v)]

where the supremum is taken over all I -quasiconformal mappings f: R* — R"
with f(0) = 0 and over all pairs of points z, y in R® with |z] = |y| > 0. From
[24] and (2.5) we have

(2.12) Ha(K) < 1/p1/5n(1/V2)? < N2P~228,

Since A, < 2e™! we get as in [4] a dimension-free bound for H,(K), namely
AL < 21-VKEK | and hence Hp(K) < 235-2K2K_ Therefore this number re-
mains bounded for fixed K and varying n. We also observe that A\1=* — 1 as
K — 1, uniformly in n. Next we shall use the fact that

fim H(0€) =1

for every n > 2. This can be concluded by a normal family argument. A quanti-
tative inequality with this property has been given in [25], namely

(2.13) Ho(K) < X2 D exp(3K (K + 1)WWK — 1),

for all K > 1 and n > 2. Hence, as A\}™* and «, also H,(K) tends to one for
K — 1, uniformly in n.

Taking into account that a I{-quasiconformal mapping f: R" - R" with
f(0) =0 and f(c0) = co maps the ball B*(s) into B™(H(K)|f(se1)|), we note
that by Corollary 2.10 we get
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2.14. Corollary. Let f: R" — R" be a K -quasiconformal mapping with
f(0) =0 and f(o0) =oc0. If |z| < sly|, s > 1, then

|f(2)] < Ha(K)72 (va(s)/ K) 1 f(W)]-

We observe that this estimation is similar to Theorem 2.12 in [4] where the
constant is

L4 7 (ra(s)/K) 2 (37 (ra(VIF3)/K))

which is better in general and applies to all values s > 0. However, the constant
in Corollary 2.14 has the advantage that it tends to s for K — 1, it is hence
sharp. Finally, we want to add the remark that in [1] it is shown that for n = 2
the sharp constant is 7, ' (72(s)/K) for all s > 1.

Every mapping satisfying the assumptions of Theorem 1.3 can be extended
by reflection to a K -quasiconformal mapping of the whole space R". This leads
us to the

2.15. Definition. M;(n, K) is the smallest number such that (1.4) holds for
all z,y € B™ and for all K -quasiconformal mappings f: R" - R" with f(0) =0,
(oo) = oo and fB™ C B™.

We prove now that M;(n,K) satisfies (1.5) from which Theorem 1.3 then
follows. Let f be as in the definition above and fix z,y € B™. First we prove part
(3) of (1.5) (and in particular that M;(n,K) < 3)A2). To this end we employ a
fairly straightforward generalization of the 2-dimensional argument in [16], p. 66.

Proof of part (3). The proof is divided into two cases. Consider first the case
when

e —yl* + (1= [2*) (1 = yl*) > 1/16.
Then by (2.6)

(2.16) tanh £ o(z,y) < 4|z —y|.
Furthermore, by (2.7) and Theorem 2.8

|f(z) = f(y)| < 2tanh 1o(f(2), f(v)) < 2tanh Jo(f(2), f(y))
< 2pk,n (tanh 2o(z,9))

and by (2.4) and (2.16)
(2.17) |f(z) = f(y)| < 2A, (tanh Lo(z,y))" < 2AL7%4%z — y|°.

In the remaining second case we have |z —y| < 1/4 and (1—|z|?)(1-y*) <
1/16. We may assume that 1 — |z|? < 1/4, so |z| > v/3/2 > 0.85. Hence

Hz+y|= |:v+ %(y—’c)| > |z| - 2|z —y| > 0.7.
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Then the ring domain
A={zeR™ %|x—y|< |z——%(m+y)|< -%}

separates the origin and infinity from z and y, so fA separates 0 and oo from
f(z) and f(y). By performing a spherical symmetrization we obtain by [9]

(Lemma 2.6 in [4])
. . [f@)] )
prAz "<|f(w)—f(y)l |

Furthermore, we have
cap fA< Kcap A = Kwn—y (log(1/|z — y|))1_n'

The functional identity (2.1) gives

2" Kwa—; (log(1/lz — ) ™" = 1 (\/lf(x?fzmjg(g);a;{(y)l ) :

Then we use |f(:z:)|, |f(y)| <1, the fact that v, is decreasing and (2.2) to infer
that the right side is larger than

3 1—n
Wn-—1 (log ()\n1 ' m)) .

Hence
log 1 < Qﬂ log An ""—‘3—"_‘
lz —y| = |f(z) = f(y)l
and finally
(2.18) |f(z) = f(y)| < 3\i|z —yl™

Since 4 < A,, the inequality (2.18) holds in both cases (cf. (2.17)). Hence part
(3) of (1.5) is proved with M;(n,K) < 3\2.

Proof of part (1) and (2). Fix s > 1. Corollary 2.10 implies that f maps the
ball B"(s) into B™(c) where ¢ = v, (va(s)/K). We define g(z) = f(sz)/c and
note that g maps B"(1/s) into B™(1/c). We put

Ty
a=140(%,2).

S S8
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By (2.6) and |z/s|, |y/s| < 1/s we have

/s —y/s] sl —y|
.19 anha )
e S T A oD -1

Application of Theorem 3.4 in [5] to the mapping g gives

(2.20) |f(2) = f(y)| = clg(z/s) = g(y/s)| < c

2¢ K, n(tanha)
1+ \/1 — ¢% n(tanha)

From (2.3) and (2.5) we use

(2.21) c < AB-1sR,
from (2.4) and (2.19)
(2.22) ¢K,n(tanha) < min {1, AL (32i 1) |z — y|a}

and hence we get
22L7%(s/(s% = 1)) |z — y|*
14 /1~ min{L, X2 (s/ (2 = 1)) e — )

This inequality holds for all s > 1. We choose s (which depends on K') such that
sP*e/(s? — 1)* becomes minimal. This amounts to putting

2
s = ﬂ2—1

A straightforward computation shows that we have proved that

(ﬂz + 1),3/2+a/2

(223) |f(2) — f(y)| < AE~1s"

(224) Ml(n, I() < e(nv I())‘g—a 20,(,62 _ 1)ﬂ/2—a/2
where

2
(2.25) 8(n, K) = =

1+ \/1 — min{1, \272*(84 — 1)“}'

For K — 1, A}™ tends to one, uniformly in n, as well as @ and B do. Hence
6(n,K) — 1 uniformly in n and so does M;(n, K), since

(8% — 1)P12=al2 — (g 4 1)ﬂ/2—a/251/2—a/2\/(5 — 1)B-1(1 — a)i-e,

Part (1) is proved and part (2) is now evident, since the following bounds do not
depend on n:

f(n,K)<2, M7 <@VER)EH,
2-—01([32 + 1),3/2+or/2 < (I{Z + 1)1\"/2+1/2’ (ﬂ2 _ 1)0//2—-,3/2 < exp(—l/e).

The proof is complete.
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Finally we derive a

2.26. Corollary. Let f: R* — R" be K -quasiconformal with f(0) =0,
f(e1) = e and f(o0) = co. Then

(2.27) |f(z) = f(y)| £ Ma(n, K)|z — y|*
for all z,y € B™ where the constant M,(n,K) has the properties

(1) My(n, K) < Hu(K)My(n, K);
(2) M;(n,K)—1 as K — 1, uniformly in n;
(83) M;(n, K) remains bounded for fixed K and varying n.

Proof. Since such a mapping f maps B" into B™(0,H,(K)), the former
result applied to f(z)/Hn(K) yields (2.27) and (1). From (1), the properties of
Mi(n, K), (2.12) and (2.13) we get (2) as well as (3).

Remark. For any constant Ms(n,I{) satisfying (2.27) clearly Mas(n, K)
— oo for fixed n and K — oo as the example f, shows where fo is the identity
in the right half space and an affine stretching in the left half space. A quantitative
better lower bound is obtained by observing that (2.27) with z =0, |y| = 1 implies
that
My(n, K) > Ho(K) > A(B)

where the last inequality is (1.14) in [4]. Here A(K) is a well-known transcendental
function (cf.[16], p. 81). In fact

N\ 991\',2(1/\/5) ’
ME) = (%/1{,2(1/\/§)>

and hence A(K) - 1 as K — 1 and A\([{) » o0 as K — co. For the constant

M;i(n, K) we have the lower bound 4!~%. This follows by rotation of the extremal

plane quasiconformal mapping between the extremal Grotzsch ring domains (as it

is done in the proof of Theorem 4.9 in [4]) and the fact that lim, .o r =%y /q2(r) =

41~ (see p. 65 in [16]). In [16], p. 68, it is also shown that M;(2, K) > 161~1/K
We collect our results:

2.28. Theorem. The constant My(n,K) satisfies My(n,K) < 3)\2 and

(B + 1)ﬂ/2+a/2

M;y(n,K) < 9(n,K)A£-a2a(62 —1)yp=ar

where 6(n, K) is given by (2.25), in particular, 6(n,K) € [1,2] and 6(n,K) — 1
for K — 1.
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Remark. It is not known if there exists an upper bound for M;(n, K) which
is independent of n and K.

We close this section by considering the special case n = 2 and improving
Theorem 2.28 slightly.

2.29. Theorem. The constant My(2,K) satisfies M;(2,K) < 16 and

1,'{2 -1 22K—3/K (K'2 + 1)(K+1/K)/2
K?2+1 (K2 - 1)(1(—1/1()/2 :

Mi(2,K) < (1 +¢K2 (

Proof. M;(2,K) < 16 is the original content of Theorem 1.1, and from its
proof in [16], p. 67, it is clear that this constant also holds for our definition (2.15)
of the constant M;(2, K). For the second part we use the same notation as in the
preceding proof and recall (2.20) for n = 2:

20K 2(tanh a)
1+ \/1 — ¢% o(tanh a)

(2.30) |f(2) = f(y)| < e

For two points u,v € B™(r) with 0 <r <1 we have

2r

1
(2.31) tanh 50(u,v) < T2

because o(u,v) is maximized in B™(r)for opposite points on S™~!(r) (where its
value is 2log((1+r)/(1 —r)) and tanhlog[(1 + r)/(1 —r)] = 2r/(1 + r?). Next
we use the functional identity

2

(2.32) =
L4+ /1 - 0% a(2r/(1+72))

1+ 901{,2(7‘2)-

This can be derived from the identities

(2.33) pra(r) = \/1 — 92 (V1 —712),

1—1/k2((1=r)/(1+7))
14+ ¢1/r2((1=r)/(1+7))

(2.34) pra(r) =

which follow from [16], (2.7) and (2.9) on p. 61, by applying the function u(r) =
21 /72(1/r) to (2.33) and (2.34) and recalling that @i 2(r) = p~* (u(r)/K).
Since |z/s|, |y/s| < 1/s we have by (2.31) with r =1/s

. (ta 1 a) < - __"_ZLS___
Yreltanha) S QK2 1+1/82
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and with (2.30) and (2.32)

|[f(z) = f(y)] < e(1 + ¢k ,2(1/5%)) @K 2(tanha),

finally (2.4), (2.19) and ¢ < 451K give

1/K
|£(2) = fy)| < 452K (1 4 i p(1/5%)) 41K (323_ 1) o — y| /K

and, as before, the choice s = /(K2 + 1)/(K?2 — 1) yields the desired bound.

3. Mappings keeping an axis pointwise fixed

In this section we study the distortion of K -quasiconformal mappings f:
=n -=n y
R — R with the property

(3.1) f(ter) =tex for all t € R.

Proof of Theorem 1.6. Let f be a K -quasiconformal mapping of R" sat-
isfying (3.1). In order to study the quantity l f(a:)l /|z| we may evidently as-
sume that |z| = 1 and that f(z) is in the right half space (first co-ordinate
non-negative). Then we fix s > 0 and consider the ring R’ whose complement
consists of [—se1,0] and { f(z)+t(f(z)+e1):t>0}. We put a = |£(z) + 36‘1],
and hence a? > |f(z)|? 4+ s2. By Lemma 2.58 in [23], which is due to Gehring

(Lemma 2.7 in [4]), we have

(3.2) capR' <7, (-3 - 1) .

On the other hand, we put R = f~!(R') and conclude by [9] (Lemma 2.6 in [4])

(3.3) capR > o (%) .

(3.2), (3.3) and cap R < K cap R’ then yield

(3.4) 1471 (rn (%) /K) > g > /14| f(z)[*/s2.

From the functional identity (2.1) and the definition (2.3) we infer that the left

side in (3.4) is equal to

¢:=1/¢% k. (1/V1+1/s).
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Hence

(3.5) |f(a:)| < sVer—1.

If we choose s = 1, then this proof reduces to the one given in [4], and (3.5)
reduces to the bound given there. To get a bound that gives the right behavior
for K — 1 we use from (3.5)

|f(:c)| < sc
and then (2.5) to get
B
] <2 (2 1) .
This holds for any s > 0. The best choice is s = f — 1 which yields
B
262 B
If(m)l S)‘n (ﬂ—l)ﬂ_l

and Theorem 1.6 is proved.

In the special case n = 2 the set of values which can be taken by K -quasicon-
formal mappings satisfying (3.1) is known for any subset of R?. Namely, f then
maps the upper half plane onto itself keeping the boundary points fixed, so Teich-
miiller’s Verschiebungssatz [21] then provides the answer. This result easily shows
(see [15]) that the set of values f(x) of such mappings f at a given point z is a
hyperbolic disk with center z and radius

o(K) = 2arctan p™" (log((\/f&:+ 1)/ (\/fi_'— 1))) ,

where u(r) = 27 /v2(1/r) as above. Hence the possible set of values attained on
S is the set of all points = in the upper half plane with hyperbolic distance to
S1 less or equal o(K) as well as its mirror image in the lower half plane and
the points 1 and —1. The euclidean distance of  and f(x) is hence maximal
for z = ¢ and f(z) = iexp o(). Therefore (1.7) holds with the sharp constant
expo(K) = (1+p7(t)) / (1 - p~Y¢)) instead of AZ#=28#/(8 — 1)P~1 where
t = log(VE + D/(VE - 1)).

4. Conformal mappings of the unit disk onto quasidisks
A plane domain D is called a K -quasidisk if there exists a K -quasiconformal
mapping ¢: R’ - R’ with gD = B?. We first prove
4.1. Lemma. Let D be a K -quasidisk with 0 € D and max{ |z|: z € 0D}
=1. If r = min{ |2|: z € D} then there is a number I; = K,(r, K) such that

there is a Ky -quasiconformal mapping ¢: R’ - R’ with 91(0) =0, g1(00) =
and g1D = B? where K; -1 as K —» 1 and r — 1.
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Remark. To achieve K; — 1 it is necessary to let r tend to one, too.

Proof. Let g be the K-quasiconformal mapping in the definition of the
bounded K-quasidisk D. By a Mobius transformation we may assume that
g(c0) = co. First we find an upper bound for |g(0)| (and may hence assume
that ¢(0) #0).

Let R’ be the ring with complementary components [g(0),(0)/|g(0)|] and

[—o00, —9(0)/]9(0)[] . Then

1+ |9(0)l>
4.2 capR' =1 ( )
) PEE T
Next we put R = ¢g~!(R') and conclude as in the preceding section by [9] or
Lemma 2.6 in [4]

1
(4.3) capR > 7y (;—) .
From cap R < K cap R', and (4.2) and (4.3) we derive that
1+1gO) o (1 (1
. L A1 N —(=)).
) =y = \F"\s

By Teichmiiller’s Verschiebungssatz there is a K*-quasiconformal mapping ¢*:
B? — B? with g*(z) = z for z € B? and ¢*(¢(0)) = 0 with

1+ g(0)|
1—1g(0)]

where o(K) is as in Section 3. Hence the explicit formula is

(4.5) v — (exw(lg(o)l) + 1) 2.

o(K*) = log

exp u(|g(0)]) — 1

The desired mapping g¢; is now defined by g¢1(z) = g(z) for z € R’ \ D and
91(2) = g*(¢9(2)) for z € D. Its maximal dilatation K; < KK* has the required
property by (4.4) and (4.5).

Remark. Explicit estimates for I{;(r, K') can be derived from (4.4) and (4.5)

and
& <sz (1)) _ 10l (V0 +D)  eko(VIT ¥ 1))
C AR\ ) T T TR D) e (A D)
K -
< 42(1—1/1\") 1 1 42(1(_1) r+1 K
- r+1 -
(T + 1)1\"-—-1/1(

K

= 161(—1/]&’

where (2.1), (2.3), (2.33) and finally (2.4) and (2.5) have been used.
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4.6. Theorem. Let D be a bounded K -quasidisk, normalized such that
0€ D and 1 =max{|z|: z€ 0D }. Let f: B2 — D be a conformal mapping with
f(0)=0. If r = min{ |z|: z € 0D }, then

£(2) — f(y)] < My(2, K2)|a — y| /5

for all z,y € B? where K, = Ki(r,K) is the constant from Lemma 4.1, in
particular, the constant My(2,K?) tends to one for K and r tending to one.

Proof. Let g, be as in Lemma 4.1. Then f has a K?-quasiconformal ex-

tension to R~ which keeps oo fixed, namely g; 1640gy0foi where ¢ denotes
inversion. By Definition 2.15 the inequality follows, since this extension fixes 0
and oo and sends B? into itself.
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