Annales Academiæ Scientiarum Fennicæ Series A. I. Mathematica Volumen 13, 1988, 111–124

MORI'S THEOREM FOR n-DIMENSIONAL QUASICONFORMAL MAPPINGS

Richard Fehlmann and Matti Vuorinen

1. Introduction

In this paper we shall study distortion properties of quasiconformal mappings in two cases. The first case deals with quasiconformal mappings of the unit ball B^n in \mathbb{R}^n for which we generalize a classical theorem of Akira Mori (see [2], p. 47, or [16], p. 66). The second case deals with quasiconformal mappings of the whole space \mathbb{R}^n which keep the x_1 -axis pointwise fixed. In both cases our results will have the correct limiting behavior as $K \to 1$. Furthermore, all the estimates involved are explicitly computable. We shall also study conformal mappings onto quasidisks.

In 1956 the following theorem of A. Mori appeared [18].

1.1. Theorem. A K-quasiconformal mapping f of the unit disk B^2 onto itself with f(0) = 0 satisfies

(1.2)
$$|f(x) - f(y)| \le 16|x - y|^{1/K}$$

for all $x, y \in B^2$. Furthermore, the constant 16 in (1.2) cannot be replaced by any smaller constant independent of K.

The main result of this paper is the following generalization of Theorem 1.1.

1.3. Theorem. Let f be a K-quasiconformal mapping of B^n onto B^n , $n \ge 2$, with f(0) = 0. Then

(1.4)
$$|f(x) - f(y)| \le M_1(n, K)|x - y|^{\alpha}$$

for all $x, y \in B^n$ where $\alpha = K^{1/(1-n)}$ and the constant $M_1(n, K)$ has the following three properties:

(1) $M_1(n, K) \to 1$ as $K \to 1$, uniformly in n; (1.5) (2) $M_1(n, K)$ remains bounded for fixed K and varying n;

(3) $M_1(n, K)$ remains bounded for fixed n and varying K.

An *n*-dimensional version of Mori's theorem has already been given in [20]. In [11], Remark 1 on p. 235, it is said that this theorem holds with a constant satisfying (3) (namely $M_1(n, K) \leq 4\lambda_n^2$ in our notation of Section 2), and in [14] the inequality (1.4) is also proved, but with a constant that does not satisfy any of these three properties. In Section 2 (Theorem 2.28) we shall give explicit bounds from above for the constant $M_1(n, K)$ which actually hold in a wider class of mappings of the unit ball (cf. (2.15)). For an extension of Mori's theorem to more general domains the reader is referred to [12], Corollary 3.30, and, for a recent application of it, to [8], Section 10.

In Section 3 we shall prove

1.6. Theorem. Let $f : \mathbf{R}^n \to \mathbf{R}^n$ be a K-quasiconformal mapping which keeps the x_1 -axis pointwise fixed. If K > 1, then

(1.7)
$$\left|f(x)\right| \le \lambda_n^{2\beta-2} \frac{\beta^{\beta}}{(\beta-1)^{\beta-1}} |x|$$

for all $x \in \mathbf{R}^n$ where $\beta = K^{1/(n-1)}$ and λ_n is the Grötzsch ring constant (see Section 2).

This theorem is a sharpened version of Corollary 2.17 in [4]. Observe that the constant in (1.7) tends to one as $K \to 1$. Finally, in the last section, we apply these results to plane conformal mappings of the unit disk onto bounded K-quasidisks, again paying attention to the limiting behavior as $K \to 1$.

It is conjectured (cf. [16], p. 68) that the best constant in (1.2) is $16^{1-1/K}$, in place of 16. E. Reich has kindly informed us that his student G.P. Schwartz proved Mori's theorem (1.2) with the constant $360^{1-1/K}$ in place of 16, in an unpublished Ph.D. thesis in 1970. Schwartz' work relies heavily on the parametric representation of plane quasiconformal mappings and is therefore restricted to the two-dimensional case. A further improvement in the plane case has also been given in [19].

We shall adopt the relatively standard notation of [22], i.e., e_1, \ldots, e_n denote the orthogonal unit basis vectors, $B^n(x,r)$ the ball with center x and radius r > 0, $S^{n-1}(x,r) = \partial B^n(x,r), B^n(r) = B^n(0,r), S^{n-1}(r) = \partial B^n(r), B^n = B^n(1),$ $S^{n-1} = \partial B^n$ and ω_{n-1} the (n-1)-dimensional Lebesgue measure of S^{n-1} . In particular, we employ the definition of K-quasiconformal mapping given in [22], p. 42.

2. Mori's theorem

We shall next introduce some notation and some estimates necessary for the sequel.

A domain R in \mathbb{R}^n is called a ring or a ring domain if its complement in $\overline{\mathbb{R}}^n$ consists of two components. Its conformal capacity is denoted by cap R. By $R_{G,n}(t), t > 1$, we denote the Grötzsch ring whose complementary components consist of the closed unit ball \overline{B}^n and the ray $[te_1, \infty] = \{se_1: s \geq t\}$, and

by $R_{T,n}(t)$, t > 0, the Teichmüller ring whose complementary components are $[-e_1, 0] = \{se_1: -1 \le s \le 0\}$ and $[te_1, \infty]$. For their capacities we write

$$\gamma_n(t) = \operatorname{cap} R_{G,n}(t),$$

 $\tau_n(t) = \operatorname{cap} R_{T,n}(t).$

These functions are related by the functional identity

(2.1)
$$\gamma_n(t) = 2^{n-1} \tau_n(t^2 - 1)$$

(cf. [9], Lemma 6). Later we shall also use the estimation ([9], Lemma 8)

(2.2)
$$\gamma_n(t) \ge \omega_{n-1} (\log \lambda_n t)^{1-n}, \quad t > 1,$$

where $\lambda_n \in [4, 2e^{n-1}]$ is the Grötzsch ring constant (cf. [10]; for these estimations from above see [3] and from below [7], [13]; note also that $\lambda_2 = 4$ [16]).

For K > 0 we define a homeomorphism $\varphi_{K,n}: [0,1] \to [0,1]$ with $\varphi_{K,n}(0) = 0$, $\varphi_{K,n}(1) = 1$ and

(2.3)
$$\varphi_{K,n}(t) = \frac{1}{\gamma_n^{-1} (K \gamma_n(1/t))}, \quad 0 < t < 1.$$

Throughout this paper we use α and β to denote the following numbers

$$\alpha = K^{1/(1-n)}, \quad \beta = 1/\alpha.$$

The following important estimates (due to Wang [26] for n = 2 and generalized to $n \ge 2$ in [4]) are essential for the sequel

(2.4)
$$\varphi_{K,n}(t) \leq \lambda_n^{1-\alpha} t^{\alpha},$$

(2.5)
$$\varphi_{1/K,n}(t) \ge \lambda_n^{1-\beta} t^{\beta},$$

where $K \ge 1$. For n = 2, (2.4) is given also in [16] p. 65.

The Poincaré metric $\rho(x, y)$ on B^n is defined by (cf.[6])

(2.6)
$$\tanh^2 \frac{1}{2} \varrho(x, y) = \frac{|x - y|^2}{|x - y|^2 + (1 - |x|^2)(1 - |y|^2)}.$$

It is easy to show (see [5], 3.2) that

$$(2.7) |x-y| \le 2 \tanh \frac{1}{4} \varrho(x,y)$$

for all $x, y \in B^n$.

The following theorem, a quasiconformal counterpart of the Schwarz lemma, is a conformally invariant formulation of Theorem 3.1 in [17] (cf. [23], 3.3).

2.8. Theorem. Let f be a K-quasiregular mapping of the unit ball B^n into B^n . Then

(2.9)
$$\tanh \frac{1}{2}\varrho(f(x), f(y)) \le \varphi_{K,n} \left(\tanh \frac{1}{2}\varrho(x, y) \right)$$

for all $x, y \in B^n$.

2.10. Corollary. Let $f: \overline{\mathbb{R}}^n \to \overline{\mathbb{R}}^n$ be a K-quasiconformal mapping with $f(0) = 0, f(\infty) = \infty$ and $fB^n \subset B^n$. If s > 1 and $|x| \leq s$, then

$$\left|f(x)\right| \leq \gamma_n^{-1}\left(\gamma_n(s)/K\right).$$

Proof. This inequality follows easily by inversion, application of Theorem 2.8 to the inverse mapping and formula (2.3).

As in [4] we define

(2.11)
$$H_n(K) = \sup \frac{|f(x)|}{|f(y)|}$$

where the supremum is taken over all K-quasiconformal mappings $f: \mathbf{R}^n \to \mathbf{R}^n$ with f(0) = 0 and over all pairs of points x, y in \mathbf{R}^n with |x| = |y| > 0. From [24] and (2.5) we have

(2.12)
$$H_n(K) \le 1/\varphi_{1/K,n}(1/\sqrt{2})^2 \le \lambda_n^{2\beta-2} 2^{\beta}.$$

Since $\lambda_n \leq 2e^{n-1}$ we get as in [4] a dimension-free bound for $H_n(K)$, namely $\lambda_n^{1-\alpha} \leq 2^{1-1/K}K$, and hence $H_n(K) \leq 2^{3K-2}K^{2K}$. Therefore this number remains bounded for fixed K and varying n. We also observe that $\lambda_n^{1-\alpha} \to 1$ as $K \to 1$, uniformly in n. Next we shall use the fact that

$$\lim_{K \to 1} H_n(K) = 1$$

for every $n \ge 2$. This can be concluded by a normal family argument. A quantitative inequality with this property has been given in [25], namely

(2.13)
$$H_n(K) \le \lambda_n^{2(\beta^2 - 1)} \exp(3K(K+1)\sqrt{K-1}),$$

for all $K \ge 1$ and $n \ge 2$. Hence, as $\lambda_n^{1-\alpha}$ and α , also $H_n(K)$ tends to one for $K \to 1$, uniformly in n.

Taking into account that a K-quasiconformal mapping $f: \overline{\mathbb{R}}^n \to \overline{\mathbb{R}}^n$ with f(0) = 0 and $f(\infty) = \infty$ maps the ball $B^n(s)$ into $B^n(H_n(K)|f(se_1)|)$, we note that by Corollary 2.10 we get

2.14. Corollary. Let $f: \overline{\mathbb{R}}^n \to \overline{\mathbb{R}}^n$ be a K-quasiconformal mapping with f(0) = 0 and $f(\infty) = \infty$. If $|x| \le s|y|$, s > 1, then

$$\left|f(x)\right| \le H_n(K)\gamma_n^{-1}(\gamma_n(s)/K)|f(y)|.$$

We observe that this estimation is similar to Theorem 2.12 in [4] where the constant is

$$1 + \tau_n^{-1} (\tau_n(s)/K) \stackrel{(2.1)}{=} (\gamma_n^{-1} (\gamma_n(\sqrt{1+s})/K))^2,$$

which is better in general and applies to all values s > 0. However, the constant in Corollary 2.14 has the advantage that it tends to s for $K \to 1$, it is hence sharp. Finally, we want to add the remark that in [1] it is shown that for n = 2the sharp constant is $\tau_2^{-1}(\tau_2(s)/K)$ for all $s \ge 1$.

Every mapping satisfying the assumptions of Theorem 1.3 can be extended by reflection to a K-quasiconformal mapping of the whole space $\overline{\mathbb{R}}^n$. This leads us to the

2.15. Definition. $M_1(n, K)$ is the smallest number such that (1.4) holds for all $x, y \in B^n$ and for all K-quasiconformal mappings $f: \overline{\mathbb{R}}^n \to \overline{\mathbb{R}}^n$ with f(0) = 0, $f(\infty) = \infty$ and $fB^n \subset B^n$.

We prove now that $M_1(n, K)$ satisfies (1.5) from which Theorem 1.3 then follows. Let f be as in the definition above and fix $x, y \in B^n$. First we prove part (3) of (1.5) (and in particular that $M_1(n, K) \leq 3\lambda_n^2$). To this end we employ a fairly straightforward generalization of the 2-dimensional argument in [16], p. 66.

Proof of part (3). The proof is divided into two cases. Consider first the case when

$$|x-y|^{2} + (1-|x|^{2})(1-|y|^{2}) \ge 1/16.$$

Then by (2.6)

(2.16)
$$\tanh \frac{1}{2}\varrho(x,y) \le 4|x-y|.$$

Furthermore, by (2.7) and Theorem 2.8

$$\begin{aligned} \left| f(x) - f(y) \right| &\leq 2 \tanh \frac{1}{4} \varrho \big(f(x), f(y) \big) \leq 2 \tanh \frac{1}{2} \varrho \big(f(x), f(y) \big) \\ &\leq 2 \varphi_{K,n} \left(\tanh \frac{1}{2} \varrho(x, y) \right), \end{aligned}$$

and by (2.4) and (2.16)

(2.17)
$$\left|f(x) - f(y)\right| \le 2\lambda_n^{1-\alpha} \left(\tanh \frac{1}{2}\varrho(x,y)\right)^{\alpha} \le 2\lambda_n^{1-\alpha} 4^{\alpha} |x-y|^{\alpha}.$$

In the remaining second case we have $|x-y| \le 1/4$ and $(1-|x|^2)(1-|y|^2) \le 1/16$. We may assume that $1-|x|^2 \le 1/4$, so $|x| \ge \sqrt{3}/2 > 0.85$. Hence

$$\frac{1}{2}|x+y| = \left|x + \frac{1}{2}(y-x)\right| \ge |x| - \frac{1}{2}|x-y| > 0.7.$$

Then the ring domain

$$A = \{ z \in \mathbf{R}^n : \frac{1}{2}|x - y| < |z - \frac{1}{2}(x + y)| < \frac{1}{2} \}$$

separates the origin and infinity from x and y, so fA separates 0 and ∞ from f(x) and f(y). By performing a spherical symmetrization we obtain by [9] (Lemma 2.6 in [4])

$$\operatorname{cap} fA \ge \tau_n \left(\frac{|f(y)|}{|f(x) - f(y)|} \right).$$

Furthermore, we have

$$\operatorname{cap} fA \leq K \operatorname{cap} A = K \omega_{n-1} \left(\log(1/|x-y|) \right)^{1-n}.$$

The functional identity (2.1) gives

$$2^{n-1}K\omega_{n-1}\left(\log(1/|x-y|)\right)^{1-n} \ge \gamma_n\left(\sqrt{\frac{|f(x)-f(y)|+|f(y)|}{|f(x)-f(y)|}}\right).$$

Then we use |f(x)|, $|f(y)| \leq 1$, the fact that γ_n is decreasing and (2.2) to infer that the right side is larger than

$$\omega_{n-1}\left(\log\left(\lambda_n\sqrt{\frac{3}{|f(x)-f(y)|}}\right)\right)^{1-n}$$

Hence

$$\log \frac{1}{|x-y|} \le 2\beta \log \left(\lambda_n \sqrt{\frac{3}{|f(x) - f(y)|}}\right)$$

and finally

(2.18)
$$\left|f(x) - f(y)\right| \le 3\lambda_n^2 |x - y|^{\alpha}.$$

Since $4 \leq \lambda_n$, the inequality (2.18) holds in both cases (cf. (2.17)). Hence part (3) of (1.5) is proved with $M_1(n, K) \leq 3\lambda_n^2$.

Proof of part (1) and (2). Fix s > 1. Corollary 2.10 implies that f maps the ball $B^n(s)$ into $B^n(c)$ where $c = \gamma_n^{-1}(\gamma_n(s)/K)$. We define g(z) = f(sz)/c and note that g maps $B^n(1/s)$ into $B^n(1/c)$. We put

$$a = \frac{1}{2}\varrho\left(\frac{x}{s}, \frac{y}{s}\right).$$

Mori's theorem for n-dimensional guasiconformal mappings

By (2.6) and |x/s|, $|y/s| \leq 1/s$ we have

(2.19)
$$\tanh a \le \frac{|x/s - y/s|}{\sqrt{(1 - |x/s|^2)(1 - |y/s|^2)}} \le \frac{s|x - y|}{s^2 - 1}.$$

Application of Theorem 3.4 in [5] to the mapping g gives

(2.20)
$$|f(x) - f(y)| = c |g(x/s) - g(y/s)| \le c \frac{2\varphi_{K,n}(\tanh a)}{1 + \sqrt{1 - \varphi_{K,n}^2(\tanh a)}}.$$

From (2.3) and (2.5) we use

$$(2.21) c \le \lambda_n^{\beta-1} s^{\beta},$$

from (2.4) and (2.19)

(2.22)
$$\varphi_{K,n}(\tanh a) \le \min\left\{1, \lambda_n^{1-\alpha} \left(\frac{s}{s^2 - 1}\right)^{\alpha} |x - y|^{\alpha}\right\}$$

and hence we get

$$(2.23) |f(x) - f(y)| \le \lambda_n^{\beta - 1} s^{\beta} \frac{2\lambda_n^{1 - \alpha} (s/(s^2 - 1))^{\alpha} |x - y|^{\alpha}}{1 + \sqrt{1 - \min\{1, \lambda_n^{2 - 2\alpha} (s/(s^2 - 1))^{2\alpha} |x - y|^{2\alpha}\}}}.$$

This inequality holds for all s > 1. We choose s (which depends on K) such that $s^{\beta+\alpha}/(s^2-1)^{\alpha}$ becomes minimal. This amounts to putting

$$s = \sqrt{\frac{\beta^2 + 1}{\beta^2 - 1}}.$$

A straightforward computation shows that we have proved that

(2.24)
$$M_1(n,K) \le \theta(n,K) \lambda_n^{\beta-\alpha} \frac{(\beta^2+1)^{\beta/2+\alpha/2}}{2^{\alpha} (\beta^2-1)^{\beta/2-\alpha/2}}$$

where

(2.25)
$$\theta(n,K) = \frac{2}{1 + \sqrt{1 - \min\{1, \lambda_n^{2-2\alpha}(\beta^4 - 1)^{\alpha}\}}}$$

For $K \to 1$, $\lambda_n^{1-\alpha}$ tends to one, uniformly in n, as well as α and β do. Hence $\theta(n,K) \to 1$ uniformly in n and so does $M_1(n,K)$, since

$$(\beta^2 - 1)^{\beta/2 - \alpha/2} = (\beta + 1)^{\beta/2 - \alpha/2} \beta^{1/2 - \alpha/2} \sqrt{(\beta - 1)^{\beta - 1} (1 - \alpha)^{1 - \alpha}}.$$

Part (1) is proved and part (2) is now evident, since the following bounds do not depend on n:

$$\theta(n,K) \le 2, \qquad \lambda_n^{\beta-\alpha} \le (2^{1-1/K}K)^{K+1}, \\ 2^{-\alpha}(\beta^2+1)^{\beta/2+\alpha/2} \le (K^2+1)^{K/2+1/2}, \qquad (\beta^2-1)^{\alpha/2-\beta/2} \le \exp(-1/e).$$

The proof is complete

The proof is complete.

Finally we derive a

2.26. Corollary. Let $f: \overline{\mathbb{R}}^n \to \overline{\mathbb{R}}^n$ be K-quasiconformal with f(0) = 0, $f(e_1) = e_1$ and $f(\infty) = \infty$. Then

(2.27)
$$|f(x) - f(y)| \le M_2(n, K)|x - y|^{\alpha}$$

for all $x, y \in B^n$ where the constant $M_2(n, K)$ has the properties

- (1) $M_2(n, K) \le H_n(K)M_1(n, K);$
- (2) $M_2(n, K) \to 1$ as $K \to 1$, uniformly in n;
- (3) $M_2(n, K)$ remains bounded for fixed K and varying n.

Proof. Since such a mapping f maps B^n into $B^n(0, H_n(K))$, the former result applied to $f(z)/H_n(K)$ yields (2.27) and (1). From (1), the properties of $M_1(n, K)$, (2.12) and (2.13) we get (2) as well as (3).

Remark. For any constant $M_2(n, K)$ satisfying (2.27) clearly $M_2(n, K) \to \infty$ for fixed n and $K \to \infty$ as the example f_0 shows where f_0 is the identity in the right half space and an affine stretching in the left half space. A quantitative better lower bound is obtained by observing that (2.27) with x = 0, |y| = 1 implies that

$$M_2(n,K) \ge H_n(K) \ge \lambda(\beta)$$

where the last inequality is (1.14) in [4]. Here $\lambda(K)$ is a well-known transcendental function (cf.[16], p. 81). In fact

$$\lambda(K) = \left(\frac{\varphi_{K,2}(1/\sqrt{2}\,)}{\varphi_{1/K,2}(1/\sqrt{2}\,)}\right)^2$$

and hence $\lambda(K) \to 1$ as $K \to 1$ and $\lambda(K) \to \infty$ as $K \to \infty$. For the constant $M_1(n, K)$ we have the lower bound $4^{1-\alpha}$. This follows by rotation of the extremal plane quasiconformal mapping between the extremal Grötzsch ring domains (as it is done in the proof of Theorem 4.9 in [4]) and the fact that $\lim_{r\to 0} r^{-\alpha} \varphi_{1/\alpha,2}(r) = 4^{1-\alpha}$ (see p. 65 in [16]). In [16], p. 68, it is also shown that $M_1(2, K) \geq 16^{1-1/K}$.

We collect our results:

2.28. Theorem. The constant $M_1(n, K)$ satisfies $M_1(n, K) \leq 3\lambda_n^2$ and

$$M_1(n,K) \le \theta(n,K) \lambda_n^{\beta-\alpha} \frac{(\beta^2+1)^{\beta/2+\alpha/2}}{2^{\alpha}(\beta^2-1)^{\beta/2-\alpha/2}}$$

where $\theta(n, K)$ is given by (2.25), in particular, $\theta(n, K) \in [1, 2]$ and $\theta(n, K) \to 1$ for $K \to 1$.

Remark. It is not known if there exists an upper bound for $M_1(n, K)$ which is independent of n and K.

We close this section by considering the special case n = 2 and improving Theorem 2.28 slightly.

2.29. Theorem. The constant $M_1(2, K)$ satisfies $M_1(2, K) \leq 16$ and

$$M_1(2,K) \le \left(1 + \varphi_{K,2}\left(\frac{K^2 - 1}{K^2 + 1}\right)\right) 2^{2K - 3/K} \frac{(K^2 + 1)^{(K+1/K)/2}}{(K^2 - 1)^{(K-1/K)/2}}.$$

Proof. $M_1(2, K) \leq 16$ is the original content of Theorem 1.1, and from its proof in [16], p. 67, it is clear that this constant also holds for our definition (2.15) of the constant $M_1(2, K)$. For the second part we use the same notation as in the preceding proof and recall (2.20) for n = 2:

(2.30)
$$|f(x) - f(y)| \le c \frac{2\varphi_{K,2}(\tanh a)}{1 + \sqrt{1 - \varphi_{K,2}^2(\tanh a)}}.$$

For two points $u, v \in B^n(r)$ with $0 \le r \le 1$ we have

(2.31)
$$\tanh \frac{1}{2}\varrho(u,v) \le \frac{2r}{1+r^2},$$

because $\rho(u, v)$ is maximized in $\overline{B}^n(r)$ for opposite points on $S^{n-1}(r)$ (where its value is $2\log((1+r)/(1-r))$ and $\tanh \log[(1+r)/(1-r)] = 2r/(1+r^2)$. Next we use the functional identity

(2.32)
$$\frac{2}{1 + \sqrt{1 - \varphi_{K,2}^2 (2r/(1+r^2))}} = 1 + \varphi_{K,2}(r^2).$$

This can be derived from the identities

(2.33)
$$\varphi_{K,2}(r) = \sqrt{1 - \varphi_{1/K,2}^2(\sqrt{1 - r^2})},$$

(2.34)
$$\varphi_{K,2}(r) = \frac{1 - \varphi_{1/K,2}((1-r)/(1+r))}{1 + \varphi_{1/K,2}((1-r)/(1+r))}$$

which follow from [16], (2.7) and (2.9) on p. 61, by applying the function $\mu(r) = 2\pi/\gamma_2(1/r)$ to (2.33) and (2.34) and recalling that $\varphi_{K,2}(r) = \mu^{-1}(\mu(r)/K)$. Since |x/s|, $|y/s| \leq 1/s$ we have by (2.31) with r = 1/s

$$\varphi_{K,2}(\tanh a) \leq \varphi_{K,2}\left(\frac{2/s}{1+1/s^2}\right)$$

and with (2.30) and (2.32)

$$\left|f(x) - f(y)\right| \le c \left(1 + \varphi_{K,2}(1/s^2)\right) \varphi_{K,2}(\tanh a),$$

finally (2.4), (2.19) and $c \leq 4^{K-1}s^K$ give

$$\left|f(x) - f(y)\right| \le 4^{K-1} s^K \left(1 + \varphi_{K,2}(1/s^2)\right) 4^{1-1/K} \left(\frac{s}{s^2 - 1}\right)^{1/K} |x - y|^{1/K}$$

and, as before, the choice $s = \sqrt{(K^2 + 1)/(K^2 - 1)}$ yields the desired bound.

3. Mappings keeping an axis pointwise fixed

In this section we study the distortion of K-quasiconformal mappings $f: \overline{\mathbb{R}}^n \to \overline{\mathbb{R}}^n$ with the property

$$(3.1) f(te_1) = te_1 for all t \in \mathbf{R}.$$

Proof of Theorem 1.6. Let f be a K-quasiconformal mapping of \mathbb{R}^n satisfying (3.1). In order to study the quantity |f(x)|/|x| we may evidently assume that |x| = 1 and that f(x) is in the right half space (first co-ordinate non-negative). Then we fix s > 0 and consider the ring R' whose complement consists of $[-se_1, 0]$ and $\{f(x) + t(f(x) + e_1): t \ge 0\}$. We put $a = |f(x) + se_1|$, and hence $a^2 \ge |f(x)|^2 + s^2$. By Lemma 2.58 in [23], which is due to Gehring (Lemma 2.7 in [4]), we have

(3.2)
$$\operatorname{cap} R' \leq \tau_n \left(\frac{a}{s} - 1\right).$$

On the other hand, we put $R = f^{-1}(R')$ and conclude by [9] (Lemma 2.6 in [4])

(3.3)
$$\operatorname{cap} R \ge \tau_n \left(\frac{1}{s}\right).$$

(3.2), (3.3) and $\operatorname{cap} R \leq K \operatorname{cap} R'$ then yield

(3.4)
$$1 + \tau_n^{-1} \left(\tau_n \left(\frac{1}{s} \right) / K \right) \ge \frac{a}{s} \ge \sqrt{1 + |f(x)|^2 / s^2}.$$

From the functional identity (2.1) and the definition (2.3) we infer that the left side in (3.4) is equal to

$$c := 1/\varphi_{1/K,n}^2 (1/\sqrt{1+1/s}).$$

Hence

$$(3.5) $|f(x)| < s\sqrt{c^2-1}.$$$

If we choose s = 1, then this proof reduces to the one given in [4], and (3.5) reduces to the bound given there. To get a bound that gives the right behavior for $K \to 1$ we use from (3.5)

$$\left|f(x)\right| \leq sc$$

and then (2.5) to get

$$\left|f(x)\right| \le \lambda_n^{2\beta-2} s\left(\frac{s+1}{s}\right)^{\beta}.$$

This holds for any s > 0. The best choice is $s = \beta - 1$ which yields

$$|f(x)| \le \lambda_n^{2\beta-2} \frac{\beta^{\beta}}{(\beta-1)^{\beta-1}}$$

and Theorem 1.6 is proved.

In the special case n = 2 the set of values which can be taken by K-quasiconformal mappings satisfying (3.1) is known for any subset of \mathbb{R}^2 . Namely, f then maps the upper half plane onto itself keeping the boundary points fixed, so Teichmüller's Verschiebungssatz [21] then provides the answer. This result easily shows (see [15]) that the set of values f(x) of such mappings f at a given point x is a hyperbolic disk with center x and radius

$$\varrho(K) = 2 \arctan \mu^{-1} \left(\log \left(\left(\sqrt{K} + 1 \right) / \left(\sqrt{K} - 1 \right) \right) \right)$$

where $\mu(r) = 2\pi/\gamma_2(1/r)$ as above. Hence the possible set of values attained on S^1 is the set of all points x in the upper half plane with hyperbolic distance to S^1 less or equal $\varrho(K)$ as well as its mirror image in the lower half plane and the points 1 and -1. The euclidean distance of x and f(x) is hence maximal for x = i and $f(x) = i \exp \varrho(K)$. Therefore (1.7) holds with the sharp constant $\exp \varrho(K) = (1 + \mu^{-1}(t)) / (1 - \mu^{-1}(t))$ instead of $\lambda_n^{2\beta-2}\beta^{\beta}/(\beta-1)^{\beta-1}$ where $t = \log((\sqrt{K}+1)/(\sqrt{K}-1))$.

4. Conformal mappings of the unit disk onto quasidisks

A plane domain D is called a K-quasidisk if there exists a K-quasiconformal mapping $g: \overline{\mathbf{R}}^2 \to \overline{\mathbf{R}}^2$ with $gD = B^2$. We first prove

4.1. Lemma. Let D be a K-quasidisk with $0 \in D$ and $\max\{|z|: z \in \partial D\}$ = 1. If $r = \min\{|z|: z \in \partial D\}$ then there is a number $K_1 = K_1(r, K)$ such that there is a K_1 -quasiconformal mapping $g_1: \overline{\mathbf{R}}^2 \to \overline{\mathbf{R}}^2$ with $g_1(0) = 0$, $g_1(\infty) = \infty$ and $g_1D = B^2$ where $K_1 \to 1$ as $K \to 1$ and $r \to 1$. **Remark.** To achieve $K_1 \rightarrow 1$ it is necessary to let r tend to one, too.

Proof. Let g be the K-quasiconformal mapping in the definition of the bounded K-quasidisk D. By a Möbius transformation we may assume that $g(\infty) = \infty$. First we find an upper bound for |g(0)| (and may hence assume that $g(0) \neq 0$).

Let R' be the ring with complementary components [g(0), g(0)/|g(0)|] and $[-\infty, -g(0)/|g(0)|]$. Then

(4.2)
$$\operatorname{cap} R' = \tau_2 \left(\frac{1 + |g(0)|}{1 - |g(0)|} \right).$$

Next we put $R = g^{-1}(R')$ and conclude as in the preceding section by [9] or Lemma 2.6 in [4]

(4.3)
$$\operatorname{cap} R \ge \tau_2 \left(\frac{1}{r}\right).$$

From $\operatorname{cap} R \leq K \operatorname{cap} R'$, and (4.2) and (4.3) we derive that

(4.4)
$$\frac{1+|g(0)|}{1-|g(0)|} \le \tau_2^{-1} \left(\frac{1}{K} \tau_2\left(\frac{1}{r}\right)\right).$$

By Teichmüller's Verschiebungssatz there is a K^* -quasiconformal mapping g^* : $B^2 \to B^2$ with $g^*(z) = z$ for $z \in \partial B^2$ and $g^*(g(0)) = 0$ with

$$\varrho(K^*) = \log \frac{1 + |g(0)|}{1 - |g(0)|}$$

where $\rho(K)$ is as in Section 3. Hence the explicit formula is

(4.5)
$$K^* = \left(\frac{\exp \mu(|g(0)|) + 1}{\exp \mu(|g(0)|) - 1}\right)^2.$$

The desired mapping g_1 is now defined by $g_1(z) = g(z)$ for $z \in \overline{\mathbb{R}}^2 \setminus D$ and $g_1(z) = g^*(g(z))$ for $z \in \overline{D}$. Its maximal dilatation $K_1 \leq KK^*$ has the required property by (4.4) and (4.5).

Remark. Explicit estimates for $K_1(r, K)$ can be derived from (4.4) and (4.5) and

$$\begin{split} \tau_2^{-1} \left(\frac{1}{K} \tau_2 \left(\frac{1}{r} \right) \right) &= \frac{1 - \varphi_{1/K,2}^2 \left(\sqrt{r/(r+1)} \right)}{\varphi_{1/K,2}^2 \left(\sqrt{r/(r+1)} \right)} = \frac{\varphi_{K,2}^2 \left(\sqrt{1/(r+1)} \right)}{\varphi_{1/K,2}^2 \left(\sqrt{r/(r+1)} \right)} \\ &\leq 4^{2(1-1/K)} \left(\frac{1}{r+1} \right)^{1/K} 4^{2(K-1)} \left(\frac{r+1}{r} \right)^K \\ &= 16^{K-1/K} \frac{(r+1)^{K-1/K}}{r^K} \end{split}$$

where (2.1), (2.3), (2.33) and finally (2.4) and (2.5) have been used.

4.6. Theorem. Let D be a bounded K-quasidisk, normalized such that $0 \in D$ and $1 = \max\{|z|: z \in \partial D\}$. Let $f: B^2 \to D$ be a conformal mapping with f(0) = 0. If $r = \min\{|z|: z \in \partial D\}$, then

$$|f(x) - f(y)| \le M_1(2, K_1^2) |x - y|^{1/K_1^2}$$

for all $x, y \in B^2$ where $K_1 = K_1(r, K)$ is the constant from Lemma 4.1, in particular, the constant $M_1(2, K_1^2)$ tends to one for K and r tending to one.

Proof. Let g_1 be as in Lemma 4.1. Then f has a K_1^2 -quasiconformal extension to $\overline{\mathbf{R}}^2$ which keeps ∞ fixed, namely $g_1^{-1} \circ i \circ g_1 \circ f \circ i$ where i denotes inversion. By Definition 2.15 the inequality follows, since this extension fixes 0 and ∞ and sends B^2 into itself.

Acknowledgement. The first author is supported by the Schweizerischer Nationalfonds zur Förderung der wissenschaftlichen Forschung.

References

- AGARD, S.: Distortion theorems for quasiconformal mappings. Ann. Acad. Sci. Fenn. Ser. A I Math. 413, 1968, 1-12.
- [2] AHLFORS, L.V.: Lectures on quasiconformal mappings. Van Nostrand Mathematical Studies 10. Van Nostrand, Princeton, 1966.
- [3] ANDERSON, G.D.: Dependence on dimension of a constant related to the Grötzsch ring.
 Proc. Amer. Math. Soc. 61, 1976, 77-80.
- [4] ANDERSON, G.D., M.K. VAMANAMURTHY, and M. VUORINEN: Dimension-free quasiconformal distortion in n-space. - Trans. Amer. Math. Soc. 297, 1986, 687-706.
- [5] ANDERSON, G.D., M.K. VAMANAMURTHY, and M. VUORINEN: Sharp distortion theorems for quasiconformal mappings. - Trans. Amer. Math. Soc. 305, 1988, 95–111.
- [6] BEARDON, A.F.: The geometry of discrete groups. Graduate Texts in Mathematics 91. Springer-Verlag, Berlin-Heidelberg-New York, 1983.
- [7] CARAMAN, P.: On the equivalence of the definitions of the n-dimensional quasiconformal homeomorphisms (QCfH). - Rev. Roumaine Math. Pures Appl. 12, 1967, 889-943.
- [8] DOUADY, A., and C. EARLE: Conformally natural extension of homeomorphisms of the circle. - Acta Math. 157, 1986, 23-48.
- [9] GEHRING, F.W.: Symmetrization of rings in space. Trans. Amer. Math. Soc. 101, 1961, 499-519.
- [10] GEHRING, F.W.: Rings and quasiconformal mappings in space. Trans. Amer. Math. Soc. 103, 1962, 353-393.
- [11] GEHRING, F.W.: Quasiconformal mappings. In: Complex Analysis and its Applications II. Atomic Energy Agency, Vienna, 1976, 213-268.
- [12] GEHRING, F.W., and O. MARTIO: Lipschitz classes and quasiconformal mappings. -Ann. Acad. Sci. Fenn. Ser. A I Math. 10, 1985, 203–219.
- [13] IKOMA, K.: An estimate for the modulus of the Grötzsch ring in n-space. Bull. Yamagata Univ. Natur. Sci. 6, 1967, 395-400.
- [14] IKOMA, K.: A modification of Teichmüller's module theorem and its application to a distortion problem in n-space. - Tôhoku Math. J. 32, 1980, 393-398.
- [15] KRZYŻ, J.: On the extremal problem of F. W. Gehring. Bull. Acad. Pol. Sci., Ser. Math., Astr. et Phys. 16, 1968, 99–101.

- [16] LEHTO, O., and K.I. VIRTANEN: Quasiconformal mappings in the plane. Die Grundlehren der mathematischen Wissenschaften 126, 2nd edition. Springer-Verlag, Berlin-Heidelberg-New York, 1973.
- [17] MARTIO, O., S. RICKMAN, and J. VÄISÄLÄ: Distortion and singularities of quasiregular mappings. - Ann. Acad. Sci. Fenn. Ser. A I Math. 465, 1970, 1–13.
- [18] MORI, A.: On an absolute constant in the theory of quasiconformal mappings. J. Math. Soc. Japan 8, 1956, 156-166.
- QU, H.: An improvement of Mori's constant in the theory of quasiconformal mappings. J. Tongji Univ. 3, 1985, 75-85 (Chinese).
- [20] SHABAT, B.V.: On the theory of quasiconformal mappings in space. Soviet Math. Dokl. 1, 1960, 730-733.
- [21] TEICHMÜLLER, O.: Ein Verschiebungssatz der quasikonformen Abbildung. Deutsche Math. 7, 1944, 336-343.
- [22] VÄISÄLÄ, J.: Lectures on n-dimensional quasiconformal mappings. Lecture Notes in Mathematics 229. Springer-Verlag, Berlin-Heidelberg-New York, 1971.
- [23] VUORINEN, M.: Conformal invariants and quasiregular mappings. J. Analyse Math. 45, 1985, 69-115.
- [24] VUORINEN, M.: On the distortion of n-dimensional quasiconformal mappings. Proc. Amer. Math. Soc. 96, 1986, 275-283.
- [25] VUORINEN, M.: Quadruples and spatial quasiconformal mappings. In preparation.
- [26] WANG, C.-F.: On the precision of Mori's theorem in Q-mapping. Science Record 4, 1960, 329-333.

Nokia Research Center P.O. Box 780 SF–00101 Helsinki Finland University of Helsinki Department of Mathematics Hallituskatu 15 SF-00100 Helsinki Finland

Received 26 August 1987