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SOME COEFFICIENT ESTIMATIONS
IN THE CIASS xf oF IVIEROMORPHIC

UNIVATEI{T FUNCTIONS

Olli Tamrni

1. Introduction

Let E5 be the class of meromorphic univalent functions omitting a disc:

E5: {r/ lH("):z*f A,"-", lrl>t, lnQ)l> åe (0,1)}.
0

This is closely connected with the class ,5(å) of bounded univalent functions:

s(b) : {1 t@ : b(z *f o,r"), lrl < t, l/(r)l . r, ö e (0,1)}.
2

The one-to-one connection between / and f/ reads

(1) H(z)f (t-t)_ b, ltl

Fbom ur : H(z) we obtain the inverse relationship

z: I(w)= t{.' * ir,r-".
0

In [6] the inverse coefficients -8,. 'were all maximized by the radial-slit mapping
.[" deffned by

L + I;r : uD -2(1 - l,) + bzw-r.

The side-condition Ao: -az = 0 yields the subclass El C E5:

Ei: {n IHQ): z*To,,'-', l"l > 1, lu('ll > åe (0,t)}.

The special case å-:0, i.e., Då: t', has been extensively considered by Schober

[4]. Especially the initial odd inverse coefficients were succesfully estimated.
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In the present paper we are dealing with E! and will generalize some of the
results of [4] for odd inverse coefficients. SimilarlS some initial A, -coeffcients will
be considered.

The connections between H , I and "f yield the corresponding coefrcient
connections. Thus

Ar: -Et,
Az: -Ez,
As: -Et - E?,

An: -En - SEzEu

As : -Es - AEsEr - zEg - 2E?.

Clearly, the letters .4 and E can here also be interchanged. In ar-coefficients we
have further

Ar: -ag, Et: ag,

AZ: -a4t E2: d4,

As,: -as * a3, Es :.as - 2o?,

Aa: -aa * 2aaas, Et : aa - 5a4as,

AE: -at !2asas + af,- a!; Es: az -6asas-Sazn+Za!.

2. At, Az by aid of coefficient bodies

Fbr lower ar-coefficients we have lots of .ot{*tions and inequalities which
yield sharp information also in the special case .4s - -d2:0 in question.

The first non-trivial coefficient body (a2,a3) is studied in [9] (cf. p. 241, as
wellas pp.264-265). Thus, fot a2 =0 wehave la3l < 1- b2,i.e.,

l/rl: larl< L-b2.

The equality holds for the function / of the type 2:2 (the notation is explained in
[9], p. 149) with the image of two symrnetric radial slits and defined by

/(1 + f')-t : bz(7 * 221-t.

The second coefficient body (c2, as,a4) is also described in [g] with sufficient
accuracy for our present purposes. However, there exist also direct estimations,
given by Grunsky-type inequalities, which are sharp in the special cäse a2 = Q.
For example, from [7] there follows

Reaa 
=?rr-ö') - ffi=3,t-b').
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The final equality
3:3 for which

Thus

holds for a2 - o,s - 0 and for a symmetric raclial-slit mappittg

3. Ezr+t (u - 0,

Fbr inverse coefficients the FitzGerald inequality appears to be effective. It is
advisable to apply it in the integral form given by Launonen [2]. In [5] this method
is used in estimating the coefficients of functions inverse to odd E6 -functions-call
them briefly "odd inverse coefficients". We are going to apply the Siejka-method
to them in the case El and will thus test the possibilities of generalizing the
estimations of Schober in [a].

For the inverse E6-function the FitzGerald-Launonen condition (20) of [5]
holds. This implies inequalities for odd .8,-coefficients. These are obtained as in
[5] from (22) and can be expressed by aid of the numbers a, of

I(*)-1 :w-r *az?,t)-z *csw t+

where a2 : -a2 : 0, ag :
2EzE1, . . . . The inequalities
Ezr-t). Thus, for L/ -- 1 and

/(1 - ft)-'/' - br(1 - ,t)-2/3 .

lArl - lTrl<3,t-b').

,,4) by aid of FitzGerald-Launonen inequality

-Er, cY4 : -82,, Qs : -Es + E?t Q6 - -Ea
in cluestion are those in (24) of t5] (write Dzr-t
u - 2 we obta,in immediately

I.Erl < lorl'+L-b2: L-b2.

+

lE, l< L-b',

For the first condition the equality case was obtained from the coefficient
body (a2,a3) and was found to be the symmetric 2:2-case. In what follows, call
the corresponding extremal ,9(ö)-function /o. The equality in the second condition
is more problematic. In Section 4 we will shorv that again the previous mapping
/" is the only extremal function.

For z : 3 the condition (22) of [5] yields

lEul < lorl' + G - l,t)lozl' + 1 - bz

-la|t+r -62 S(1 -lf)t+t -62-z-Bbz+b4

The maximum is reachecl with that of lEtl, i.e., by the function fo.
The first non-trivial estimation occurs for u : 4:

lErl : lonl' + l2or + *?l' - lflor lt + (9 - 4bz)lo|' + L - bz

- lAdt+ e-br)lArl, +1-b2.
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In order to estimate this we apply the area inequality for S(ö) ([9], p. 1S2):

irla, - b2a,l2 <-L,
1

where

bf (")-' = "-r +ia,r".
0

Because of (1)
oo

z-r + D A,z' : H(z-r) - bf (r)-1. '

I

Thus A, - A, and the area inequality reads

(2) i,rlA, - 6za,l2
1

Fot E7 rye use the consequence

(3) lA, * b2l' +2lA2l2 < L,

yielding

l&l : f, - *+ (4 - b2)lArl - f,1,+, - b'l'

: ; - u, -lun * G- br)l.qrl, + ö2 Re A,.

The rotated function r-tl(rw) = w *Dfr-v-rfirtl-', lrl : t, preserves

lE l ,rtd allows the normalization Er ) 0, i.e., ,4.1 - -Er ( 0. In the variable

s:Are [-(t-b'),0]
we thus have

l*,l<!r-u -it'+P(c);
p(c): (f,-t'r1*, +b2r.

Require

p(-(r - ör)) = (1 - br)(bn -lu, *I)"> p(0): s.

This yields
maxP:P(-(1 -a')) for o<å<öo
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where

o" : t{rr - tFasl't':0.856 992 160

is the. zero of ( )". Het ce for 0 ( b I bo the sharp estimation holds:

lEzl 3i - t' - it^+ .e(-(1 - ö')) - b - 10b2 + 6b4 - b6.

Again, with lÄ11 the coefficient lETl is maximized by the function /o.
The case u :5 carr be treated similarly.

lErl < loul' + @ - bz)laal' + (g - 4b2)lasl2 + L - b2

:lE?-Erlz +(4- o")ltrl" +(e- +bz)lAl2 +L-b2.

Because JErl < L - b2, lErl < L - b2 we obtain, by using (3):

lagl < lG-ur)r+1- t'l'+|f^-å')[1 - l,qr-b"lr]
+(e- 4b\lAl2 +r-b2

: (1 - b,),(2 - b,),+ 3 - |* - 1z - f,*1t + Q@);

e@):12 -!rt21x2 + (4 - b2)b2x;

x : At € [-(1- å'),0].

Require

A(-(1- ö,)) :Irr- ö2Xeö4 -zsbz + 14) > g(0):0.

This holds for

o< ö< a": [fr120 - rffi)]|tz:0.768s2s667

where the following sharp estimation is thus valid:

lEel < 0-b\z?-b\2 +t-f,uz - (z- Lu\r^+8(-(1 -6',))
: L4 - 35b2 + 3064 - 10ö6 + å8.

Again, with lAll also lEel is maximized bV å.
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The remaining interval (å", 1) is left open by the above method. The structure
of the FitzGerald inequalities shows that with increasing index the role of Ä,-
coefficients increases. Already for Az the function /o is not the extremal one and,
as will be seen, simila,r situation holds for .43. Hence, there is no hope to proceed
very far in the Ezr+t-estimations by using the above method. It is not excluded
that /" actually loses its extremal role, at least for some ö-intervals, for higher
odd inverse coefficients.

For "Err and .Org the above estimation technique fails if b > 0 and thus
remains succesful only at å: 0 as was proved by Schober in [a].

Collect the sharp results found:

Theorem. I" Dl the coefficients 81, Es, Es are for the whole intewaJ
b e [0,1] maximized by the S(b)-function f" of the symmetric 2 :2-type defined
by

/(1 + f')-t : bz(L + "2)-r.
For 87, fo preserves the extremal role at least for 0 < å < 0.856 992 160 and for
the coefficient Eg the sa.rne holds a,t fteast, for 0 ( ö < 0.768 925 667 .

The coefficient lA2l : lDzl is maximized by the S(b)-function of the sym-
metric 3 :7-type defined by

/(1 - fs)-2/3 : bz(l - "t1-zle.
The uniqueness of the extremal function for Es is proved at the beginning of

Section 4.

4. Es for å e [0, 1] and ,4.g for b e le-2,t1

In (85) p. 473 of [3] there is the Grunsky-type inequality for c5 which for
az :0 Yields

2tu (ou -zo?)- (1 - ån) < -R" ("3) -#
Denotehere or:uliu:

(4) 2Re (o5 - z"?) - (1 - bn) < ,2 - (1 + 2flr- b-r)"u2 .

Because ( )" > 0 for ö € [0,1) we have

2Re (as - 2"il- (1 - bn) S r" < 0 - b')'

with the equality for u:0, lul : L-b2, because lorl < L-b2 for a2:0. Thus

fu (or - z"'r) 1! - b2,
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i."., lE"l < 1. - ö2 where equality holds exactly fot a2 = 0, lasl - 1- b2, i.e., for
the function /o.

Tl,rrn to the combination -.,43 - as -a!. For it (4) assumes the form

(5) 2Re (ot - azs) - (1 - bn)

provided 1 - 2lln b-r < 0 . This implies tr,vo cases

1) 7-2/lnå-1 <0 <+ e-2<b<1;
2) 7-2/Inb-7:0 e b:e-2.

In the case 1) the ffnal equality in (5) holds for Itr: v : a3:0. In the case

2) equality requires u : 0 but u is left as a free parameter.
Consider the equality cases more closely a.nd apply the rotation r-tf(rz),

ltl : t, to yield as - aZ + ra(as - o'3) , as * r2as. Thus we ca.rr normalize

-As : lAtl = R" (ou - "3) 
> 0, Re a3 ( 0.

In order to study equality in the cases 1)-2) put a2 : 0 in the original
inequality (82) p. 472 of l3l:

Re (ln b. a2"+ a3xl+ as - 3/2a2r ! 2asuo * 2aar1)< (1 - b")l*rl' +f,O bn).

Here ro and o1 are free complex parameters. In the normalized equality case of
(5) ou : 1(1 - b4)/2+ u,2, 'u :0, which irnplies

Re (ln b. xf; + 2u ro - * * " *! + 2oar1)< (1 - b')l*rl'.

In the case 1.) u : 0. By choosing oo : 0 w'e obtain

2Pte (xpl < (1 - b")l*rl'.

Putting x1 : lxleiö and letting 0 < lrrl -+ 0 we find

2&e(eifaa)S(1 -b')lrrl + Re(eiÖaa)(0, 0<ö32r

which implies a+ : 0.
In the case 2) b : e-2, u < 0 and the above condition assumes the form

Re {-z(*" -;)'* tr, *? + 2crq,rr } s (1 - b')lrrlz.
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Choose no$t oo : ulT a,nd put, as before, x1: lxleiö, 0 < lcll + 0:

Re (ufr1f 2ei2Ö q 2eiÖaa) < (t - b')lrtl

R"(siöaa) S0, 0 Sö32n
and hence a+ : 0.

In the normalized extremal case all the coefficients up to o5 are thus real.
Flom the Power inequa.lity it then follows that we may use the general condition
derived for the extremal function in the real class. This is the condition (35) p.
488 in [8]:

2xohn f + b' (f' - f-2) - Zxo In z * z2 - z-2 ;

ZXo-CIg:tJt,S0.

In the case 1) in (6) r.t, : ro= 0. The image f(U), U : lzl< 1, is of the type
4:4 with four symmetrically located radial slits.

In the case 2), b: e-2, the image /(U) can be studied by aid of the boundary
correspondence. Thus, put

z: eiö, f ("i6):r(ö)e;'l'@)

in (6):

cos2' ' lnr
4t : -eau#z --, -uea f4 for r + li

urb + e-4(r2 + r-2) sin 2/ : uö * 2sin 2$.

The first condition implies the limitation for u:

(7) -0.073 262 556 : -4e-4 ( u ( o.

(6) determines .f':
f' ,2+xo*z-2"T:W'

Thus, the pre-image z : eiÖ of the tip of the slit is determined by

2cos2$ * xo, ro: u/2

and the starting point of f : ei'h of the slit satisfies

2cos?r!*ö-2co, b:e-2.

In Figure 1 there a.re some slits connected with /(U) of the type 4:4 in the
case ö : e-2.

(6)
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tl r== -Q -Q 4

Figure 1,.

5. As in the odd subclass of E!

On the interval 0 < b I e-2 the problem of maximizing -/.3 : as * a?
remains open in Et. The corresponding question in the odd subclass of Ef appears
to be more reasonable and can be solved by aid of inequalities holding in ^9(ö).

As is well known / e ^s(ö) determines an odd i : ,FfQ\ e ,g(brl2). Con-
versely, any odd i: fQ) € S(ö) determines f e S(b2) through the connection

iQ)' : f("').
Any condition true for / e S(å) ca,n be transformed to f(z) :6Q +äszs +. . .) e

^9(å) by the alteration
z, f ,b + t', i" 16'.

More closely, it f (z) : b(z * azzz *' . .) *e have the coefficient connections

b:62, az:2äs, az:2äs1ä3.

Ta,ke the optimized Power inequality true for ,S(ö)-functions, [].0], p. 7:

Re(ca - "3) 
<r -b2 +U2flnb, [/ : Re a2.,.

Equality here can be reached if lUl S 2ölln ö1. For odd S(6)-functions this implies

zRE (a5 - aT - (1 - 6n) S Re (a3) + 4(R€ aiz /1n62
: (1 + +/tn62)a2 - 62 < (1 + 4/tn 6'1tz : M@),

with equality for 6 : 0, where ås : il * i6.
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I! e-z < 6 < 1 we obtain from this our former estimation Re (ä5 - ail S
1t - un\1z.

If 0 < 6 < "-',1*4llntz > O and lffl <6211n 621 *" obtain the non-sharp
estimation

(8) M@) s (1 + altn u')un tn262 - 6a tn62 @ + tn62)

which will be needed later.
The above inequality can be sharpened for the values lul > zålln å1, [10],

p. 17:
tu (or - oZ) < L - b2 - zlulo * 2(o - b)";

olno-o*b+lul/z:0, U :R4-az, t€[ö,1].

We shift this for f urrd denote in this connection

o:ö2e162,t1 +ael6,tl;

2Re (45 - a, - (1 - 6n) S R€ (ä3) - 4lR€ A3lA2 +2(ö2 -62)2i

lR" asl : -(öt ln ö2 - az +621.

Denoting äs: il * iö we obtain

2R€ (A5 - A,) - (1 - 6n) < il2 - ö2 - Alillö2 +2G2 -6\',
< ilz - 4lillöz +2(ö2 -6')';

lill = -G2ln ö2 - ö2 +621,

with the equality for ö : 0. This estimation is to be used for

o21tnt21< lfil < L-62.

trbr brevitg return to the variable o in estimating the upper bound found:

zRE (a5 - a?) -(1 - 6n) < (a ln o - o * b)2 + 4o(o ln o - o * b) I 2(o - b)2 : M(o),

62=b1o/-L,
A-ccording to [10] p. 15 a = o({t) € [ö,1] is uniquely determined by lfil e

l621tn 621,t - 6tl. Thus, M as a fu,rction of fi is maximized by maximizing
M(") for o € [å,1]. Because

dM(o\
T :2ln o(o ln a * 3a * ö)1
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we see that the root o 9J"-n,1] of ( )r : 0 yields the maximum in question.

Because the maximum of M(ttr) in (8) equals M(b) we have maximized R€ (ä5-ä3)
and hence lau - ä31.

Collect the results concerning As. All the extremal functions to be mentioned
are the essential ones, to which rotation can be added.

Theorem. I" Ei the coefficient As is maximizecl as follows.
e-2 < b < 1 : lAsl S (1,-b4)12, Ecluality holds for the symmetric 4:4-mapping

and the corresponding S(ö)-function f is obtained from (6) for xo - 0.

b = e-2: The above maximum rcmains to hold for a one-pa,rametric family
of  :4-mappings the S(b)-function f of which is determined by (6) with u e

[-4u-o,0] as a parameter.
0<å< e-2: IntheoddsubcJassof Ei lAsl <(1-b4)/2+(oz-6212 where

o e le-2,1] is tåe root of

o2lno2*3o2-På2=0.

Inthelimit case b = 0t o: e-3/2 and rnaxl43l :ll2*e-6. TheextremaJ
S(ö)-function f is of the type 2:4 obtained (through fo) from,

- 4o2 ln "f" + 
"2(f2" - f;\ = -4o2 ln z * 

"2 - r-2,

f+f-':olb(f,+f;\'

The condition for the 2:4-function follows from [9], p. 72, where the extremal
function of the type 1:2 for o3 in S(ö) is defined.

In the limit cases b: e'2 and b = 0 the maxima of odd functions are known
to hold also in the general class Et. For å : 0 the result was proved by Garabedian
and Schiffer [L]. Thus, it seems to be most probable that a similar state of things
remains to hold also for the intermediate values 0 < b < e-2.
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