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SOME COEFFICIENT ESTIMATIONS
IN THE CLASS z;, OF MEROMORPHIC
UNIVALENT FUNCTIONS

Olli Tammi

1. Introduction

Let ¥}, be the class of meromorphic univalent functions omitting a disc:
(=]
Se={H|H(E)=2+> A4,27% |z|>1, [|H(z)|>be(0,1)}.
0
This is closely connected with the class S(b) of bounded univalent functions:

S®)={f|f(z) =b(z+ i::aﬂ"), Izl <1, |f(2)| <1, be(0,1)}.

The one-to-one connection between f and H reads
(1) HEfG =6 ld>1,

From w = H(z) we obtain the inverse relationship
(o)
z=Iw)=w+ Y E,w™".
0

In [6] the inverse coefficients E, were all maximized by the radial-slit mapping

I, defined by
L+I7 ' =w—2(1-0)+bw™
The side-condition Ay = —ay = 0 yields the subclass L} C Zy:

S = {H |H(z) =2+ 4,27, || >1, |H(2)| >be(0,1)}.
1

The special case b =0, i.e., Zj = ', has been extensively considered by Schober
[4]. Especially the initial odd inverse coefficients were succesfully estimated.

doi:10.5186/aasfm.1988.1308


Mika
Typewritten text
doi:10.5186/aasfm.1988.1308


126 O. Tammi

In the present paper we are dealing with If and will generalize some of the
results of [4] for odd inverse coefficients. Similarly, some initial A, -coefficients will
be considered.

The connections between H, I and f yield the corresponding coefficient
connections. Thus

Al - _Ela
A2 = _E27
A3 =—E3 — Elz,

A5 = —E5 - 4E3E1 - 2E22 - 2Ef

Clearly, the letters A and E can here also be interchanged. In a,-coefficients we
have further

A = —ag3, E; = as,

Az = —ay, E; = ay,

A3 = —as + a%, E3 =.a5 — 20,3,

Ay = —ag + 2a4as, E4 = ag — 5a4as,

As = —a7 + 2asa3 + aﬁ — ag; Es = a7 — 6asas — 3ai + 7a§.

2. A;, A, by aid of coefficient bodies

For lower a, -coefficients we have lots of connections and inequalities which
yield sharp information also in the special case 49 = —ay = 0 in question.

The first non-trivial coefficient body (az,as3) is studied in [9] (cf. p. 241 as
well as pp. 264-265). Thus, for a; = 0 we have |az| < 1 —b?, i.e.,

|Ay| = |E1| < 1 -0

The equality holds for the function f of the type 2:2 (the notation is explained in
[9], p. 149) with the image of two symmetric radial slits and defined by

FL+ £ = ba(1 4 2%) 7,

The second coefficient body (a3, as,a4) is also described in [9] with sufficient
accuracy for our present purposes. However, there exist also direct estimations,
given by Grunsky-type inequalities, which are sharp in the special case a; = 0.
For example, from [7] there follows
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The final equality holds for a; = a3 = 0 and for a symmetric radial-slit mapping
3:3 for which
FA =7 =021 2%) 7

Thus 5
|Az| = |E2| < g(l - b°).

3. Ezpy1 (v=0,...,4) by aid of FitzGerald-Launonen inequality

For inverse coefficients the FitzGerald inequality appears to be effective. It is
advisable to apply it in the integral form given by Launonen [2]. In [5] this method
is used in estimating the coefficients of functions inverse to odd Xy, -functions—call
them briefly “odd inverse coefficients”. We are going to apply the Siejka-method
to them in the case ¥} and will thus test the possibilities of generalizing the
estimations of Schober in [4].

For the inverse ¥y -function the FitzGerald-Launonen condition (20) of [5]
holds. This implies inequalities for odd E, -coefficients. These are obtained as in
[5] from (22) and can be expressed by aid of the numbers a, of

I(w)l'=w+aw?t+aw™?+--,

where Q9 = —dag = 0, Q3 = —El, gy = —-EQ, Qg = —Eg + E12, Qg = ’—E4 +
2E3E;,... . The inequalities in question are those in (24) of [5] (write Dy, =
E;,—1). Thus, for v =1 and v = 2 we obtain immediately

|Ey| < 1— b2, |Es| < |ag]? +1-0%=1-0%

For the first condition the equality case was obtained from the coefficient
body (a2,a3) and was found to be the symmetric 2:2-case. In what follows, call
the corresponding extremal S(b)-function f,. The equality in the second condition
is more problematic. In Section 4 we will show that again the previous mapping
fo is the only extremal function.

For v = 3 the condition (22) of [5] yields

|Es| < |as]? + (4 — b%)|ag]® + 1 - b°
=|E?+1-02<(1-0%)?4+1-0%=2-3b" + b

The maximum is reached with that of |E4], i.e., by the function f,.
The first non-trivial estimation occurs for v = 4:

|E7| = |ag|® + |2a3 + a§|2 — b2 as)® + (9 — 40?) || + 1 — b2
= |A2’2 + (4 — bz)}A]P +1- b2.
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In order to estimate this we apply the area inequality for S(b) ([9], p. 182):
o0
Zyl&u - b2a”|2 <1,
1

where

bf(z) =21+ ZO:&,,z".

Because of (1) v
27V 4 Y A,z = H(z7Y) = bf(2)7L.
1

Thus &, = A, and the area inequality reads

(@) S Ul4, — Ba|? < 1.
1

For E; we use the consequence
(3) |41 = 87 + 2|4, < 1,

yielding
[Brl = 5 — 8 4+ (4= B)|As]? - ] 41 — B2

3 7

=3 e %b‘*-&- (2 = 1?)|4s]? + b2 Re Ay

DN

The rotated function 77 !I(tw) = w + L7~ Y"E,w™", |r| = 1, preserves
|E7| and allows the normalization E; > 0, i.e., A; = —E; < 0. In the variable

z = A; € [—(1-10%),0]

we thus have 3 1
|E7| < 5 =0 = Sb* + P(2);

P(z) = (-;— —0%)2? + b%a.
Require

, 1 7
P(—(1-10%) = (1 -6 (b* - ?bz + 5)0 > P(0) = 0.

This yields
max P = P(—(1—0?%)) for 0<b<b,
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where ]
bo = 5(11~ V/65)1/2 = 0.856 992 160

is the zero of ( ),. Hence for 0 < b < b, the sharp estimation holds:

3

|Br| < 5 - b? — %b“ + P(—(1 - b%)) = 5 — 100 + 6b* — b°.

Again, with |A;| the coefficient |E;| is maximized by the function f,.

The case v = 5 can be treated similarly.

|Es| < |as|? + (4 — b%)|ag)?® + (9 — 40%) ]| + 1 — b

= |E2 — E3|® + (4 — b%)|Aa)? + (9 — 4b®)| A1) + 1 — b2

Because |E;| <1—b%, |E3| <1— b% we obtain, by using (3):

9 1
|Eo| < [(1-8%)% +1-0%" + 5@ =)L -4 - 0*?)
+(9— 4B A2 +1 - b2
3 1
—_ 2\2 2\2 012 _ 2112\14 .
= (1-0")2(2 - 6°)? +3 = 5 — (2— 5b%)b* + Q(a);
Q(z) = (7- %bQ)m2 + (4 — b?)ba;
T = A; € [—(1-105%),0]
Require

(1 —b%)(9b6* — 296 + 14) > Q(0) = 0.

N

Q(-(1-18%) =
This holds for
0<b<b,= [-11—8(29 —/337)]"/* = 0.768 925 667

where the following sharp estimation is thus valid:

3

|Bol < (1-6")%(2-0")? +3 - 50 — (2 %a?)m +Q(~(1 - %)

= 14 — 35b% + 306* — 100° + 8.

Again, with |A,| also |Ey| is maximized by f,.

129
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The remaining interval (b,,1) is left open by the above method. The structure
of the FitzGerald inequalities shows that with increasing index the role of A, -
coefficients increases. Already for A, the function f, is not the extremal one and,
as will be seen, similar situation holds for A3. Hence, there is no hope to proceed
very far in the E3,4;-estimations by using the above method. It is not excluded
that f, actually loses its extremal role, at least for some b-intervals, for higher
odd inverse coeflicients.

For E;; and E,; the above estimation technique fails if & > 0 and thus
remains succesful only at b = 0 as was proved by Schober in [4].

Collect the sharp results found:

Theorem. In E;, the coefficients E,, E3, Es are for the whole interval
b € [0,1] maximized by the S(b)-function f, of the symmetric 2 : 2-type defined
by

FL+ £ = ba(1 4 22,

For E., f, preserves the extremal role at least for 0 < b < 0.856 992 160 and for
the coefficient Eg the same holds at least for 0 < b < 0.768 925 667.

The coefficient |Ay| = |E;| is maximized by the S(b)-function of the sym-
metric 3 : 3-type defined by

F(L= £33 = ba(1 = 225,

The uniqueness of the extremal function for E; is proved at the beginning of
Section 4.

4. E; for b€ [0,1] and A3 for b€ [e72,1]

In (85) p. 473 of [3] there is the Grunsky-type inequality for as which for
az = 0 yields

2
2Re (a5 — 2a3) — (1 — %) < —Re (a?) — 2ne )"
In b1
Denote here az = u + iv:
(4) 2Re (a5 — 2a2) — (1 = b*) <v? — (1 +2/In b7 1)ou’.

Because ( ), > 0 for b € [0,1) we have
2Re (a5 — 2a2) — (1 — b*) < v? < (1 -0b%)?
with the equality for u = 0, |v| = 1 — b%, because |az| < 1 —b? for az = 0. Thus

Re (a5 — 2a3) < 1 -0,
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i.e., |E3| <1— b% where equality holds exactly for a; = 0, |a3| =1 — b2, i.e., for

the function f,.
Turn to the combination —Aj = as — a2. For it (4) assumes the form

(5) 2Re (as —a2) — (1 =0*) < (1 —-2/ln b )u? -2 <0
provided 1 —2/ln b~! < 0. This implies two cases

1) 1-2/lnb"'<0 & e2<b<
2) 1-2/Inb"t=0 & b=e"2.
In the case 1) the final equality in (5) holds for v = v = a3 = 0. In the case
2) equality requires v = 0 but u is left as a free parameter.
Consider the equality cases more closely and apply the rotation 771f(72),
|| = 1, to yield a5 — a% = T*(as — a2), a3 = 7%a3. Thus we can normalize

_A3=|A3]=Re(a5—ar§))20, Re a3 <0.

In order to study equality in the cases 1)-2) put a2 = 0 in the original
inequality (82) p. 472 of [3]:

Re (In b- 22 + a3z? + a5 — 3/2a2 + 2azz, + 2a4z1) < (1 — b?)|zq|> + %(1 —b%).

Here z, and z; are free complex parameters. In the normalized equality case of
(5) as = 1(1 —b*)/2 + u?, v = 0, which implies

Re (Inb-z2 4 2u z, — E;— +u z? + 2a4z;) < (1 - 02|z |2
In the case 1) u = 0. By choosing 2, = 0 we obtain
2Re (z1a4) < (1—0%)|ay .
Putting z;, = |z,]e*® and letting 0 < |z;| — 0 we find
2Re (ei¢a4) <(1-0)z;] = Re(e®ag) <0, 0<¢<2m

which implies a4 = 0.
In the case 2) b= €72, u < 0 and the above condition assumes the form

Re {-—2($O - %)2 +ux? + 2a4:c1} <(1- b2)|:c1|2.
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Choose now z, = u/2 and put, as before, x; = |z, 0 < |z,| — 0:

Re (ulzi|%e*® + 2e*%ay) < (1 — b%)|z4|

= Re (e'%ay) <0, 0<¢<2or

and hence a4 =0.

In the normalized extremal case all the coefficients up to as are thus real.
From the Power inequality it then follows that we may use the general condition
derived for the extremal function in the real class. This is the condition (35) p.
488 in [8]:

2zoln f+ b3 (f2— 7 =2z, In 2+ 2% — 272

2z, =a3 =u < 0.

(6)

In the case 1) in (6) u = z, = 0. The image f(U), U : |z| < 1, is of the type
4:4 with four symmetrically located radial slits.

In the case 2), b = e~2, the image f(U) can be studied by aid of the boundary
correspondence. Thus, put

& = ei"’, f(ew) — r(q&)ei'/’(‘/’)

in (6):
Inr

cos 2 = —etu — —uet/4 for r—1;

2 _p—2
uth + e 4(r2 + r7%)sin 2 = ug + 2sin 2¢.

The first condition implies the limitation for w:
(7 —0.073 262 556 = —4e™* <u <0.

(6) determines f':
f' 22 + @0 + z72

20— =

foobfrta,+b2f?
Thus, the pre-image z = e'® of the tip of the slit is determined by

2cos2¢ + 2o, To=uf2
and the starting point of f = e'¥ of the slit satisfies
2cos 2 + b2z, b=e"2

In Figure 1 there are some slits connected with f(U) of the type 4:4 in the
case b=e"2.
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u = -0.07

-4

u = —4e

Figure 1.

5. A; in the odd subclass of I}

On the interval 0 < b < e~? the problem of maximizing —A4; = as + a2
remains open in i . The corresponding question in the odd subclass of £} appears
to be more reasonable and can be solved by aid of inequalities holding in S(b).

As is well known f € S(b) determines an odd f = 1/f(2?) € S(b'/2). Con-
versely, any odd f = f(2) € S(b) determines f € S (b%) through the connection

f(2)? = f(=%).

Any condition true for f € S(b) can be transformed to f(2) =b(z + @323 +- ) €
S(b) by the alteration o
z, f,b = 2%, f2, 02,

More closely, if f(z) = b(z + az22% +---) we have the coeficient connections
b="02, ay=2as, az=2as+ az.
Take the optimized Power inequality true for S(b)-functions, [10], p. 7:
Re(az—a2)<1-0*4+U%*/Inb, U =Rea,.
Equality here can be reached if |U| < 2b|ln b|. For odd S(b)-functions this implies
2Re (&5 — a2) — (1 — b*) < Re (@) + 4(Re a3)?/In b2
= (14 4/In B%)a% — 52 < (1 + 4/In B2)a? = M(4),

with equality for ¥ = 0, where a3 = 4 + 7.
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If e=2 < b < 1 we obtain from this our former estimation Re (as —a?) <
(1—15%)/2.

If0<b<e? 1+4/lnb?>0 and |@| < b2|ln 52| we obtain the non-sharp
estimation

(8) M(ii) < (1 + 4/In 52)5* InF? = b* In $%(4 + In B?)

which will be needed later.
The above inequality can be sharpened for the values |U| > 2b|ln b|, [10],

p- 17
Re (a3 — a2) < 1-b? = 2|U|o + 2(0 — b)%;

olno—-o+b+|U|/2=0, U = Re a,, o € [b,1].
We shift this for f and denote in this connection
o=38€ %1 =6 €[b1];
2Re (a5 — a3) — (1 — b*) < Re (a2) — 4|Re ;|5 + 2(5% — B%)%;
IRe 3| = —(62 In 62 — % + b?).
Denoting 43 = % + ¥ we obtain
2Re (G5 — a2) — (1 — b*) < @% — 9% — 4|a|52 + 2(5°% — b?)?
< @? — 4)ile? + 2(62 — b))%
lil| = —(5%In 5% — &% + b?),
with the equality for & = 0. This estimation is to be used for
b2|ln b2 < Ja| < 1 — b2
For brevity, return to the variable ¢ in estimating the upper bound found:
2Re (a5 —a2)—(1-0*) < (0 ln o —o+b)?+40(0 In 0 — o +b)+2(0 —b)? = M(0),
P=b<o<l

According to [10] p. 15 ¢ = o(@) € [b,1] is uniquely determined by |i| €
[6%|In 8%],1 — b?]. Thus, M as a function of @ is maximized by maximizing
M(o) for o € [b,1]. Because

dM (o)

=2lno(olno+30+b);
do
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we see that the root o € [e™%,1] of ( ); = 0 yields the maximum in question.
Because the maximum of M (@) in (8) equals M (b) we have maximized Re (a5—a?)
and hence |as — a2|.

Collect the results concerning A;. All the extremal functions to be mentioned
are the essential ones, to which rotation can be added.

Theorem. In ¥{ the coefficient A3 is maximized as follows.

e2 <b<1:|A3] <(1-b*)/2. Equality holds for the symmetric 4:4-mapping
and the corresponding S(b)-function f is obtained from (6) for z, = 0.

b = e~2?: The above maximum remains to hold for a one-parametric family
of 4:4-mappings the S(b)-function f of which is determined by (6) with u €
[-4e7%,0] as a parameter.

0 < b<e~?: In the odd subclass of I} |As] < (1—10b*)/2+ (0% — b%)? where
o € [e72,1] is the root of

o?lno?+302+02=0.

In the limit case b = 0, 0 = e~3/? and max|A;| = 1/2 + e~%. The extremal
S(b)-function f is of the type 2:4 obtained (through f,) from,

—40%In fo+02(f2 - f;2) =—40®lnz+ 2% — 272,
fH 7 =0/b(fe+ f5)

The condition for the 2:4-function follows from [9], p. 72, where the extremal
function of the type 1:2 for a3 in S(b) is defined.

In the limit cases b = e~2? and b = 0 the maxima of odd functions are known
to hold also in the general class Xj . For b = 0 the result was proved by Garabedian
and Schiffer [1]. Thus, it seems to be most probable that a similar state of things
remains to hold also for the intermediate values 0 < b < e™2.
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