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EMBEDDINGS
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1. Introduction

Applying the torus technique of I(irby [Ifi], Edwards and I(irby presented

in [EK] an alternative to Chernavskii's [Ch] method for deforming embeddings

of topological manifolds. They proved ChernavskiY's theorem that if U is an

open neighbourhood of a compact set B in a topological manifold M , then in
the space E(U;M) of open embeddings of U into M (with the compact-open
topology) there is a neighbourhood of the inclusion map id: U -, M which can

be continuously deformed, within a given rreighbourhood of id, into the set of
embeddings coinciding with id on B, in such a way that id is kept fixed and that
no changes to embeddings are needed outside a given compact neighbourhood of
B in U. Furthermore, this theorem was generalized in [EI(] to a form which is
rcspectful to a given closed locally flat submanifold N of, M , in the sense that
having U n .lf as the inverse image of .lf or being, in addition, the identity on
UnN are properties for an embedding which are preserved under the deformation.
As mentioned in [Ch], the generalization also follows from the proof of [Ch]. In
[EK] there is also a third proof for these results, rvhich uses a torus technique of
Edwards (cf. [nd]).

Siebenmann [Si] developed Edwards's method further for deforming, in par-
ticular, embeddings of locally finite simplicial complexes respectfully to all sub-

complexes.
Replacing the torus in Ifirby's method by a compact almost parallelizable

hyperbolic manifold, Sullivan [Su1] proved a nonrespectful analogue of the Cher-
navskii-Edwards-Kirby theorem for LIP (: locally bi-Lipschitz) embeddings of
LIP manifolds without boundary and for LQC (: locally quasiconformal) embed-

dings of LQC manifolds without bounclary. (See [TV2] for an exposition of a part
of Sullivan's theory.) After this Siebennrann and Sulliva^u [SS, Appendix B] proved
an analogue of the respectful Siebenmann theoren:. for LIP embeddings of locally
finite simplicial complexes. This result implies a respectful version of Sullivan's
theorem in the case of LIP embeddings. Ftrrthermore, in [SS] the constructed
deformation was shown to preserve LIP isotopies.

Mika
Typewritten text
doi:10.5186/aasfm.1988.1306



138 Jouni Luul<kainen

The proof in [SS] is only an outline. The theorem itself is also stated only in an
absolute form (as above), not in a full relative one as needed for some applications
I have had in mind. The purpose of this paper is to give a detailed presentation
of the Siebenmann-Sullivan deformation theory in the (locally) Euclidean case.
In R' and in Rf our deformations are respectful to all products of coordinate
axes and half-axes. The families )o and )*, respectively of these products are
convenient both for proofs and for applications to manifolds.

Our case allows some simplifications in the proofs (in particular, technical
results in the appendices of [SS] are not used) and, more important, it is suitable
for LQC embeddings, too. Thus, what we prove, in fact, is a respectful and LIP
parametrized version of Sullivan's theory.

It should be noted that Sullivan's proof does not directly generalize to the
respectful case as the proof in [EK] does because the hyperbolic manifolds used
are not related in a simple inductive manner as are the tori (^tt)" .

The reader is not assumed to be farniliar with the above-mentioned papers.
However, for some constructions based on hyperbolic geometry (arrd thus on
Sullivan's work [Su1]) we will refer to [TV2, Section 2].

We formulate in 3.2 our basic deformation statement D(X;!) in the gener-
ality of deforming embeddings on an arbitrary locally compact, locally connected
metric space X respectfully to the members of quite an arbitrary family ) of
subsets of. X. This generality is possible because of the use of LQS (: locally
guasisymmetric) embeddings in place of LQC embeddings. Quasisymmetric em-
beddings of metric spaces were introduced in [TVt]. In Euclidean spaces of di-
mension at least two, quasisymmetry is closely related to quasiconformality. This
relationship will be used in proofs in both directions. To avoid technical difficulties
connected with one-dimensional LQS embeddiirgs, we study this case more closely
in a separate paper [Lu], to whicå reference will be made in some proofs.

We keep traclc of the bi-Lipschitz constants, the quasisymmetry parameters,
and the dilatations of the embeddings, and obtain quantitative versions of results
of [SS].

The paper is divided into eight sections. In the preliminary second section we
prove, in particular, a canonical Schoenflies theorem. In Section 3 we introduce
a deformation statemenr D(x;)), * said above, and prove elementary lemmas
related to it. In Sections 4 and 5 we establish the statements D(R;)") and
O(Rf;/f,). Section 4 is devoted to proving an inductive handle lemma for Rh and
another one for Ilf . In Section 6 we first apply the previously established property
of R" and of Ri to strengthen it in Theorem 6.2, which is the main result of
this paper. Theorem 6.6 is a substitute of this theorem for the majorant topology.
In Section 7 we consider deformation of embeddings of LIP manifolds and of
LQS manifolds. Section 8 gives elementary applications to local contractibility
of groups of CAT homeomorphisms, to CAT isotopies, and to counting compact
CAT manifolds for CAT : LIP or LQS, all known in the context of topological



Respe ctful deformation of embeddings

manifolds and partially known for CAT - LIP.
In a paper in preparation I shall apply results of the present

of locally LIP (ot LQS ) flat embeddings of codimension at least
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paper to a study
three.

2. Preliminaries

2.L. Notation and terminology. For an integer n ) 0,, we let R" be the

Euclidean n-space and Ri : {r € R" lrr, > 0} with Rl: R0. Letting }r be

the family of ihe subsets Rt , Rl, RL : (--,0], and {0} of R1, we define

ln: {Y1 x ' " xYn C R" I Y; € !t, i,: L,...,n}

utra J,;F : {Y e }" I y C Ri } for n ) 1. We identify R*,, m ( n, with
the subspace R- x 0 of R' : R* x Ro-* if not otherwise stated. Fbr n 2 0

and r > 0 we set .[n : [-1,L]", .t"(r) = rln, Jn :(-1,1)', 4 : "I'nnR},
J"(r) : rJ", B"(a,r) : {r € R" I lt - al < r} if a € R', Bn :B'(0,1),
B"(r) : rBn, and ,S'-1 : 08". Let .[ : [0, 1]'

If X is a topological space and A, B C X, we denote the interior of Ä by int Ä
and the inclusion Z C int B by A CC B. If. M is a rnanifold, AM denotes the

boundary and Int M lhe interior of. M . If not otherwise stated, we denote every

metric (occasionally also Euclidean ones) by d a"nd metrize the Cartesian product

of finitely maf,ly metric spaces (except for the factorizations R' : +- x R'-- )
by the usual maximum metric. Let (x, c|) be ametric space. If a € -k and r ) 0,

welet Ba(o,r) denotetheopenball {r€Xld(x,a) <r}. If A,B CX,welet
d(A,B) d.enote the distance between ,4' and .B (with d(a,B): d({r},B)) and

d(A) the diameter of A.
If A C B, we let id denote the inclusion map A "'+ B.
Let X beasetaIId u, Y cx. Aninjection f:u --+x issaidto respect Y

if 7-r" : (J i Y or, equivalently, if. f lU n y] : fU nY .

suppose that x and Y are topological spaces. Let c(x;Y) denote the set

of all continuous maps of X into Y. We equip C(X; Y) and its subsets with the
compact-open topology if not otherwise stated. Suppose that (Y' d) is a metric
space. lf. f ,g: X -+Y and A C X, we write

d(f ,s;A) : .,'p {d(f (r)'s(')) | u e A}

and d(/, il: d(f ,SiX). In the majorant topology of C(X;Y) an open neigh-

bourhood basis of f e C(X;IZ) is given by the sets

N"(/) : {g €C(x;Y) I d(/('),g(')) < e(c) for all c e X }

where e eC(X;(O,-)), while the sets lf"(/) with e being apositive constant

form a neighbourhood basis of / in the uniform topology of. C(X;Y). If X is

metrizable, the majorant topology is inclependent of the rnetric of. Y .
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If X is a topological space and if U and A arc subsets of X with U open,
let E(U,A;X) denote the set of all open embeddings of U into X which are the
identity on U fl L, and lel H(X,Ä) denote the group of all homeomorphisms
of X onto itself which are the identity on A. Let E(U;X) : E(U,$;X) and
H(X) = H(X,0). Note that a continuous injection of an open subset of a manifold
X into X is open if and only if it respects äX.

Let X and Ä betopologicalspaces, U CX open,and f:UxÄ+XxÄ
a function of the form (r,,\) '* (/r(r),)). If /, also denoted by ("fr)rerr, is an
open embedding, / is called a lt-isotopy (or an isotopy parametrized by Ä) of U
into X. We let IÅU;X) denote the subspace of. E(U x Ä;X x Ä) consisting of
all Ä-isotopies. Let /rr(X) denote the space of all homeomorphic Ä-isotopies of
X onto X. In the case Ä : /, the prefix A and the subscript Ä will be omitted.
Note that if Ä is a one-point space, we carr identify X x Ä with X and [(U;X)
with .O(U;X). Now suppose that X is a locally compact Hausdorff space and
that X or Ä is locally connected. Then, by [Si, 1.6], a function / as above is a
A-isotopyif andonlyif fxe E(U;X) foreach Ä € Ä and / iscontinuousor,
equivalently ([Du, XII.3.1]), the function Ä * "f^ of Ä into E(U; X) is continuous.

Let X and Y be metric spaces and /: X --+ Y an embedding. If there is
L>Lsuchthat

d(a,y)lL 3 d(f (x),/(y)) < Ld(x,y) for all x,y e x,

then / is bi-.Lipschitz (abbreviated BL). We also say that / is I-BL. As soon as

/ satisfies the right-hand inequality, / is called .D-Lipschitz. If there is 4 € ä(Rl)
such that

d(f ("), f (*))

= 
n(ff#) ror a,b,r€ x , b# x,

d(f (ö), /('))
then / is quasisymmetric (abbreviated QS). We also say that / is 7-QS. The
basic theory of QS embeddings is given in [TV1] and [Vä2]. If / is .6-BL, / is
n-QS with n(t) : Lzt. Like BL embeddings, QS embeddings form a categorg
and if / is an r7-QS homeomorphism, "f-t i" ?'-QS with 7'(t) :4-t(t-t;-1 for
t > 0. We say that / is, respectively, locally.D-Lipschitz for L) L, LIP,locally
L-BL for .L ) 1, LQS, or locally r7-QS for ? € I/(Rl) if each point of X has
a neighbourhood on which / is, respectively, .t-Lipschitz, BL, ,-BL, QS, or r1-

QS. (In'[LV] 'LIP'refers to locally Lipschitz.) If X is compact and / is LIP or
LQS, then / is BL or QS [TVt,2.23], respectively. A map g; X --+ Y is called
a LIP immersion if eåch point of X has a neighbourhood on which 9 is a LIP
embedding.

2.2. Quasisymmetry and qua,siconformality. Let Y € Un,let p - dim Y ) 2,
Iet U be an open subset of Y, and let f e E(U;Y). If there is I{ ) 1 such
that for each component G of Int [/ the ernbedding G --r Int Y defined by / is
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If-quasiconformal in the sense of [Vä1], / is said to be K-QC. If / is locally ry-

QS, this is the case with K: q(l)e-r by [Vä1,34.2]. Conversely, if / is K-QC,
Lemma 2.3 below implies that / is locally ri-QS with 4 depending only on .K
and p (in fact, if Y is a,ffinely isomorphic with Rp or Rf ' we ca,n choose 7 to
depend only on K by [AW, 5.23] and [Vär, 35.2]).

It follows that the main results of Sections 5 and 6 for locally ry-QS em-

beddings hold equally well for I{-QC embeddings. In fact, these results for QC
embeddings could be obtained without using QS (or locally ?-QS) embeddings
at all; see 5.9.

2.3. Lemma. Let Y eyn and p: dimY >2. Suppose that eithet G is
a connected open subset of Y and F a compact subset of G ot F : G : Y,
a,nd let f: G --+ Y be an open /(-QC embedding. Then /l.F' is n-QS witå rt

depending only on G, F, and K .

Proof. The case 0Y :0 is [Vä2, 2.7 and 2.4]. Suppose 0Y f 0. Then there
is a BL homeomorphism Y -* Ro+. Thus, we may assume that Y : Re+. Then

[Vä1, 35.2] reduces the claim to the case I/ : Rp considered first. o

The next two lemmas deal with piecewise definability of the BL or QS prop-

erty for embeddings close to the identity. A number 7 > 0 is called a Lebesgue

number of a cover,,4. of. a metric space X if. B C X and d(B) < 7 imply that
BcA forsome AeA.

2.4. Lemrna. Let X be a metfic space,Iet A C X, Iet (Afi be a cover of
thespace AhavingaLebesguenumber 7)0, andlet L>1. If f:A-+X is
an embedding such that f lAp js Z-BL for each B and d(/, id) 3 it, then f is
L5BL with \: max(tr,2) .

Proof. Let n,s e A. Then ld(/(*),f(y)) - d(*,y)l < * S |a1*,y) if
d(*,y) ) 7, and {*,y} C AB f.or some B if d(c, v) < l. e

2.5. Lemma. Let X, A, (Ap),,1 be as in 2.4 with A bounded and such that

t < d(Ap) whenever d(Ad ) 0. Let c> d(A)17. Thenforeach ? € If(Rl)
there is ?r e II(Rf ) depending only on q and c with the following property; If
f: A--+ X isan 

"*h"ddingsuchthat flAB is ry-QS for each B and d(f ,id) S åf ,

then f js nr-QS.

Prcof. Since d(/(c),/(v)) 2 |r for n,u €,4" with d(*,a) ) |7 and since

d,(f A) I c1* åt, th" proof of [TVl, 2.23] applies. o

In 2.6-2.9 we study the problem of when a BL (or QS) embedding remains
BL (or QS ) a,fter a slight BL (or, respectively, QS ) perturbation.

2.6. Lemma. Let X beametricspace, let ACV CU CX,artdlet
f,$U -+ X beembedöngssuchthat f *rd glV a're L-BL, f : g on U\.4,
and d(f ,s) < +d(f A,/tu \ vl) . Then s is 2L-BL. o
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2.7. Corollary. Let X be a IocaJJy compact, locally connected metric space,
a.nd let A C V C U C X with A compact and U,V open. Then there is
e > 0 with the following property: Suppose that It is a metric space, that f ,g €
IilU;X),that f :g on(U \,4)x !t,that d(h,id;VxÄ) 1e if h: f or s,that
Y cX,andthat fl(UnY)xÅ and sl(VnY)xA are L-BL. Then sl(Unf)xÅ
is 2L-BL.

Prcof. Choose open sets Vr,Vz C X such that A CVz CCVr CC Iz with -V1

compact. Choose 7 > 0 with 7 < d(U,X \ %). By [Si, 1.7] there is e € 1O,f"fJ
such that if å € E(V;X) and d(h,id) < e, then hA CVz and hV )Vt. If now /
arrd g a,re as in rhe corollary, then d(/, s) < +.y nd d(f lAx^], /[(u\v; xÅ]) 2 r.
Thus, e is the desired number by 2.6. o

2.8. Lemma. Let X, A, U, V be as in 2.6 with V bounded, let 1 > 0 be
such that .t < d(A,U\y) and such that 1 < +d(V) if d(V) ) 0,Let c> d(V)/1,
andlet f,9:U +X beembedöngssuchthat f *rdglV are ry-QS, that f :g
on U\ A,that d(f1,,/tu\Vl) )l,andthat d,(h,id;V).h it tu: f or s.
Then g is r71-QS with r11 depending only on r7 and c.

Proof. As shown in [LT, p. 356], there is t € II(RI) depending only on 4
suchthat n!)n(t) <f("t) forall s,te I.Lel a,b,tbe distinctpointsin U,and
let

d(o, n) rA- M 
ano Qr-

d(g(o) , s(*))
d(g(å), g(*))

We must fud tlt € ä(R1) depending only on (4,c) such that p1 < ryr(p). We
may assume that {a,b,x} meets both Ä and U \ I/ * U < rtk) in the contrary
ca,se. We divide the consideration into eight disjoint cases such that r € Ä in
Cases 1-3, g € U\I/. in Cases 4-6, and s e V \A in Cases 7-8. Let ,: ?l*d po : a(f @), f(q)P?(å),/(r)). Bv 

"r,...r 
c8 we denote absolute positive

constants.

Case L: x e A, a,b eIJ\V. Since d(f("),/(r)) > ? and d(f(b), f(d) > t,
we get

nr=ffi1crQo<cnk).
Case2: n € A, a, € U \V, b € V.

max 0,d(b,*)) .Then a(f fu), f (*)) ) 7 - e,

Qr:
d@(a), g("))g(a), s(")) d(g(y), g(*)) d(f ("), /(r))
d(g(il, s(r)) a(g(b), g(")) r -' d(rril,f@))

Clroose y € V with d(V,*)
Hence

,(ffi)
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CaseS: x €. A, a €V, å e U\V. Choose y eV withd(y,,r) >

'- **(7, d,(a,x)). Then
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Subcase 3.lz d,(y,x) < d(b,r). Now et < csn!).
Subcase 3.2: d,(y,a)> d(b,o). Now u<csnk)n!).
Case4: ne U \V, a,beA. AsinCasel,weget

nr:W 1c+Qo<cank).
d(g(b),f(*)) -

Case 5: x eU\V, o e A, be U\.4. Now

nr:W '-csgo<"snk).d(f(b),f(,)) -
Case6: xe U \7, o€U\A, be Ä. Now

nr:@scopo <"aq(d.
d(g(b),/(r)) - -

CaseT: s €V \4, o e A, b € U\y. Choose V €V asin Case 3. Then
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Subca.se 7.L: d(y,x) < d(b,r). Now et < cTnk).
Subcase 7.2: d,(y,x) 2 d(b,c). Since I < d(o,b) < d,(a,x) + d(b,r), we have

that d(a,*) 2 lrt or d(b,*) 2 il.
Subsubcase 7.2.'t: d(a,*) >_ ll. Now u < ctq(a)nQ"d.
Subsubcase 7.2.2: d(b,*) 2 h. Now p1 < crq(dnQc).
Case8: x€V \/, o€U\V, be A. Choose yeV asinCase2. Then

As in Case 7.2, we have two subcases:

Subca"se 8.I: d(a,*) 2 it. Now p1 < csq(dn(2cd.
Subcase 8.2: d(b,*) 2 h. Now p1 < csq(dn!c).
Thus, we can construct 71 depencling only on (?, c) such that always p1 (

q{d. o

D
))

v
r
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2.9. Corollary. Let X, A,U,V beasin2.7 withV bounded,andlet ?o ) 0.
Then there is e ) 0 such that for each r7 € fI(R,l) there is ?r € fI(Rf ) with
thefollowingpropefty: Suppose that f,g eE(U;X),that f :g on U\ A,that
d(h,id;V) < e it h - f o, s, that Y C X with d(V nY) # (0,to), and that
flunY and slvnY are ?-QS. Then slU oY is ryr-QS.

Proof, If "y and 6 are chosen as in the proof of.2.7 with 7 < åZo u,t d
then e is the desired number by 2.8. o

The next lemma deals with composition of BL isotopies.

2.1o.Lemma..LeäU,X,andlt'bemetricspaces,1eta:to(fr<...<
tn:b berealnumbers,let L> L, andlet f:U xÄx [a,å] -+ XxÄ x [a,b] be an
embedding of the form (x,Ä,t) e ("f1(r),Å,t) sucå that fslU : f xo(J for each
(,\,t) € Å x [a, b] and such that flu xÄ x [t;-1,t;] is .D-BL for L ( i 1 n. Then
f is 2L-BL.

Proof. Consider two points A : (r,,\,t)
A x [", b]] with t;-t
points zi-t - (r', l' ,t), zp - (r', Å', tr) for i
whence

and V' _ (*',)',t') in A_ f lU x
t1 forsome i,j, i

l
d(f -t@),/-'(v')) < a(f -1(il,.f -'(ri-')) + t d,(f -t(zx-r), /-'('*))

&=i

< Z max(d(r, r'), d(.\, .\')) + Llt - ttl < zLd(y,y').

Thus, "f-r i" 2Z-Lipschitz. Similarly it is shown that / is 2.0-Lipschitz. o

The following simple fact about function spaces will be used often.

2.11. Lemma. Lef X be a metric space, let A, B C X be compact, Iet Ea
and Ea be the spaces of embeddings of A or B, respectively, into X , and let
?: { U,s) e EaxEpl f AcgB}. ThenthefunctionT + Ea, (f ,g)* g-rf ,
is confinuous.

Prcof. Fix (/6,s0) e ? and e > 0. Since got: 9oB -+ B is uniformly
continuous, there is 6 > 0 such that if x,,y € B and a(oo(c),go(y)) < 26, then
d(r,y) < e. Now let (/, s) eT with d(/,/o) < 6 and d(9,9s) < 6. Then

d(gog-t f , f o; A) : d(sos-r , f of -t; .f A) s d(gos-t ,id; /,a) + d(id, f of -'; f A)
I d(sos-',idisB) + d(f,fo;A) 3 d(go,s;B) + d(f,fo;A) < 26,

whence d(g-tf ,golfo;A) < e. o
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2.L2. We next improve in certain respects the quantitative canonical Schoen-

flies theorem for embeddings near id given in [TV2, 3.2]. The construction of the
extension operator is essentially the same as in the proofs of [TV2, 3.2] and of

[GV, Lemma 9] and, thus, uses the furling idea of M. Brown. Our proof is de-

tailed except for the tedious verification of the preservation of the quasisymmetry
property in dimension one, for which we refer to [Lu]. Recall that each element of

)o is a closed convex cone in R" with vertex 0.

2.13. Theorem. Let n ) !, let (X,y): (R', !n) o, (Ri'yf,), and let

A: (B* \F"(+)) nX. Then there exist a neighbourhood P of id: A'--+ X
in E(A; X) and a continuous map 9: P --+ E(.8" n X;X) having the following
properties:

(1) e(id) : id.
(2) p(h) : h on (8"\ B"(å)) fl X for each h, €P.
(3) If heP respects Y ey,sodoes 9(h).If h,h'eP respectY ey and

h: h' on AfiY , then p(h):9(h') on B" nY
(4) Let lt beametricspace,andlet /:("fr)rer €/1(.4.; X) with fxeP

foreach ) e Ä. Defrne p(f): (p(/r))re,r €11(8" nX;X). LetY €U,ffid
suppose that f respecfs YxA andtha.t fl@n I/)xÄ eI^(AIY;Y) is(a) LIP
or (b) locally L-BL or (c) L-BL. Then p(f)l(B" n }/) x Ä € I1(8" ft )';Y) is,

respectively, (a) LIP or(b) locally L*-BL or(c).L*-BL with L* dependingonly
on L.

(5) If Y ey,if p:dimY,if he P rcspectsY,andif hlAnY e
E(AIY;Y) is(a) LQS or(b) ry-QS or,inthecasep)2, (c) /{-QC,then
p(h)lB" n I/ € E(8" nY;Y) is, respectively, (a) LQS or (b) (when restficted to
B"(9)frY whenever p) 2) n.-QS or (c) I(.-QC with q" alr'd K* depending
only on (n,p) o, (K,p), respectively.

Proof. We prove the theorem in the form where (1) is deleted' Then, since

g(id)lB" n Xl : Bn n X by (2) and since g(id) is LI-BL with .L6 an absolute
constant by (4c), replacing p by V(')p(id)-t yields the full theorem.

For positive reals a1 1a2 and ör < bz,let a : a(ar,azibri2): Rl -- R!
denote the homeomorphism that maps [0,41] and lot,or) a,ffinely onto [0,ö1]
or [61,å2], respectively, and is a tra.nslation on [a2,oo). Then define a self-

homeomorphism ar, : e(at,oz;br,öz;n) of R' setting a"(r) : a(lal)tllol for
r + 0. Fix real numbers t a o < e < c : ?-< b < q < r < 1 indepen-
dentlyof nwith bfa:2c:t-pandwithr)f. Thenlet rc, p,,v:R-n '-+R'
be the homeomorphisms

K : 0(t /2,";c,ryn)t p - A( U flia,8;n,) I

Forreals 0 ( ar 3 az,let [a1,or]: {c € X lot ( l*l 3"2} with

[ot] : lot, otl and with obvious analogous meanings for (41, a2) and [41, o2) . We



L46

choose a neighbourhood P of

hl+| c [0,o),
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i,C in E(A;X) so small that for each h e P ,

["] c h(ä, "), and lb, ql c h(c, r).

Consider h eP. Define an embedding å: [å,1) * X, which respects 0X,

We show that A is well-defined. Let x e lä,"1. _Then n(a) e [c,r], whence
y : hn(x) is defined. Let z : p.hn(r). To see that å(r) is defined in at least one
way,notethatif lVl> q,then z :A €h[c,rl;if.y elb,g],then z €la,flCh(l,r);
if lyl < ö, then z e l},a]; and finall5 if. z e h[e,r], then huh-t(z) e h[e,c] is
defined. To see that A(r) is defined in exactly one way, note that if lrl : c, then
z:A ehlrl, whence huh-L(z):h(x);if. z €h[i,"|, then huh-t(z): z;and
finally, if. z e [0, o], then z ( h[e,l). From these considerations it aJso follows
that

(2.15) -h(*) 
- huh-t phn(x) rf r € [t, "] 

and phrc(r) € hl*,rl

arrd that å is injective. By (2.14), ftlj:i,Q is continuous as the union of two
continuous maps of compact sets. It easily follows that lz is indeed an embedding.

Note that

(2.16) h(*) -- p-lTt(pr) if l"l _ +.

Define it. e E(B"nX;X) as follows. Let it.: å on [å,1), and set fuO;: g.

Suppose r e (0, |]. Then Qkr e [],c] for one or two & e N. l,"t

(2.L7) h@)_ Q-kTr(pk r).

By (2.16), å is well-defined. Define p(h): h. Clearly (2) and (3) are satisfied.
Tlo prove the continuity of g, choose numbers s, f independently of n such

that | < s < t 1c and rc[t] c [0,ö). Notethat prrcl[å] :id. Hence,we
can choose 2 so small that if h e P, then lz[]] is contained in ihe bounded
component of X \ prhn[s] and lzr[t] C [0, ö]. Since p,hnfcl = h[rl, it follows that
p,hnls,cl chlt,r]. Hence, by (2.15),

(2.18) h = hvh-r p,hrc on [s, c].

F\rrthermore, p,hnf|,,tl c [0, a], whence by (2.14),

(2.19) h- e-th, on [],t1.

by

_ ( h(*) if lrl > c,
(2.L4) h1x1 : I huh-L p,hn(x) if lcl < c and p,hrc(x) e hle,rl,

I uhn(a) if lcl < c and pthn(x) e hf|,,el u [0, a].
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As d(å1, irz;10,")) : d(T,r,hr;l*,c]) for h1,h2 € P, it follows from (2'18), 2'11,
and (2.19) that g is continuous.

For the proof of ( ) and (5), define homeomorphisms o, r: Rn '-+ R' by
o(x) : un(x) if lrl < c, o(r): s otherwise, r(c) : o(px) if lrl { å, and
r(a) : rc(r) otherwise. Then Ks ltrt u, o) r are ao-BL with ao ) p independent
of. n.

Chooseanumber u independentlyof n suchthat i <u < c and [q] C rclO'u).
We can choose P so small that [0, qlnhn[u]: 0 for h eP. Then, by (2.18),

(2.20)

Hence, by (2.19) and (2.20),

h - Ito on [r, 1).

(2.2L) i1: p-rhr on lu/p,,tl.

Choose numbers u, to independently of n such that s < u < t, 1u 1w < c.

Let i: p(id). By the continuity of 9 and [Si, 1.7], we can choose P so small
that for each h eP,

(2.22) il*lp,r) C ir("lp,t), ilu,u,) C h(t,c), anct il*,ql C h(",r).

Now let L, f , i : pff),Y, L be as in (4). To simplify notation (only), we

assume that Y: X. Let Z: {lulp,tj,[s,c],[r,t]]. In the cases (a) and (b), by
(2.21,), (2.1S), (2.20), and the compactness of the sets in Z,for each ,\ € Ä there
are an open neighbourhood Ä1 of ) and a number .L1 ) 1, with Ls = af;Ls : L1

in (b), such that each Z € Z hasafinite open cover by sets U C Z with /lU xAl
being Lx-BL.In the case (c), ilZ " 

A is .L1-BL for each Z e Z. Obviously, in
(a) and (b) it suffices to consider the restrictions il@" nX) x A.l (Å e Ä) of i
in place of y'. ny Q.22) it follows that in (4) we may assume (for some Zr 2 L

inthecase(a))that fÄl[+,r] and iltlilulg,g] arelocallyZl-Lipschitzwhenever
Å e A and that il{r} * Ä for c e [å,r] and 1-11{r} x A for r € ilrlp,sl are
Z1-Lipschitz.

For ,t € N, we conclud.e from (2.77) that fllp-e[],cl is locally LyLipschitz
if .\ € Ä and that ll{o} x Ä is.t1-Lipschitzif r € p-e[å,c]. Then .f^l[0,r1 to"
)e Ä ana l;{r1 xÄfor r€ [0,r] ale.D1-Lipschitz. Therefor", /l[O,r] xA is

2.01-Lipschitz. Ontheotherhand, if A € N and r eifo-k[wlp,r\], then (2.L7)

and,(2.22)implythat per eilwlp,tul and l;t(r) : a-ki;|k&c) foreach,\ € A.
Thus, we obtain as above that f-t is 2.L1-Lipschitz on i[0,q] x Ä: [0,g] x A.
Since /:.f on [c,1) x A and i-':.f-1 outsicle [0,ö) x Ä, it follows that (4) is
satisfied, with .L* - 2h in (b) and .L* - 2Lt * tr (or even 2L1) in (c).

Let Y, p ) 2, h; I{ be as in (5c). Each of K, p, ut o, r is /(p-QC with
Ko: of,n-2. By (2.21), (2.18), ancl (2.20), fi.1fu1p,1)nI/ is /r.-QC ,, K* : IqI(3 .
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By (2.17), å110, r; nY is K.-QC. By [Vä1, 17.3] if I' is a linear subspace of R"
or trivially otherwise, ir1A"n I/ is /(.-QC.

Let Y, p(2 1), h,r7 be as in (5a) or (5b). Supposefirst that p>2. In (b),
hlAn I/ is I{-QC, K: ?(1)p-1. Thus, by the above, ir1A"n I/ is K*-QC with
I{* dependingonlyon (r7(1),p). By 2.3, hl1O,11fiY is ?*-QS with q* depending
onlyon (K*,p). In(a), h is QS onaneighbourhoodof [å,r] nY in Y. Since

ål1o,rl^depends "" Irl[å,r] only, it follows, cf. the above, ihat ål[0,r]nY is QC.
Thus, hlB" n Y is LQS in (a) by 2.2. For the case .p : 1, see lLa,2.7 and 2.8]. o

2.23. Remark. If Po C P is a sufficiently small uniform neighbourhood of
the inclusion, by 2.5 the parenthetic restriction in (Sb) can be deleted fot h € Po.

The construction of isotopies in the proof of D(R;)") will ultimately take
place in a situation where the following Alexander's construction applies.

2.24. Lernrna. Let (X,/) : (R",!n) or (Iti,yf) with n ) I, and let
T{. : H(X,X \ B"). The function rb:71 x 7 -+ 7{, (h,t) r+ h1, defined by
h1(r) : th(x lt) if 0 < t 1 t and by ho: id, is confinuous and has the following
properties:

(1) r/(id,t):id for eachte I. If he?{ respecfs Y ey, sodoes h1 for
eacht€I.If h,h'e7{ respecty ey a.ndhlY:h'lY,thenhlY =h|lY for
eäch t e I.

(2) Let 
^ 

be a metric spa,ce,

B") x^_id. Definerh.ff)_ f*
supposethat f respectsY xA and
is (3^[ + l)-BL.

(3) Suppose that h € 7{ respects Y e y. If hlY is (a) LQS or (b) locally
4*QS or (") rl-QS, so is, respectively, h.lY for each t e I.

Proof. The continuity of r/ is well known. The condition (1) is obvious.
The condition (3) obtains, because for each. t > 0 the homeomorphism Y + Y,
x *+ tr, is a similarity. In (2) it suffices to show, by the continuity of /* and
since (/*)-t - (/-t)., that /*lY x Ä x (0, 1] is .61-Lipschitz, Lr :3Lf 1.. Thus,
consider two points u: (*,Å,s) ancl u: (U,p,t) in I/ x A x (0,1] with s ) f .

Let 6: l"f^"(r)-/rr(t)I. If lrl ) s, then 6: lo-cl :0, whereasif lrl < s,
then

l'/r(' l') - tf x(* l')l + tlå( r ls) - å( * lt)l
ls - tll/r('l')l+trl.* - tll'll't S (1 + I)l' - rl.

Since f xrlY is L-BL, this irnplies that

and let f - (Å)re.^ € In(X) with /l(X \: (/.lt)ren,tel € /n"/(X). Let Y e !, ar,d
tha,t /lI'x A is L-BL. Then f.lY x 

^ 
x /

6<

l/.r"(") - /.r,(y)l S (1 + r)ls - tl + Ll, - yl < QL+ 1)d(", u).
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On the other hand,

l/.r'(v) * f ,r@)l:tlf 7(vlt) - f ,(alt)l<tLd(^,p') < Ld(u,u).

Hence, l/r"(r) - f rr@)l1L1d(u,u). Thus, d(f.("),/-(r)) 1L1d(u,u). o

3. Deformation staternents for rnetric spaces

3.1. For this section, we fix a locally compact, locally connected metric space
X and a family ) of subsets of X which is weakly locally ffnite in the sense that
eachpoint of X has aneighbourhood .lf for which the set {NnY lY € y}
is finite. Fbr example, X might be a locally finite simplicial complex with its
barycentric metric and ) the fanrily of all subcomplexes of X as in [SS, Appendix
Bl. For the pair (X,y), we first define three deformation statements, which may
or may not hold. We then prove their equivalence, locality, and LIP invariance.
These results could also be used in a detailed proof of the deformation theorem in
[SS].

Note that if U C X isopenand P isatopologicalspace, afunction g: PxI +
E(U;X), (h,t) r+ ht, is continuous if and only if the function P x I xU - X,,
(hrtra) = h1(x), is continuous, and in this case g induces a continuous map
g*: P --+ I(U;X) , defined by 9.(å)(e ,t) : (h{r), t) . Suppose now that P is a
subspace of E(U;X), p is continuous, Ä is a topological Space, a,rrd "f 

: ("fr).rerr
is arr isotopy in I1(t/;X) with fxeP for each Ä e Ä. Then we can define an
isotopy V.U): (,frr)re,r,rer in .t1"7(U;X).

3.2. Deffnition. We let D(X;!) denote the following statement:
Let A a,nd Ä' be closed subsets of X with A CC At ,let U be an open

subset of X, and let B and Btbe compact subsets of [/ with B CC B'. Then
the following statement D(X ; A, A',U,, B, B' ;)) always holds:

There exist a neighbourhood P of the inclusion map id: U ---+ X in E(U,A';
X) arrd a continuous map g: P x I --+ E(U, A; X) having the following properties,
where fu:g(h,t) for heP,t€I:

(1) g(id,t) : id for each t € .I.
(2) ho=h foreach heP.
(3) år : id on B for each h eP.
(4) ht:h on U\ Bt forall h e P, t e I.
(5) If h eP respects Y ey, then /21 respects Y for each f €.I.
(6) If hrhteP respect Y ey and h:h'csnUnY,then ht:h'tonUfiY

foreach teI.
(7) Let Å beametricspace, let.f :(/r)re,r eII(U;X) with fxe P fot

each ) € Ä, and let /* = p.(f) € .I1y1(t/;X). Suppose that Y € ), that /
respects Yxlt,andthat /l(UnIl)xA eI^(U AI/;I/) is(a) LIP or(b)locally
L-BL or (c) L-BL. Then /.1(U o )') x Ä x .I € l*ilLt n Y;Y) is, respectively,
(a) LIP or (b) locally L*-BL or (c) L*-BL with .L* not depending on (4, /).
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(8) If å € 2 respects Y e!,it hlu nv € E(unY;Y) is(a) LQS or
(b) locatly ry-QS or (") n-QS, and if t e I, then /z1l[/nY e E(UnY;Y) is,
respectively, (a) LQS or (b) locally ?*-QS or (c) ?*-QS with 7* not depending
on (ä,t).

We let Dqs(X;)) denote D(X;!) with (7) deleted.

3.3. Remark. Fhom (4),(2), and [Si, 1.6.21 it follows that htU:hU for aL
heP, t e I. Hence, in (5), h{U nYl:ltU ny. If heP respects y e } and
hlu n lf : id, then (1) and (6) imply that hlU fiY = id for each t € .I. If I is
a neighbonrhood of id in E(U,A;X), it follows from (1) that replacing P by a
sufficiently small neighbourhood of id we may assume that plP x Il C Q.

The following concept will be only an auxiliary one.

3.4. Deftnition. We let D{X;A, A',U,B,Bt1}) denote the statement which
we obtain ftorl- D(X;A,A',U,B,Bt;)) r'eplacing the compact-open topology of
E(U,A';X) and oL E(U,A;X) by the uniform topology and supposing that in
3.2(7) the map ) - .f.r of A into P is continuous.

3.5. Remarks. L. As in 3.2, we again have in 3.4 that p-(h) is an isotopy
of Lr onto hU for each lz € P and that /* € Ix1(U;X) in 3.2(7). In addition,
the map g*z P --+ I(U;X) is continuous in the uniform topologies.

2. The older deformation statement in 3.4 implies clearly the newer one, with
the same P arad g. Conversely, 3.8 below shows that D1(X;/) (* defined in an
obvious way) implies D(X;!).

3.6. Deffnition. We let D*(X;)) denote the following statement:
Let A, At, U, B, Bt be as in 3.2. Then the following statement D"(X; A,A',

U, B, B' ;)) always holds:
There exist a neighbourhood P of id in E(U,A';X) and a continuous map

rlzPxI + H(X,Ä) such that if foreach h eP we define a,nisotopy ,h*(h):
(hr)rq € I(X) by hr: rlt(h,t), then the following conditions hold:

(1) Ib(id,t): id for each t e .I.
(2) åo : id for each h eP.
(3) hr: h on B for each h eP.
(4) år :id on X\ B' forall å e P, t e I.
(5) As 3.2(5).
(6) As 3.2(6) but with ht: h't on Y for each t € .I.
(7) As 3.2(7), but we now define f* : ,h.(.f) € llyr(X) and consider Lip-

schitz properties of. f*lY x A x I e lrt"ilY),
(8) As 3.2(8), but we now consider quasisymrnetry properties of. hlY e

H(Y), t e I.
We let D$s(X;)) denote D*(X;)) with (7) deleted.
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3.7. Remarks. L. The conditions (7a), (7b), (7c), (8a)' (8b)' and (8c) of
Definitions 3.2, 3.4, and 3.6 (and the respective conditions of the results in later
sections) will be considered independently of each other in the proofs. The weak

loca,l finiteness of J/ will only be needed for (8c) in this section; otherwise the
different elements of ) will be considered independently of each other.

2. In Section 5 we establish D(R;y") 
",rrd 

O(Ri;)f,) assuming, however,

that dimY ) 2 in 3.2(8b). Siebenmann and Sullivan [SS, Appendix B] proved

essentially D(X;!), with (8) deleted and having in (7) only ihe LIP part (a), for
pairs (X, )) described in 3.1.

3. Without altering any proof of this paper, we could strengthen the condi-
tions (7b) a"nd (7c) of Definitions 3.2, 3.4, and 3.6 (and the respective conditions
of the results in later sections) to assert that .L* can be chosen to be of the form
L* : cL' with c, v ) I independent of (Ä, /, å) (and depending only on n in
Section 6). Cf. 5.9.

3.8. Lemma. Let r : (X; A, A' ,U, B, B'\y) b" as in 3.2, Iet Ur be an open
neighbourhood of Bt with compact closure in U , and construct 11 from r by
replacing U by U1. Then D(r) follows from D1(r1).

Proof. Let P1 be the neighbourhood and 91 the map given by 21(11). Then
there is a neighbourhood P of. id in E(.U,A';X) such that hlh e P1 for each
h eP. Define a continuous map g: P x I -+ E(U,,A;X) by

e(h,t): {?'{olu"') ä il'( r,.
Then g trivially satisfies the conditions (1)-(8) of 3.2 with (7c) and (8c) deleted.
If P is small enough, (7c) and (8c) also hold by 2.7 or, as { Ut n Y lY € y} is
finite, by 2.9, respectively. o

3.9. Lemma. The statements D(X;U) and D*(X;!) arc equivalent.

Proof. Let r: (X; A,A',U,B,B'i)) be as in 3.2, a^nd construct z1 from
r by replacing B by a compact neighbourhood Bt CC Bt of. B. We first show
fhat D(r1) implies D*(r). Let P be the ueighbourhood and g the map given by
D(rt). Choose P so small that hB C Br for each /r € P. We define a function
rl:: P x I -t H(X,4) setting

,h@,t): 
{ $o't'-'o ll ?'t r,.

Then t/ is continuous by 2.11. The conclitions (1)-(8) of 3.6 with (7c) and (8c)
deleted are ea,sy to verify. If P is small enough, (7c) and (8c) also hold by 2.7

or 2.9, respectively (to apply 2.9, choose an oper neighbourhood 7 of B' with
T c U compact).
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We now show that D*(rt) irnplies D(r). Let P be the neighbourhood and
r/ the map given by D*(q). Choose P so small that hBl f B for each h e P.
Then p: P x I + E(|J,A;X), defined by g(h,t): lu[(h,t)-rlu, is the desired
map. tr

3.1"0. Composifion. Let U C X be open and Bt C U be compact. Consider
D :D(X;0,0,U,,0,8';U).For i : L,2,Iet P;be a subset of. E(tJ;X) containing
id arrd let g;: P;x I -> E(U;X) be a continuous map satisfying D. Suppose that
piPt x 1] C P2. Then u'e can define a continuous map pz*gr: Prx I --+ E(U;X)
by

(pt * VlXå, t) :

*d p, * pr also satisfies D, I 3.2(7) follows from 2.10.

If. Z C X is open, we let llZ denote the family (Y n Z)yey.

3.11. Lemma. .Let Z : {Z I Z C X open, O(Z;!IZ) holds }.
(i) If Xr e Z and Xo C Xr is open, then Xo e Z.
(ii) If Xt,Xz € Z, then XtU X2 e Z.

Proof. Since ()lZr)lZo : llZs for open subsets Zs C Zt of. X, we may
assume that X1 : X in (i) and Xr U Xz : X in (ii).

(i): To establish D(Xo;)lXo), we prove D(Xo;A,A',U,B,B';)lXo). Note
that E(U;Xg) ca^n be considered as a subspace of. E(U;X). We can apply
D(X;An B',V',U,,8,8'1)); let P be the neighbourhood and g the map given
bythisstatement. Then Po : {h €P lhU C Xo} iraneighbourhoodof
id: [/ + Xo in E(U,A|;X6). Through restriction, p defines a continuous map
po: Po x f + E(U,A;X6), which is the desired one.

(ii): Tlo prove D(X;!), we prove D(X; A,A',U,B,B';y). It follows from 3.8
and 3.5.2 that we may assume 7 to be compact and that it suffices to construct
the desired neighbourhood P of id in E(U,A';X) to be a uniform neighbourhood
only.

Choose a closed neighbourhood .4." CC A' of Ä in X. Choose open covers

{Xi,,Xi} *d {X{,Xt } of X with Xj'CC Xj CC X; for i: L,2. Let (I;:
UnXi; then IJ : (JtUUz, and -ft is a cornpact set in X;, whence d(Ui, X\Xi) > 0.
Let Bi : BfiX!'; then B: Btl)Bz, and B1 is a compact set in U;. Choose
compact sets Bl , Bl, and B'" with .B1 CC Ai CC B| C Ul n B' and with
Bz CC Bl cU2n Bt.

We first apply D(Xr;A't f) X1,.4, fl X1,Ur,Bl,Bi;)lXr); let p1 be the
neighbourhood and 91 the map thus obtained. Choose a uniform neighbour-
hood P of id in E(U,A';X) such that hUr C Xr and hlUl € Pr for each
h e P. Define a continuous map p\:P x f -+ E(U,A";X) Ietting g!(å,t) be
p{hlU1,t) on U1 and a on tr \ Ai. Choosing P small enough, 9', satisfies
D(X; Att , A' ,U, Bi, B'r; )); "f. 

the proof of 3.8.

Ie{lz,2t) if 0<t< +,
Ier(pr(h, 1),2t -1) if å < t < i,
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We now rpply D(xr;(,4, u .B1) f) Xz,(A" t) Bf ) n Xz,[Jz,,B-?',BL;]IX2); let

Pz be the neighbourhood ^d 9z the map thus obtained. Choose a uniform

nelghbourhooa O of id in E((J,A" uai;x) suchthat huzcxz and hluzePz
for each n e Q. Define a continuous map p'2, Q x '[ -* E(U,A U B1;X) letting
p'"(h,t) be 92!hlU2, t) on Uz and ft. on IJ \ Ai. Choosing Q small enough, p'z

å"tirnå D(x; Au 81, At' u Bl,(J, Bz, Bt;!); cf.-the proof of 3.8'

Choosing P small 
"rrorrgh, 

we have rhat g\lP x 1] C O' Then 9: ?'2*9|
is the desired map. o

3.12. Lemma. suppo se thrat the family z of 3.1L covers x . Then x e z.

Proof. First note that by 3.1L every open subset of X with compact closure

belongs to Z. To prove D(X;!)-we establish D(XiA,A',U,B,B';!)' By 3'8

and 3.5.2, we may assume that 7 is compact, in which case there is an open

neighbourhood Xs of 7 with Xs compa"t, and then, in addition, it suffices to

construct the desired neighbourhood P of id: U '-+ X to be only a neighbourhood

of id in the subspace Po of. E(\J,A';X) consisting of elements mapping [/ into

Xo. Since Ps : E(U,A'nXs;Xs) and since E(Lr,ÄnX0;Xo) 1t a subspace

of. E(U,A;X), the neighbourhood P and the map 9 given by the statement

O(Xi;Afi Xo,Ä'flXs, g,B,B';3;tlxo), valid as Xs € Z, are what we sought' o

3.13. Lemma. fåe statement D(X;!) js a LIP invatiant of the pait (X,!).
More exactly, if D(Xi!) holds, X' js a metric spa'ce, g: X --+ X' is a LIP
homeomorphism, and !' : {gY lY e y}, then D(X';!') holds. The statement

Dqs(X;)) is an LQS invariant of (X'y)'

Prcof. obviously, D(x;!) is a BL inva,riant of (x,J/). The LIP invariance

then follows from 3.11(i) and 3.12. The second part is proved similarly; recall only

3.7.1. o

4. Handle lemnras

4.1.. In this section we prove the inductive handle lemmas 4.2 and 4'3. For

integers 0 (p<n ) L, *""åt lnp: {I/ € y, lRe cY} and !to: {y € }f I

Rp c )Z ), where the families ),, and }f are defined in 2'1'
Convention From now on in this paper, we will tacitly assume that in the

condition (sb) of Definitions 3.2,3.4, a.nd 3.6, the set Y, which will always be a

manifold, is of dimension at least two.
under this convention, the lemmas in section 3 are still valid by 3.7.1.

4.2. Lemma. Let0<-mz-p(-rt' ) l beintegers. Let X: R,':
R- x Rp-- x Rn-p and y = !np. Suppose that D(R" \ Rr;)lRn \ Iln) åolds.

Then D(X; A, A' ,,U., B, Bt;)) åolds, where

A : R?n x (Ro-?n \Bo x R'-P)
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A' : Itm x (Ro-"'\ Br'-*(å)) x R'-P,
U:58*x\BP-0L XSBn-P,
B :E*(å) xpa-rrr x$"-o(+),
B' :fim x zEP-n,, X ZE"-P.

4.3. Lemma. Let 0 1 m( p ( n be integers. Let X - R+ : R-xRp-mx
Rl-o md ! : he. Suppose that D(R\ \ R,p; )lRi \ Rr) åolds . Then D(X; A,
A', U, B, B' i !) holds, where tåe sets A, A', tJ, B, Bt are the intersections of the
respective sets in 4.2 wtth Ri.

4.4. Remarks. 1. We only prove 4.2; obvious modifications give a proof for
4.3.

2. As the construction will show, the following condition (8,) can be added
to the list of 3.2 for the claimed deforrnation statements in 4.2 and 4.3 (the case

P:0):
(S') Let Yr,Yz € y be distinct a,ncl homeomorphic to

fr U Y2. If h e P respects Y1 and Yz, if h,lU n y is (") LQS
t € f ,then hrlU ny€ E(UnY;Y) is,respectively,(.) LQS
T* not depending on (h,t).

4.5. Hyperbolic geometry. We recall
Flor rrr

transformations af E* .

Fbr n ) rn ) 1, we let o denote the restriction to F"\,S--l of the hyperbolic
metric of R'u {*} \ s--t defined in [TV2, 2.4]. The hyperbolic metric o is
invariant under each g € Möb,, that respects S--1, and a is LIP equivalent to
the Euclidea,n metric; in particular, lr - yl I o(r,y) for r,U e B-"1,g*-r,.,
follows from [TV2, (2.6). The case n1,: n gives the hyperbolic metric on B*1
now every hyperbolic ball Bo(x,r) is a Euclidean ball.

Let m > 1. Let G be a discrete subgroup of Möb- acting freely on B* .

Let Q be the orbit space B^/G with the cluotient topology. Then the natural
map ?16: B* + Q isa covering map, ancl Q is an nz-manifold without boundary.
Moreover, n6 defines a C*- (and hence a LIP) structure on Q.The hyperbolic
metric oe on -Q is defined as follows: If g, q' e Q, oe(g,g,) is the hyperbolic
distance of zre r(q) and zro-r(g') as subsets of. B^ . Then zrs is locally a hyperbolic
isometry. Thus the LIP structure on Q is a^lso defined by the metric aq. As
in [TV2, 2.9], we say that G is a Sullivan group and Q a sullivan maniiold if
Q is compact and if for some (and hence for every) point q e Q there is a LIp
immersion ot Q \ q --+ R^. By Sulliva,l [Su1], a Sullivan group exists for each
m ) 2. It is easy to see that for m, = t, a subgroup of Möb1 is a Sullivan group
if and only if it is generated by one nonidentical increasing map. Every Sullivan
l-manifold is C*-diffeomorphic to ,S1. We fix for each m ) r a Sullivan group

Rl , and let Y _
or (c) ?-QS, and if
or (c) ?.-QS with

some constructions from [TV, ,2.3-2.11].
tlre subgroup of H (B*) of all Möbius
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G- a,nd the corresponding sullivan manifold Q* : B*IG^ ' Then for each rn'
by the compactness of Q- there is r- € (0, f ) such that ns: B* -> Q* is a,

hyperbolic isometry on a neighbourhood of each closed hyperbolic ball Eo(c, r*),
x€B*

Let 0 (-m1n)L. Set ,t:n-rn and At:8" U*-t (with S-1 :0).
Then there is a natural homeomorphism u: At - B^ x Bf C R" defined by the
so-called Möbius coordinates of. Aft whenever m,k ) 0 [TVz, 2.7 and 2.10] or by

u:id whenever m:0 or &:0. Clearly u respectseach Y e !". For rn) 1,

recall the hyperbolic metrics o of. Ai and o of B*ifor m:0,let o denote the

Euclidean metric. Define a metric po on B* xEu Uy

8o(*,*'): max (o(",*l),1*z - *'rD'

Then u: (At,") -- (B* xEk,po) is BL by [TV2' 2.11].

Nowlet 01m3p<n)-L Set k:Tl,-rn asabove. Let Ek:fit-^,
En-o. We introduce the norm ll(r,y)ll : max(lcl,l-vl) "" Rk : Rp-- x Rn-p
and define a BL homeomorphism rs: (Re,I'l) * (Ro,ll'll) setting rs(O) :0 and

rs(x) - lolo/llcll f.or x f0. Then rsEk :åk. D"fitt" a metric p on B- x R&

by
p(x,a') = max (o(*r,*'r),ll*z- rill).

Replacing here o by oq (if. m ) 1), we obtain a metric on Q^ x R&, also

denoted by p, with which Q- x Re will be considered. Let B* : B^ * å&; th"o
the homeomorphism r: id xrg:(Bn xEk,po) - (B*,d is BL and respects

each It e I.n. We obtain a cn-BL homeomorphism u + rt!,: (AI,o) * (B*,0),
where co depends only on n. Suppose m 2 L' Let Q* : Q^ x Ex. We

define covering maps zr : ro x id: B* ? Q* and e : lr't): Aft - Q*. Fbr each

Y : R* xYr e ln , where fi C Rfr, we define a subset Y* : Q* x Yr of

Q^ x Rk. Then "-'lQ* 
nr*] - u-'[8" ny] : AtnY foreac.h Y €!n*.

4.6.Liftinghomeomorp.hisms. Let 1( nzlp (n and

Po: {t, € H(Q*,AQ*) Io( h,icl)

Note that Pot = Po. Each /z € 2o has a uniclue lift to a continuous map

h,: B* - B. such that rit,: hzr zurclsuchthat å101 e Br(O,irårEk.Infact,
if. r e B* artd if.

7rxi (Ar(*,,r*) x Eo,p) -) x Ek, p)

is the isometric homeomorphism clefinecl by t, then å = r;rhn, onEo(r,irå,
-6&. thir description implies that p(h1 ,h2) = p(fu,h2) for all hr,hz € Po. In

(t,o(ro @),,'*)
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particular, p(å,id) atr* foreach he Po. Itiseasytoseethatif å€Ps,then
6J: å-t, *herr"e h-e H(B*,08*).

For å €Poweset å* =r-lh,ue H(At,AAil. Then å* isane-liftof lz,i.e.,
eh* : å,e. There is a constant M,, depending only on n such that o(å*, id) < M,
for all h e Po. Thus, every å* can be extended by the identity to a homeomor-
phism E R" --+ IL'. Note that E-L - F fo" h e po .

4.?. Lemma. The rclation h ,-E is a continuous map Po --+ If(R", R'\B')
sending id to id and satisfying the following conditions:

(1) Let Y € !n^. If h e Ps rcspects Q* frY*, then E respects y. If
hrrhz e Ps respect Q* fiY" and hr: hz on Q* frY*, thenEl:Ez on Y.

(2) Let lt be a metric space, and let "f 
: ("f.r)re,r € /rr(Q*) with f x € po

for each l e Ä. Defne 7: (7^)^.,,r € /n(R'). Suppose that Y'€ !o*-, that j
respects (Q*nY*) x Ä, and that fl(Q" nf*) x A is (a) LIP or (b) IocaJJy L-
BL or (c) I-BL. Then there is an open cover (Ä;) of Ä, consisting only of A in
the case (Q, such that, TlY x Ä; r's for ea&, j , respectively, (a) BL L (U), (") Z-
BL with L depending only on L and n.

(3) If Y e !n*, I:dimY, h€Po, h respects 8*nY*,andhle.nI/* is
(a) LQS or (b) IocaJly n-QS or (") t-QS , then E1V is, respectively, (a) eS or
(b) (if lrr), (") f-QS with r7 dependingonlyon rl and n. Hereitisprovided
that if l: L, then p(h,id) < 16 , where re ) 0 is an absoJute constant.

Proof. The continuityof h 
'.+ 

E foUo*s from the fact that d(8,8,) I cng(h,h,)
for lr, h' e Po. obviouslS iä : id is true and (1) holds. Consider Y € !n*.'Then
e defines a cr.-BL homeomorphism

esi ("-tll,(*,rn) * tro] n Iia)

for all a e B*. Consider h e Po that respects Q* n f*. Then å defines a
homeomorphism åy e H(AT n Y) with

hv : e,l(hle* ny*)e, on *-1lE,(*,trå * a&] n r
if. x e B^.

(2b) for A a singleton: Let Y and h be as just with hle. ny* being locally
L-BL. Then å.y is locally L'-BL, L' : c2nL, in the hyperbolic metric o of. Aft.
Since /,f,oY is a-convex subset of R", the proof of [TV2, 2.12J shows that äy ls
L-BL, L:2LteM', in the Euclidean metric. Hence, E;f is T-W.

(2): In the cases (a) and (b), the compactness of Q* r'1 I/* implies that for
each Å € Å there are a neighbourhood Är of ), a finite open cover Vr of e* fry* ,
arrdanumber.D; ) L,equalto.L in(b), suchthat /lVxA1 and f-tlv xÄ1 are
.L1-Lipschitz for each v e Vx. Thus, in (2) we may assume that there is ,[ ) 1
such that f xlQ. ft Y* is locally L-BL for each Å e Å and such that /l{r} x A
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and /-11{"} x Ä are L-Lipschitz for each r € Q*lY*, and it suffices to prove

that jly x Ä is then i-Bl_with i depending only on .[ and n.By the special

case of (b) above, /^ll' is -L-BL for each .\ e A. Obviously,

d(T x,T x,;Y) < 
",p(f x, f x,; Q* n Y.) < c,Ld(),, \')

for all .\, ), € Ä. It easily follows that 7ly x Ä is i-Lipschitz with i :E + cnL.

Thus, also (/lf x A)-1 :Flv x Ä is i-Lipschitz.
(3): As Q* nY* is compact, (a) reduces to (c). Suppose first I ) 2. In

(b) and (.), hv is locally fr-QS, q{t) -- c2nr1(c2nt) for t ) 0, in the hyperbolic
metric o of. Aft. If. x e AT,, by [TV2, (2.6)] the quotient o(t,v)llt -vl has a
finite positive limit as y ---+ x in Ai. This implies that H(x,hv) < 171(L) for each

r eTnf(Ain),). Here I/(r,hy) denotes the linear dilatation (in the Euclidean

metric) of. hy at r in the sense of [Vär, 22.2]. Thts, hvllnt(Af ! y) is K-QC,
K:rt{I)I-t, by [vä1,34.2]. Hence, Elv eH(Y) is r(-QC bv [vä1,35.1]. Bv
23,ElY is f-QS with 4 depending only on .I( and I.

Suppose now l: 1. Then m: !, Y : Rl , Ä[ fiY : .B1 , and Q" nY* -
Y" : QI, where Ql is isometrically identified with the subspace Qt x 0 of Q*.
Moreover, ,lB1 - id and rlBr : z16' Thus, letting h: hlQr e H(Qt), we have

that ElBl e H(Bt) isthe n-lift h.1 of. fu definedin4.6 (the case m: P - n:1).
since å1 is a-QS, it follows that år lEo,(*,|r1) is n-QS in the hyperbolic metric

o1 of BL for each r e BL. F\rrthermore, o1(iz1,id): oq(ht,id) < p(å,id).
Hence, by [Lu, 3.2] there is an absolute constant ro € (0, ]r1] such that if
p(h,id) (rs, then E1R1 is f-QS with r7 dependingonlyon 4(L). o

4.8. Flom now on we assume the situation of. 4.2, Recall ! : !np, and let

l* : (Y*)vey.

4.9. Lemm a. Let m ) L *rd Q : Q*x(R'--\Rp-*). Then D"(Q;y-10)
holds.

proof. Let .ä : R" \Rp : R* x (R'-* \Re--). Choose an open cover {Q1,
...,Q"j of Q* such that for each i e {1,...,s} there is a LIP homeomorphism

fr Q;---+ R-. Let Q;-Q.3"(R'?-rn\RP-*). Then f;: f;xid: Q; ---+ Aila LIP
homeomorphism with f n[Q;nY*l: R O I/ for ea,ch Y € ]. Thus, as 2(,R;]lrB)
holds by the assumption of 4.2, D(Q;;!.\Q;) holds by 3.13' As {Qr,...,Q"} is

an open cover of @, the lemma follows by 3.11(ii) and 3.9. o

4.I0. A modifrcation. Let m ) l. We let D* denote the hyperbolic ball
Bo(0rr*) C B-. Choose a radial BL homeomorphism 9o: R* --+ R- such that
golB* \B-:id and PoB^(l):D*. Then g: go xid: R":R*xR*-m--+
R" is BL, and gY :Y foreach I/ e ln. Thus, by the aid of B we can replace
E*(+) by D^ in the definition of. B in 4.2.

The next lemma is the core of the proof of 4.2.
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,4.LL. Lemma. Therc a.re a neighbourhood P of id in E(U,,A';X) and a
continuous map tps:P --+ H(R',R'\ B") with po(id) : id which satisfy the
following conditions:

(1) po(h) : u-7hu on u-rB for each h e P .

(2) If heP rcspectsY e y,sodoespo(h). If h,hte P respectY ey
and h: h, on U ny , then qs(h): po(h,) on y .

(3) Let lt, f,Y,L be as in the condition (7) of 3.2. Defrne Vo(f) :
(fo{/^;)^.n € [(R'). Then there is a;n open cover (/t) of I\, consisting only
of lt in the case (c), sucå that gsff)lY x lri is for eaeh j , respectively, (a) BL
or (b), (c) Ig-BL with Ls depending only on L and n.

(4) Let h, Y, r7 be as in the condition (8) of 3.2, with dim Y > 2 rn (b).
Then qs(h)lY is, respectively, (u) QS or (b), (") ,lo-QS with r7s depending only
on r7 and n.

The proof of Lemma 4.LL will be finished in 4.14.

4.12. Constructions in the case m /"!.. Let k: n-rn. Choose a point
q e Q*\noD- and a LIP immersion cs: Q*\S --+ 4B*. By the LIP Schoenflies
theorem ILV r 7.7], we may assume that as?r6 : id on a neighbourhood of D* . Set
a: otoxid: (Q* \s) x Rk ---+ R' : R* x Rft. Then ae: o on a neighbourhood
of u-tlD* t Ekl i" ,+y. Let -R : $min (r^,oe(q,noD*)), and. set Dj :
B"c(S,jR) for L(I(8; thenDinr.oDm:0foteach j.

We construct open sets [, . . . ,Ve in Q* X R&, a neighbourhood ? of id in
E(U,A';X), andfor each i e {L,...,8}, considering E(V;;Q* x Re) with the
uniform topology induced by p, . continuous map pi: P --+ E(V;;Q* x R&) with
pr(id) : id, such that the following five conditions are satisfied, where h e P arÅ
si: pi(h) (1 < i < 8):

(1) aTr : halV1, ar'd g; - gt on rB for i : 2,4,6,8.
(2) If. h respects Y e.y, then g; respects Y*.
(3) If. h,h' € 2 respect Y e ) and h: ht on U fl Y, then pt(h): p;(ht)

on V;fiY*.
(4) In the situation of a.11(3) and definine p;U) : (en(/r))re,r € Ir(V;;

8- x Re), we have that 9;(/)l(UnY.) x Ä is, respectively, (a) LIP "i 1U; locally
LrBL or (c) Li-BL with Z; depending on (2, n, i) only.

(5) In the situation of.4.71(4), g;lVtfl I/* is, respectivel5 (a) LQS or (b)
locally ?r-QS or (c) fr-QS with 4; depending on (?, n, i) only.

These properties will usually not be explicitly mentioned again as the con-
struction proceeds.

The maps gtt...,gs will be constructed consecutively. We construct P sel-
ting first P : E(U,A'; X) and replacing then P gradually by smaller neighbour-
hoods, again denoted by P, whenever need arises.

Choosing P sufficiently small, we may assume that e; : sup { p(g;,id) | å e
P] for 1. <i < 8 is as small as needed in the constructions.
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Thus, let heP. Wefirstconstruct

gt: Vt: (Q* \ Dr) x 4Bp-'Irt' x 4Bn-p (Q* \ Dt) x Rk

159

with g1(r, y,z) : (*,y,") whenever lAl >- i as follows. Observing that % is

compact (in Q* t Ru), choose a cover {Wr,...,W"} of % by open subsets of
(8'"\Dt) x Rå such that alW; is BL for each i and such that alW;UWi is
injective whenever WifiWi * A. Then choose an opgl cover {G1, . . . ,G r} of the
space V1 with a positive Lebesgue number such that G; C W; for each i . Finally,
choose P so small that haG; C aW; for each i. Now set gl lG; : (alW;)-rhalG;
for L ( i ( s. Then 91 is well-defined. As injective, 91 is an embedding. For er
small enough, (4c) and (5c) follow ftom2.4 or 2.5, respectively.

We let V2: (Q* x 4Bp-* \Dz x Vr-*(0.6)) x 48"-p and define !J2: V2 --+

Q^xRåby

s2 : slu (ia1q- x (4Bn-* \ -Be--(0.6)) x +a"-o).

Assuming 6r ( 0.L we get an embedding. For e1 small enough, (4c) and (5c)
follow ftom 2.4 or 2.5, respectively

We construct a self-homeomorphism gs of Vs: Q using 4.9. Lemma 4.9
implies D-(Q; At, A\,tJr, Bt, A'r;Y;lQ), where

: Q* x (Rr-- \ Be-'n(0.7)) x (R"-r \ O),

: e* x (Rr-- \ Be-'u (0.61)) x (R"-, \ 0),

: (e* x 4Bp-^ \ D, ,. Vn-*Q.6)) x (48"-n \ F"-e(0.2)) c vr,
: (Q* xBe-*(g.r) \ Dn , gn-*(0.62)) x (8"-r(9.1) \ B"-e(0.9)),
: (e* * gc-*(8.2) \ Ds , gn-*(0.6r)) x (F"-r(s.z) \ B"-e(0.8)).

Let Pt be the neighbourhood of id in -E(U1,A\;Q) and ry'1: Pt x I -- H(Q)
the continuous map given by the above deformation statement. Assuming e2 to
be suffi.ciently smJl, we have that 9z[\ C 0 *rd lrzlh e 2r . Then *" d"fitr"

h,:tht(gzlUr,1). Itfollowsthat 93:id on hu(Q \B{) and gs:92 on 81.
We next construct

9+: Vn : Q* x TBp-* x 38"-p \ Du , Vn-*Q.7) xB"-p --+ Q* x R&

with ga : id on Q^ x (SAo-* \ ar--(0.7)) x gg"-o. Define open subsets

IY2_ (Q* x TBp-rrl \ D' xRp-m(O.7)) x \Bn-o,

lfs -Q* x 3BP-m' x QB,-P \F"-r;

A1

A,,

IJ1

Bt
B,L



160 Jouni Luukl<ainen

of Q* x Re. Then I/a : N2 UNs, 7Fn ir compact in % for i :2,3, and

to be suff.ciently small, 9a is an embedding, and (4c) and (5c) follow from 2.4 or
2.5, respectively.

We construct g1:Vs : Dt,.3r--(0.81) x B'r-e12.5) + Q^ x Rr with
gs : 94 outside D6 x BP-'n(0.8) x 28"-p by applying 2.13, together with 2.23
for (5c) and 2.2 for (5b), to the embedding "f % \ Ds x gn-*(0.7) x F"-p ittto
Ds x Bp-'n x 3Bn-p defined by gn. This is possible if ea is small enough by the
aid of an auxiliary BL homeomorphism.

We define ga: Va : Q^ x \Bp-* x \Bn-p -- Q^ x Re with go : id on
Q* x (SAo-* \ Be-'?l(O.g)) x ga"-, setting

s6: (s+lVa \ Do x -ar--10.s; x zE"-p) u ss

and assuming that ea and 65 ar€ sufficiently small. Again, (4c) and (5c) follow
from 2.4 or 2.5, respectively.

'We construct a self-homeomorphip 97 of. V7 : Q using 4.9, which allows us
to apply D. (Q; Az, AL,(Jz, Bz,, AL; !"lQ), where

Az: e* x (Rr-- \ Ae-,7,(0.9)) x (R"-e \ 0),

AL: Q* x (Rr-- \ Be-*(0.8)) x (R"-e \ o),

(Jz:Q* xBBP-^ x (8"-n \F"-'(å)),
Bz: Q* xEP-* x (8"-rg) \ B"-o(å)),
BL: Q* x zEp-* x (F"-r10.9) \ a"-e1r;;.

Let Pz be the neighbourhood of id, in E(U2, nL;Q) and l:2: Pz x I -' Il (@) the
continuous map thus obtained. Assuming e6 to be sufficiently small, we have that
gtUz C Q and gepz e Pz. Then we define gz : $z(galUz,l). It follows that
9t :id on A2U(8\B{) and 97 : 96 on P2.

We finally construct a self-homeomorphism ge of Va : Q* x R& setting
ga: 9a on Q* x Bp-* x B:-P(+) t 98: 9t on Qrn x Bp-n x (Bn-n \8"-o(å)),
and gs : id outside Q* xEn-'"10.0; ,5n-r(0.9), and assuming that eo and ez
are smaJl enough. To verify (5c), we first apply 2.5 for S"l(Q*xBp-n "B'-r)t^lY*and then 2.9. Similarly, to verify (4c), we first apply 2.4 and then 2.7.

4.13. Consfrucfions in the case rn: 0. We modify 4.12. Let V6 - fJ,
V, : fr. : R' \ Ro, and I/a : R'. For a suffi.ciently small neighbourh ood. P
of id in E(U,A|;X) and for each i:6,7,8, we construct a continuous map
g;: P --+ E(V;;R) with g;(id) : id such that the conditions (2)-(5) in 4.I2
are satisfied, where only Q* x Re is replaced by R' uodJ* by Y. We set
ge : pa(h) : h. We then construct 97 : pr(h) € I/(.R) as in 4.1.2 using
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D-(fr; Az, AL,fIz, Bz, AL;y]il, where the sets A"lA'2, :.. are as in 4.12 (delete

Q-) *d which follows from the hypothesized D(R;/|A) bV 3.9. We finally con-

struct ga: pe(h) € f/(R") as in 4.12 (delete Q*). Then 96 : lr on B and

9e : id outside BP x B"-P.

4.'J.4. Proof of 4.LL. Suppose first that m) L. Let P be as constructed in
4.72. lf. h e P , then 93 restricts to a homeomorphism 9s € H(Q*,AQ.). Assum-
ing that e6 is sufficiently small, we can define S : po(h) as the homeomorphism
ge given by 4.6 and 4.7. We prove (1). There is a neighbourhood Bs of B in B*
such that ore: u on u-rBs; see 4.12. Choosing P small enough, we have that
gu-tB C u-rBs. Then, by 4.12(1), hu: hae: agLe: agse: aeg: ug on
u-LB.

Suppose m:0. Now u is the homeomorphism rslB":B" -Ep xB"-o.
Let P be as constructed in 4.13. Then we can define Vo(h):rorgaro. For (3a)

and (3b), cf. the proof of.4.7. For (4a), use 2.9. For (4b), use 2'3. o

4.75. Proof of 4.2. It is easy to find a BL homeomorphism ur: R' ---+

R' which respects each Y € ),n and for which u) : '.1 on u-llE*(+) " E'u]

and uB" C B*(l) x Bk. Then also 6i : (id x rs)tu: R' -> R,' is a BL
homeomorphism reipecting each Y € !n. Let go: P --+ 7{ : I/(R', R' \
B') and rl.,:'11 x I -- T{ be the maps given by 4.11 or 2.24, respectively. Set

p(h,t) :6tr(9s(h),t)-rw-1h fot h e P, t € I. Then g is a continuous
rnap P x f --+ E(\J,A;X) satisfying the conditions (1), (2), arrd (5)-(8) of.3.2.
Choosing 2 so small that u8" C hBt for each h € ? yields 3.2(4). Let

E :E^1f,) xBe-'" xB"-p. since D* c B^(+) if. m ) 1, choosing ? suffi-

ciently small implies that hB C.ä *henerr"r h eP. We can now verrfy 3.2(3).

Note that 6: u oo r-r/. Let h € P and S : po(h). Since ,h(g,L):9, using
4.11(1) we see that g(h,I):6g-tw-rh:6g-tr-t6:du-L : id on B. o

5. Basic deformation property of R' and of Ri
In this section we prove that the statements D(R;/") and D(F-|;)"F) ate

true.

5.1. Lernma. Let 0 < p 1n t 1, be integers, let ! : !np, suppose that
2(R'\Re;)/lR"\nr; holds, andlet X, A, A',U, B, B' beasinS.2with X: R'
and B C Rp. Then there is a compact set Bs CC B' with B CC Bs such that
D(H; A, A',U, Bo, B' ; !) holds.

Proof. Let T be a rectilinear triangulation of Rp . Lel T' be the first barycen-
tric subdivision of ? and T't lhe second one. For a simplex o € T ,let ä be the
barycentre of o, Ho: Ui r | 6 e r e T" ), and i(H"): dimo. Then 7l :
{H"lo e T } isahandledecompositionolR'asin [RS,p.S2]. Infåct, if. o €T,
P,:l){H, I r eT, dimr < dimo}, fr": cl (U{ r lä er e Tt } \P"), and
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rn : p - i(H"), it is easy to show that (Ho,H*Ho n P") is PL homeomorphic
to (2I* x IP-*,In x IP-n,2f^ x AIp-*). Setting Ho 1 H, if. H"n H, + A

arrd i(ff") Si(H") (i.e., if o is aface of r) we obtain a partial order for 7{. Let
?lo and 711, respectively, be the sets of the handles H e 11 such that there is
HteT{ with I/ (ä'a^ndwitheither HtnA*A o, HtnB f 0, respectively.
Then ä I H; e ?l; implies H e '11; for i:0,1. Choosing ? fine enough we may
assume that [J?16 CC At and [J111 CC Bt . Let '|fi \ ]16 consist of s handles
Hr,...,ä" with i(Hi) 3i(Hi+r) forall j < s. LetV{}: (7{ofi7tr)U{är, ...,Hi}
and P; :UHi for 0 ( J < s. Then P" :UTh is a neighbourhood of B in Rp.
For each H e 7t with If n Hi * 0 we have that i(ä) < i(H) if and only if
H €.?{'i_r.

Choose a,rr open neighbourhood y0 CC A' fl B' of Po in Re. Then, in-
ductivelS for each j € {1,...,s} we can choose a PL embedding oti:6lP ---+

(intB'\ Ä) n Rp and define a.rr open neighbourhood I/1 CC B' of P; in R? such
that, setting rn : p - i(H), we have that

oi[r-(å) x2rP-*f - Hj,
a7tP5t -- 6I^ x (6Ie-* \zJo-^r,

r,rfal* x (6re-'' \ /r--(+))l cvit,
vi : (v5-t\ o;[6,I- x lp-*l) u oqlJ^(+) x atr-*1.

Choose positive numbers es > e|, ) et
B"-p(eo) CC A' fl B' and rrilllnl xB"-r(eo) C intB'\ -4 for L ( t < s.
We show that the compact neighbourhood Bs: P" xB"-o(tr") of B in intB,
is the desired set.

For 1( j 4 s, choose aradial BL homeomorphism 9i:68"-e --U"-r(e'i)
with BiB"-o(å):E"-u(e). Then 1j:djxBi:6Iex6E"-p --B'\,4, isa BL
embedding, which respects each Y €U. Let Wj:Vix Bn-n7ey) for j > 0. If
j > I,let m be as above, and let

Xi
Aj
A,J

U1

- 7il6Ju x 6Bn-of ,

: IjlSt* x (\IP-rrr

- Iilot* x (oto-*

- I jlSJo x \Bn-of ,

- 'Yilt*(+) x rp-*

- 7 jll* x zIP-r'rL x

\ /o-\ x sBn-ef ,

\ /o-*(å)) x 6r"-el,

x Bn-e(å)] ,

zEn-pl.

B1

B,J

Then 2(R" \ Rr; ylR" \ Re) and 4.2 imply, by 3.5.2, that D1(Xi; Ai, A,i i Xi,
tli,.!i,ai;llxi) holds. By 3.8 it follows that 2(R';Ai,A'i,U,Bi,Bj;)) hotas
yielding a,set Pi and a map gj. Note that Ati CWi-t, WjtB,, C \uBi,
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and Wi \ Br4 c Wj-t. Thus, if' Pj: Pil E(U,Wi-t;R), then p"lP'" x 1] c
E(U,W";Rd) and we may assume fhat q1lPtt x 1] c Plal for 1 < i < s. Since

Wo C Ä' and Bo C W", we conclude by 3.10 lhat P : P! n E(U,A';R)
is the desired set and g : g" *...+ (ptlP x -I) the desired map satisfying
D(R" ; A, A',U, Bo, B' ;!). "

5.2. Lemma. The analogueof S.L holds where 0 < p < n and y : fio and
where eaclt occurcence of R' is replaced by Ri.

Proof. In the proof of 5.1 replace R' by Ri and B"-p(r) by B'-e(r)nRi. o

for r ) 0; note that 7i respects R[. Apply 4.3 in place of 4.2. o

5.3. Lemma. The statement D(R \ Ro; )"olR" \ Ro) implies D(R;!"p)
whenever0<p(n)1..

Proof. We prove D : D(R"; A, A' ,(J, B, B';)"p). Choose a closed set Ä" cc
A' with A CC A" . By 5.L there is a compact set Bs CC Bt with B n Rp cC Bo
such that

D' : D(R" i A", A' rU, Bo,, B' ;!np)

holds.
Choose a compact set .B1 CC .86 with B n Rp CC Br. Then B \ int .B1 is

a compact set in R'\Re; choose a compact neighbourhood BttC B' of it in
R' \ Re . Choose an open neighbourhood [[ of B" with U1 compact in t/ \ Rr.
From 2(R'\ Rp;),olR'\ Re) it follovrs that

Dt(R^;AU 81,A" l) Bs,Ur,B \ int.B1, B'l;!np)

holds (see 3.5.2). By 3.8 we can drop here the subscript 1 from 2r and from U1.
Thus,

D" :D(R";AlJ Br,A" lJ Bs,U,,B,B';!np)

holds. Brfi Dt and D" imply 2 by 3.10. o

5.4. Lemma. ?åe statement 2(Ri\Rr;)ålRi\Ro) implies O(ni;);Fp)
whenever0( p<n.

Proof. In the proof of 5.3, replace (R", ),p) by (Ri,}f,r), *rd apply 5.2 in
place of 5.1. o

5.5. Theorern. Tåe statement D(R";!") holds for each n ) L.

Proof. For 0 ( p I n,tet y[P) be thefamily of the sets Y : )tr x ...xYn e Un
such that p of the factors Yi c ILt are of the form Rf or RL and the rest of the
form {0}. For such a set Y e yY), d.efine an open set Y* : Yr* x... x yJ in R"
letting 4* : Int Y; if. Y;: Rl or Rl- and letting 4* = Rl otherwise.
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Let Z: {Z I Z cR open, D(Z;y"lZ) holds}. We show by induction on

n-p that {Y* lY ey{{)} c Z foreach p, 0 ( p<n Consider y e y[o) u,
above. Then Y* \ I' : U{f'. lY cY' e y9+1) } if o ( n. Hence, it follows
from the obvious validity of. D(0;i0)) if p: n or from the inductive hypothesis
and3.11(ii) if p<n that f.\I/ e Z.Let g{Y;* --R1 for L ( i<-nbe a LIP
homeomorphism. Then, for a suitable orthogonal map o of R' permuting the
standard basis of R', we get a LIP homeomorphism g : o(gtx. . .xg,"): IZ* + Rn
for which glY" nY) : Rp . Now note that Yt € ),. meets IZ* if and only if Y C Y' .

Hence, g carriesthefamily (!"1Y.) \{0i onto },"p. Thus, Y* eZ by3.13 and
5.3. This completes the induction.

The case P:0 then implies that Rn e Z. o

5.6. Theorern. The statement D(F'i;!d) holds for each n ) 7.

Proof. Modify the proof of 5.5 as follows. Replace )" ihroughout by $.
Excluding the definition of g whenever y" : Rl, replace R' by Ri. If f" :
{0}, Iet r; : Rl and gn : id: Y,I -- Rl, replace ln, by }*r, and apply 5.4 in
place of 5.3. o

5.7. Corollary. ?åe statements D*(R";!") *d O.(R\;fi) hold for each
n) L.

Proof. 5.5, 5.6, and 3.9. o

5.8. Remark. (This remark and a similar one, 6.3, are only needed in order
that in 7.2 the set älf could be included in ).) In the setting of D(R';)/") i"
5.5, we can add the modifications of the conditions (7) and (8) of 3.2 to the list
of.3.2 in which Y is given as the union of two arbitrary sets Y1, Yz e ln that are
l-dimensional half-spaces for some I > 1 with YriYz: 7Yt:)Yz and in which
/ respects Ytxl\ andY2xÄ and h respects Yr and Y2. For themodificationsof
(8a) and (8c) with l:I, i.e., for the condition (8') in 4.4.2,this is seen frorn4.4.2
and the proofs of 5.L, 5.3, and 5.5. The other cases of the modified conditions
easily follow from the respective original ones for ? small enough (for (8) use 2.3
a.nd [Vä1, 35.1j).

A similar remark concerns 5.6 and 5.7.

5.9. Remark. In the settings of 5.5 and 5.6, the condition (8b) of 3.2 can
be strengthened to the form in which'locally ?-QS'is replaced by'K-QC'and
'locally ?*-QS'by'K.-QC where K* : cK" with c,u 21 independent of
(hrtrK)'. An anaJogous strengthening then also concerns 5.7 and, with c and u
depending only on n,the results of Section 6 (excluding 6.3).

To achieve this, only minor modifications in the proofs are needed. In par-
ticular, Iet fir...rf" be as in the proof of.4.9, and choose r ) 0 such that the
sets Qt : fi lBm(r) cover Q*. Let Y € !n* with dimY > 2. Then the open
embeddings .fr x idl: (Qi x R"-*) ffY* --+Y for 1. < i < s form an atlas for Y*
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the coordinate changes of which are BL and, thus, QC. In connection with Y*
define QC embeddings referring to this atlas (cf. [Ku, I.2]).

6. Main results in Euclidean spaces

6.1. In this section we apply first the previously established statements
D(R;J/,) and O(R\;y*) t" prove Theorem 6.2, which generalizes both of them
and also the result [TV2, 3.4] of Sullivan's theory. We then use this theorem to
prove Theorem 6.6, an analogue of it for the majorant topology.

6.2. Theorern. Let n) !,let (X,!) denote either (R",y") or (Ri,)f,),
let U be an open subset of X,let B,Bt CU be compact with B CC Bt in U,
and, for each 1 in a finite index set l, Iet Y, e ! and let C, and C\ be open
subsets of U AY, with C.,( CC C', in U nYj. Let Q be a neighbourhood of
id: U--+ X inE(U;X). ThenthereexistaneighbourhoodP of idinE(U;X)
and a continuous map gi P x I -+ Q such that if fu : g(h,t) for h eP, t e I,
then the conditions (1)-(6) of 3.2 and the following ones ate satisfied:

(7) If I e l, if h € P respects Y7, and hlc', : id, then hrlCr: id for
each t € I.

(8) Let lt be ametricspace,Iet f : ("fr)ren e IilU;X) with fx€P for
each ), €. |t, a,nd define f" : p*(f) € Iy1(U;X). Suppose that 1 e T, that f
respectsY",xl\,andthat flc'r"Ä is(a) LIP or (b)Iocdly L-BL or(c) L-BL.
Then f*lC.rxAx I is,respectively, (a) LIP or(b) locally L*-BL or(c) L*-BL
with L" depending only on L and n.

(9) If 1 ef', if h €P respects Y1, if hlcj is (a) LQS or (b) IocaJly 11-

QS or (") ry-QS , and if t e I, then h1lC, is, respectively, (a) LQS or (b) (if
dimY" > 2) IocaJIy ?*-QS with 11* depending only on n alnd n or (c) ri-QS witå
q depending only on 11 and the sets given in the frrst sentence of the theorem.

Proof. Let rc € (0, 11. This scaling number will be fixed later. Let p denote an
integer variable with 0 I p I n. Let 7 be the cell decomposition of X consisting
of all closed p-cubes for all p with vertices in (2n2") fl X and with side length
2n. .Let Tp: {Q e T I dimQ : p}. For each Q e To, choose an orthogonal
map 59: R'--r R" which permutes the standard basis of R' such that if og is
the centre of Q and pe@): nSer *og for r € R", then pqlp: Q. Note
that if Y e yn, then peJn nY + 0 if and only if Q c Y. It follows that
{J" n pAtY lY ey,} c {J"ny I 

y elneu {0} } . rf Q c ax, we choose Sq
in such a way that it and, hence, Fg respect X.

For all p, choose numbers 0 I ap,n-p
0 1bp,n-p
7-oo ) åo andthat öp-r,rr-p+l > 7-ap,,n-p if p> 1. For allp, Q €?o,and
integers j, -7 < j 

= 
n-p, definesets Uo : Jp(ap)xJ"-p(bp), Q* : (1tqUp)nX,

Bo,j : Io(oo,i) x l"-p(bp,j), and Qi : jteBp,j) n X in R". Then

Qi)Q; - 0 if Qt,Qz € T, Q, ( Qr, and Q, ( Qt
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U{Qr-i I A e Ti, o < i < p} r UTo.

Obviouslg for all p, i:0r1, and Q eTn, theset A'u,r: Jonpel [U{8i-'-'I
Qt €Ti, 0 < i < p)] i. independent of. Q. Let Ao,o : Ato,; xJ'-p. Then

pelAp,;n t/pln X : Q* n (U{ Ql-i-'lQt €Ti, O S r < p}).

For each p,let Q, be the neighbourhood of id: Uo --+ Jn and $o the contin-
uous map given by the statement D(Jn;Ap,otAp,t,Up,Bp,o,B,p,-tiy"lJ"), valid
by 5.5 and 3.11(i). Similarly for each p <n,let QI be the neighbourhood of
id:tJ,n Ji ---+ Ji and ,b[ tt. continuous map given by the statement O(J+;
Ap,o (1 Q,Apl n Ji,Ue n Ji,Bp,o (1 ft,8p,-r n Ji;!{lJi), vatid by 5.6 and
3.11(i).

Looking more closely at the situation of the theorem, we choose for each 7 € I
a closed neighbourhood C{ C Ct^, in U nY1 of the closure C, of. C, in U nY,y.
Define a finite subcomplex

?0 : { Q eT l Q c Qt for some Qt eT with qr n B #A}
of ? and its subcomplexes

T1 : {Q eTo I Q cQt for some Qr€To with 81 nC++A} (r e f).

Then Q* ftB:0 it g € 
"\?0. 

Wefix rc sosmallthat Q* c B'if. Q eTo,
-Q*nYrcCi if 7 € f arrd I €T1,and.Q*ie.t:0 it 1€ I and Q efo17t.
Let Tl:TonTp. Foreach 7, defineopen subsets C'r: C;t > C+)...) Ci ot
u nY',t bv c4 : c+-t\U{A- I Q e r;\"' }. Then ö, c ci, and @* nY-t c cr"l
it Q eT1, -L < j < n, and dimQ > j. Set B-r:0 and

Bo:U{Qo-i lQ eTf, 0 < j < p} cU foreach p.

Then 8," ) B, Bp\Bp-r c U{80 lQ erf}, and, foreach Q er;, FelAptfi
UpInX:Q*rrBp-rand

pal(Ap,o n ur) u B,p,o] fl x : Q* fr Bo.

Let 0 < p < n. For each Q e f3,Iet (Uq,Pe,pe) denote either (Uo,Qp,rlro)
whenever Q ( AX or (Up n Ji,Q;,df,) *hett"ver Q c AX. Then paua : Q* .

There is a neighbourhood Po of. the inclusion map in E(U,Bo-tiX) such that
for eac,h h e P, and for each Q e T;, we have that hQ" C peJ* and that
hg : pOlhpqlUq ePq. We define a continuous map gpi Pp x I ---+ E(U;X) by
setting

ep(h,,t)|Q. -pa?a(ha,t)pA'lQ. if Qe T;,

ep(h,t)_ h on U \ U{ Q-t I A € r;}.
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Then go satisfies the conditions (L), (2), and (4)-(6) of the theorem in place of
p, md qp[Pp x 1] C E(tJ,Bn;X). Thus, we may assume lhat grlPn x 1l C Ppal
if p < n andt"hat golPo x/] c Qfor eachp. Hence, P:Po and g:
gn *... * go: P x I --+ Q satisfy the theorem except possibly for the conditions
(?)-(9). We finally show that g also satisfies (7) and, if. Po,. . . ,Pn are sufficiently
small, (S) and (9). Here we assume that the composition of go,. . . ,gn is done in
such a way that p(h,t):pp(p(h,pl@+ 1)),("+1)t-e) if 0 1p1n, h e P,
and f € Io: lltl(n * 1), (p + t)l@ + 1)1.

In proving (7)-(9), we may assume that I consists of only one element, 7,
say. We first prove for each p the conditions (7o), (8o)' and (9r) which we ob-
tain from the conditions (7), (8), and (9), respectively of the theorem replacing
(P,p,CrC'r) by (Pr,gp,C+,Cl)' Let Pl : {h ePo I h respects Y"} and

Pt : Pl . Let Tl : T1 (1S. Recall that @. nY1 c C+ if Q e T;,and note that
Q.ncrr:0 if. Q e r;\u7- Itfollowsthat if (h,t) ePlxl,then so(h,t) defines
a homeomorphism C4 - hC\, which is the identity whenever hlc+ : id. Thus,
(7r) holds. This implies that (7) also holds. Now, if Q e T; ,Iet Yrq denote
the element of lno U {0} for which p,eJ" lrY1: p,a[J" frYrel (then Y"q C Ri
whenever Q C0X ). Furthermore, let Ute:UqfiY1q.

To prove (8o), let A be a metric space, and let "f : ("fr)re t e I6(U;X)
be such thai /1 e Pl for each ) € A and that flC!, x Ä is (a) LIP or (b)

locally L-BL or (c) L-BL. Consider 1@) : p;0 € Iy1(U;X). Let Q eT|.
Let Är denote Ä with the metric of A divided by rc. Then the homeomorphism
(J" nYrq)x Ä" --+ jteJ"OYr) x Å defined by pqx id multiplies the distances by
rc. It follows that (f xqlU"ql^€^* € I4(Up)Yrq) is (a) LIP or (b) locally L-BL
or (c) Z-BL, respectively. Hence, (pej^q,t)lUp)xe7^*,t€r € lu*t(UteiYrq) is
(a) LIP or (b) locally L5BL or (c) .01-BL, respectively, with Lt ) L depending
only on L and n. A direct estimation shows that then 7{il119. nYr) x A x f
is, respectively, (a) LIP or (b) locally LL-BL or (c) L;BL. It follows that
1@1Cn x A x -I is LIP in (8oa) and locally L:BL in (8rb). In (8oc), for Po small

enough, it follows tuom2.4 that /(r);(U{8. nYrlQ ef; }) r A x.I is ZL;BL
and then fuom 2.7 that f@)194 * L x -I is  LFBL.

To prove (8), choose an open subset Ci of Y" with C,, cc Ci CC Ci in
U nY1. We can choose P so small that for each (h, t) e Pt x I ,

hÅB' nc;nh[{a'n Yr)\ci] :0, hlB' ncilnhrl(B'n vr) \ cil : a,

implying, as h{B'n y7l : hlB' nYrl, that hÅB'nCrl c hlB'n]il a htlB' nC+|
and, thus, that h1C, ChC+ ChP+. Now suppose that A, f , f*,7,.L are as in
(8). Then the conditions (86i),..., (8"i) for i equal to a, b, or c imply that
f .lc!,xÄx.[o is for each p, respectively, (a) LIP or (b) locatly L'-BL or (c) .t'-BL
with Z'dependingonlyon L and n. Consider(8c). Since (c,Ä,t) € f*lC.rxAx,t]
implies that (r,),s) e f.lc+ x A x.I] for each s € /, the proof of 2.10 shows
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fhaf f"lc,y x A x I is 2L'-BL. The conditions (8a) and (8b), with .L* :2L' , are
verified similarly but more easily.

To prove (9p"), suppose that å e Pl is 4-QS on Cl. Let Q e f; . Since prq
is a similarity,, hqlUrq is A-QS. Hence, pe(hq,t)lUfl for t €.I is 41-QS with
41 dependingonlyon q and n. Thus, also go(h,t)lQ"nY" i. rit-QS. Itfollows,
by 2.5 and 2.9, that if Po is small enough, go(h,t)lCfl for t € f is 42-QS with
\2 nol depending on (å,1).

The proofs of (9oa) and (9rb) are similar but simpler. The condition (9)
follows. o

6.3. Remark. To 6.2, we can add the modifications of the conditions (5)-(9)
in which Y and Y" are of the same form YtUYz as in 5.8 and in which h, ht , and
/r for ) e Ä respect Y1 and I/2. For (8) and (9) ihis is shown by urr application
of 5.8 to the proof of 6.2. We can similarly strengthen 6.4, 6.6, and 6.7 below.

The following result generalizes D*(R;)") *d 2.(Ri;)*).
6.4. Corollary. Tåe modification of 6.2 holds where Q is a neighbourhood

of id in H(X), where the conditions (2)-(a) and (6) of 3.2 are rcplaced by the
respective conditions of 3.6, andwhere in (8) and (9) the set C, is replaced by
C1u (Y1\ B').

Proof. Let 81 and B{ be compact sets with B CC Br CC B| CC B'. For
each 7, let Ci be an open subset of Y" with C, CC Ci CC C', in Il nYI. Apply
6.2 replacing (B,B',(Cr).yer) by (Br, Bl,(C'|)*r) *d substituting E(U;X) for
Q. Let P be the neighbourhood and gs the map thus obtained. We may assume
that hB C Br if h e P and (cf. the proof of 6.2(8)) lhat hC, C po(h,t)C'l for
each h € ? respecting I/r. Define p(h,t) extending qs(h,t)-Lh by id. If P is
small enough, 9 satisfies (8c) and (9c) by 2.7 or 2.9, respectively. o

6.5. Majorant topology. The next theorem is a modification of. 6.2 to the
case where B is allowed to be a possibly noncompact closed subset of. U . We
now must consider only embeddings å e E(U;X) that are suffi.ciently close to the
inclusion map in the majorant topology. It can be shown by the aid of [Si, 1.?]
that if X is a locally compact, locally connected metric space and tl C X is open,
there is a majorant neighbourhood P of id in E(U;X) such that hU : U for
each ä € P, i.e., P C H(U). Thus, without loss of generality, it suffices to only
consider self-lromeomorphisms of [/.

Let X be a metric space. We will use the fact [KS, pp.  6a7l that relative to
the majorant topology, H(X) is a topological group. For the majorant topology
of {X), note that for each e e C(X x ,I;(0, m)) there is e' € C(X;(0, m)) with
e'(t) < e(t,t) [KS, Lemma on p. 47].

6.6. Theorern. Let n, X,!,U, B, B', and (Y1,,C1,C1)rcr be otherwise
the same as in 6.2, but, more generally, suppose that B a.nd B' a,re only closed
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in U , not necessa"rily compact, and aJlow I to be possibly infinite still supposing
that the family (C)ter is locally finite in U . Let Q be a neighbourhood of id in
H(U) with respect to the majorant topology. Then there exist a neighbourhood
P of id in H(U) with respect to the majorant topology and a continuous map
g: P x I - Q (that is, in the compact-open topologies of P and Q) satisfying
the conditions (1)-(9) in6.2, witå (9c) excluded, such that the induced continuous
map g*: P --+ I(U) is aJso continuous in the majorant topologies of P and I(U).

Proof. We may assume lhat Q: H(U) n .lf"(id) for some e e C(U;(0, *)) .

We first prove the special case where B is the union of a disjoint family
(Bi)i>, of compact sets each open in B. Choose for each j an open neighbour-
hood Q of Br. in t/ with Ai C B' compact such that the family (A)i>t is disjoint
and locally finite in [/. Then for each j choose a compact neighbourhood B] of
Bi in U7 and a positive number ei with ei ( min e-4'. Fot each 7, we apply 6.2
with [/;, Bi, Bti, ri: {7 € | lCrnUi *A}, CrnUi, C'rnU1, E(Ui;X) substi-
tuted, respectivelg for U, B, B'rT, C1, C'r, Q;let Pi be the set and gi the map
we thus get. Then there is a number 6i > 0 such that if P'j : E(Ui;X) n lf6j(id),
then Pj CPi and pilPixll c lf",(ia;. Choose 6 e C(U;(0, *)) such that 6 ( e

and 6(c) ( 6; for r €Ui, j ) 1. Let P : H(U)nlf6(id). Fbr å eP, t e I,
define p(h,t): ht in Q by

Then g is the desired map if only for (8c) we choose the ei's and 6 more carefully
so as to satisfy, in addition, 3ei 1 d(Ui,Uk) if j + Ic, lei < d,(Bi, t/\ Ur) if j > 1,
and 36(r) . d(r,UizrB|) if. r € U\Ui>rUr. Namely, these inequalities yield

the necessary estimates fot d(g.ff)(c,.\,t), v"(f)(r',Ä',t')) if r € B'i and either
x' eUl (k + i) or x' (. UrrrU*.

We now prove the geneål case. Choose a closed subset B" of U with B CC
Bt' CC Bt in U. For each T € f e,hoose open subsets Ci and Cf of I/., (Cf is
needed only for (8c)) such that C, CC Ctr CC C+ CC C+ in U O I/" and such
+,hat (Ci)t61 is locally finite in U. Using [Si, 1.7] it is easy to see that assuming e

to be small enough, we have for each 7 € f lhat hC, C htctr whenever h,ht e Q,

respect Yr. In a standard way choose a family (Di)i>t of compact subsets of U
whoseinteriors(in U) coverU andforwhich D;fiDi:Aif. li- jl >1. Then
Er : U;>rDz;-t and E2:U;>rDz; are closed inU, and U: intEr UintE2.
Let Bp: B n -81 and B'l: B'tn E*, k :1,2. There is an open neighbourhood
C of B\int E2 in U with C CC Ct : int Btl in [/. We can then apply the special
case above substituting Bz for B and the family (Yr,Ctr,C'4).,rr, extended by
(X,C,C'),for (Y1,C1,C'r)rrr. Let Pz C Q be the set and pz:Pzx I -+ Q
the map thus obtained. The sets C and C' will only be needed in (7); note that
B C 82 U C. We can now again apply the special case, with B{' substituted for

L/-\ Ivi(hlui,fX") if r€Ui,itt't\'L) 
lh(") ifr€U\Ui>rB'j.
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B, C:l for C, (Z e l), and Pz for Q. Let P be the set and pf P x I --+ p,
the map thus obtained. Then ? : g2 * gf P x .[ ---+ Q, defined as in 3.10, is the
desired map. tr

6.7. Corollary. ?åe modification of 6.6 holds where the conditions (Z)-(+)
are replaced, rcspectively, by the conditions åo : id, hlB : hlB, and hlu\Bt :
id.

Proof. By (1), we may assume that Q: H(U). Apply 6.6 for Q: H(U)
with B and (C")"61 replaced by a set Btt and a family (Ci)*r as defined in
the proof of 6.6. Let P be the set and gs the map thus given. We may assume
that hB C Bt' if. h eP and that hct C qs(h,t)Ci if. h e P respects Y". Set
p(h,t) : po(h,t)-tt for å € P,, t e L o

7. Deformation on manifolds

7.1. Terminology. Let 0 < p < n be integers, and let CAT denote either LIP
or LQS. We call a separable metric spa,ce M a CAT n-manifold if each point of
M has an open neighbourhood CAT homeomorphic to an open subset of Ri. (A
definition based on atlases is essentia,lly equivalent; see [LT, 4.7].) A subset of a
CAT manifold M is called a CAT submanifold of. M if it is a CAT manifold in
the induced metric. Such is the boundary 0M of. M.

Define Yn,o: {0} C RnrY,.,t: {a e R'ltt:...: rn-r:0, c,, ) 0}
if n ) 1, and Yn,p - {r e R" l tt : .,. : tn-p : 0t tn-r) 0, r," ) 0}
if.2<p<n. Weca^llasubset -lf of a CAT n-manifold M alocally CAT flat
p-submanifold of. M if for each point r € -lf there exist an open neighbourhood V
of c in Mranopensubset W of.R orof R! wheneverp( l orof R| whenever
p)2, a,nd a CAT homeomorphism f:V + Irf such thaf flV ntrf] : WnYn,p.
This means, in particular, that .lf is a CAT submanifold of M , which meets äM
transversal.ly in a certain sense.

If lf is a locally CAT flat p-submanifold of. 0M, for each point c € .lf
there exist ar] open neighbourhood I/ of o in M and an open CAT embedding
f:V --> Ri suchthat VON:/-lRl (see [TV3,3.12] for CAT=LQS).

7.2. Setting. In this section we consider deformation of embeddings on ma"ri-
ifolds in the following three cases. In Case 1 and in Case 2, we iet CAT be, re-
spectively LIP or LQS,let M be a CAT n-manifold (r 2 0), let .lf be a closed
locally CAT flat p-submanifold (possibly empty) of. M (0 S p ( n) or of. 0M
(0 S p ( n), and let ), - {M, aM, N, aN, N nAM, cl(äIf \AM), A(N n AM),,
cl(M \.1[), äcl(M \ N), cI(OM \ lf)] . In Case 3, we let CAT : LIP, let .lf be
a LIP (n - l)-manifold ( n ) I),let M be the product LIP n-manifold trf x .I,
andlet !: {M,AM,N x 0,.1trx 1,41tr xI,AN xO,Alf x 1}. Notethat in all
three cases the elements of ) are closed CAT submanifolds of. M . In Cases 1 and
2, note further that if N C AM , p ) 7, and h is an open embedding of an open



Respe ctful deformation of embeddings T7T

subset of M into M which respects ä.lf , then lz respects N nAM: ätrf nAM
and cl (Alf \ 0M), too.

In the proofs of.7.3-7.6 we assume lhat n ) 1; these results are trivially true
if n: 0.

?.3. Theorem. In Cases ! and 3, D(M;l) and D.(M;!) hold. In Case 2,

Dqs(M;!) and Dls(M;!) hold.

Proof. In Cases 1 and 3, D(M;)) immediately follows from 5.5, 5.6, 5.8, 3.Lg

(cf. the proof of 7.4), and 3.L2. By 3.9, D*(M;J/) follows. The theorem for Case

2 is proved similarly (recall 3.7.1). o

We devote the rest of this section to generalizations of 7.3.

7.4. Theorem. In Cases 7 a.nd 3, the ana)ogues of 6.2 and 6.4 hold where
(X,y) it (M,!),wherc L* in (8) depends onlyon L andthefamily r of allthe
displayed subsefs of M, a,ndwhere r1* and ri in (9) dependonly on r7 and r,

Proof. We first deduce from 6.2 its analogue in question-let it be called
Theorem A-assuming, without loss of generalitg that Q: E(U;M)' We choose

open subsets 7r, ...,V, of U in Bt such that for each % there is a LIP home-

omorphism g; of. Vi onto Rn or onto Ri having the following properties: The

sets C1 : gotE" cover B, andfor eachY € /, either s;lVnYley"U{0} or,
in Case l with p) 2, with.lf n7V;*A + AN OInt%, and with Y:0N or
(if p : n) Y : 7cI(M \ lf), the set g;lV; n Y] is the union of two half-spaces

in y" meeting at their common boundary. LeI M; : gi1B"(5), (Jt: gö18"(4),
Bt;: gitB"(3), and D';' : sö18"Q). Let Ai: Ar U ...u A; if 0 < i 1r.
Define inductively an open neighbourhood D; of Ai in [/ as follows' Let Do : 0.
For i > 0, choose an open neighbourhood D! CC D;-1 of .Ai-t in U and set

D;: D';UD'i'. Finally, if.7 e l, choose open subsets C\, C+,..., Cr+l of
U nY' such that C\: C'.,, C+*t : C1, and C+ CC C\-L in tl nY, for i ) L.

Let 1 ( i 1r. 9," gilry.is 8L,6.2 and6.3 implythat TheoremAholds if we

substitute (M;, !lM;, [J,i,,D'!, B) tor (M, y, tJ, B, B') and (Y" i Mt C\nl];,
C:;t nU)*r, extended by (M;, D';nU;, D;-tiU;), for (Yr,,CyC'r)rcr . Let P!
be the set and g'n the map thus obtained. Then there is a neighbourhood P; of. id
in E(U;M) suchthat å € ?; implies hU; C M; and hlU; e P!. For (h,t) eP;xI,
extend p';(hltl;,t) by å.lU\U; to s;(h,t) e E(U;M). Then s; P;xI '-'+ E(U;M)
satisfies Theorem A in place of p, with the possible exception of (8c) and (9c), if
B,C1,C', (l € l) are replaced byD'l,Ci,C+-t (z e r). Moreover, if. heP;
and hlD6-1: id, then g;(h,l)lD;: id. If P; is sufficiently small, (8c) and (9c)
follow ftom2.7 or 2.9, respectively.

Wemay assume thal cp;[P;x 1] C P;+r for i <r. As D,I B, it followsthat
P :Pt and g : tpr*... *gr satisfy Theorem A, at least if for (8c) we choose P
so small tl::,;t h$1 Cht,C+ for all t,t' e I whenever heP respects Y"r; cf. the
proof of (8c) in 6.2.
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The analogue of 6.4 in question is deduced from Theorem A as 6.4 is deduced
from 6.2. o

7.5. Theorem. In Cases L and 3, the anaJogues of 6.6 and 6.7 hold where
(X,y) is (M,y) uod where the parts (8a) and (9a) only are retained of the
conditions (8) and (9) staied in 6.2.

Proof. The analogue of 6.6 is deduced from 7.4 as 6.6 is deduced from 6.2.
and it implies the analogue of 6.7 as 6.6 implies 6.7. o

7.6. Theorem. In Case 2, the analogues of 7.4 and 7.5 hold wherc the
condition (8) is de/eted.

This is proved as 7.4 and 7.5.

7.7. Remark. Fbr CAT : TOP, i.e., for topological manifolds, 7.4 and T.b
with (8) and (9) deleted are proved similarly. These results are due to Chernavskii
lOh,1.22 and 5.1] and Edwards-Kirby [EK, 5.1 and Note a,fter it, 6.2 and Remark
after it, 7.2].

8. Applications
8.!. Local contractibility. By [Ch, 1.14] and [EK, 1.1], the homeomorphism

group H(M) of a compact topological manifold M is locally contractible. If
(M,,y) is as in Case 1or in Case 3 of.7.2 and if M is compact, the statement
D(M;0,0,,M,M,M;)), valid by 7.3, implies that along with the group H(M),
certain of its subgroups are locally contrastible (cf. [EK, 7.9]). If (M,y) is as in
case 2 of.7.2 a'.d M is compact, a similar fact follows from Dgs(M;!). It is
well known ([Ch, 1.18], [EK, p. 77]) that if M is a noncompact manifold, H(M)
need not be locally contractible. However, if we considet H(M) and .I(M) with
the majorant topologS a weak form of local contractibitity holds even then ([Ch,
1.131, [EK, 6.2]). In our case this is shown by 6.6 and by its analogues in ?.5 and
7.6 for the group H(U) considered and for some of its subgroups if we substitute
U fot B and for B' uod (y, IJ nY, t] nY)vey for (Y,r, CyCt)*r .

Chernavskii [Ch, 1.2L] showed that H(M) is locally contractible also when-
ever M is homeomorphic to the interior of a compact manifold. We prove two
results in this direction, Theorems 8.2 and 8.4, the first of which implies that along
with ä(R'), certain of its subgroups are locally contractible.

8.2. Theorem. Let n ) 7, and let (X,!) denote either (R",),) or
(Ri,yf). Then there exist a neighbourhood P of id in H(x) and a contin-
uousmap g:PxI + H(X) suchthatif heP,te I, h1:g(h,t),andy €!,
the following conditions hold: (1) h : id implies åt : id; (2) ho: ä; (B) år = id;
(4) hY :Y implies h1Y =Y ; and (5) if hY :Y and if hlY is (a) id, (b) LIp,
(c) .D-BL, (d) LQS, (e) locaJly ?-QS, or (f) ?-QS, then hlY'ii, r"tp"itiu"ty,
(u) i! (b) LIP, (c) .D*-BL, (d) LQS, (e) (if dimY > 2) Iocalty r*-eS, * (i)
?.-QS with L* depending only on (L,r) and r7* only on (rt,n).



Respe ctful deformation of embeddings 173

Proof. Let Po be the set and $: Pox I '-+ H(X) the map given by D*(X;0,0,
X,E"IX,zB"ry; )/). Let P:PorrH(X). For heP,let g:rb(h,I) € II(X).
Then g- å on B^nX and d(g,id) ( m. Set

9(h,7-tXt) :tg(t-2s-1li1tr;) for 0 < t I 7' n e x'

and 9(h,1) : id. Then g is the desired map. tr

8.8. Remarks. L. An analogue of (5b) and (5c) for Ä-isotopies can be added

to 8.2. Now .L* may depend also on l. The case of locally L-BL A-isotopies also

applies.
2. A more elementary proof for 8.2 (with 8'3.1) in the case (X,)) = (R",

{Ro,Rt, . . . , R"}) is provided by a construction of the bounded homeomorphism

g using the method of [EK, Section 8], and then also the dimensional restriction
in (5e) can be dropped. Moreover, choosing in this proof the auxiliary maps from
CAT : PL or DIFF, we can add to the condition (5) of 8.2 a part (g) where å1lY

is a CAT embedding whenever blY is a CAT embedding. In this way and with
}z : R', (5g) was observed by Gauld [Ga, Proposition 1] and (5b) by J. Väisälä

(unpublished).

8.4. Theorern. Let Q be a compact LIP ma.nifold,Iet P be a closed locally
LIP flatsubmanifoldof Q with P1AQ:0P, andlet M: IntQ and N:
Int P. Then there exist a neighbourhood P of id in H(M) and a continuous map

g: P x I --+ H(M) satisfying the conditions (1)-(6)' (7a), and (8a) of 3.2 in the

case X : fJ : B : B' if (M,{M,N}) js substituted fot (X,y).

Proof. We ma.ke use of a LIP collar of @Q,AP) it (Q,P), provided by an

obvious modification of the proof of ILV , 7.41. So, let c: 0Q x [0' t) -+ Q be

an open LIP embedding such that c(r,0): t for each x e 0Q and such that

"-'P 
: 0P xlO, 1.) . Then g : M\cl7Q x [0, å)] i. compact. Bv D(M; {M, lr}) '

valid by 7.3, it suffi.ces to prove the theorem with 2 : H(M,B). We then prove

the theorem with 9[P x /] C P. In this way we may replace M by äQ x (0' 1)'
lf by äP x (0,1), and B bv 0Q x [å,1)

Define a LIP homeomorphism 6i: 0Q x (0,t) "+ 0Q x (0,1) for t € (0' 1l by
61(r,s):(r,sft). If 12 € P,we define g(h,I -t): ht-t€P for t € (0,1] by

hy-t(r) I o;th6r(") if r € AQ x (0, t),

\r if x€AQ x Ulz, 1),

and set g(h, 1) _ ht - id. Since 6r-t is
t,t' € (0, 1] , we get that if h,h' e P and

s < t, st < tt, then

1-Lips chitz and d(6;t , 6;t ) S lt - t'l if
(r, r,t),(*',s',t') e AQ x (0, L) x / with
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It follows that g is continuous. Clearly g satisfies (1)-(6) and (8a). To see (7a),
use the above inequality to establish that 9.(/)l{ (r, 

", 
.\, t) € 0Q x (0,1) x Å x / |

(r,s) e Y, s < 1- t) is locally Lipschitz, and note that 9.(/)-t : p.(.f-t).
tr

8.5. Remark. If g in 8.4 is constructed as in the proof, the continuous map
g*: P -+ I(M) is a"lso continuous in the uniform topologies .

8.6. CAT isofopies. We let CAT denote either LIP or LQS. Let X and
A be metric spaces, U C X open, and "f : ("fr)ren e I1(U;X). We call /
a CAT lt-isotopy if. f:U x A + X x Ä is LIP whenever CAT : LIP or if
f x: U -r X is LQS for each .\ € Ä whenever CAT : LQS. A bijective isotopy
h : (ht)ter: X x I -+ X x.I with åo : id is called an ambient isotopy of X; then
å is said to be supported by a set D C X if hl(X \ D) x .I: id.

We give three consequences of. 7.3 to isotopies. The first of them deals with
covering CAT isotopies by ambient CAT isotopies.

8.7. Theorem. Let C.AIT,M,! be as in Case l or in Case 2 of 7.2, let
U CM beopen, B CU compact, f:UxI ---+ MxI aCAT isotopy,and D
a neighbourhood of the compact set l)rrrflB in M . Then there is an anbient
CAT isotopy h of M supporied by D such that f : h(fo x id) on B x I and
such that the following condition holds:

(I) LetY€y.If f respectisYx I,sodoesh. If,inaddition, /:/oxid
on (U n 1/) x I, then hlY x.I: id.

This CAT analogue of [EK, 1.2] is proved as [EK, 1.2] is proved.
For cAT: LIP, 8.7 (without (1)) is already given in [ss, p. b19]. A gener-

alization of 8.7 to the case of a noncompact B and of a general parameter space
Å can be obtained straightforwardly modifying [Si, 6.5 and 6.6].

8.8. Theorern. Let C!fr, M,! be as in8.7,let B C M be compact, and
let U be an open cover of B in M. Then every a,rnbient CAT isotopy f of
M supportedby B canbewrittenas f - f(1)f(2)...f(r) whereeach fQ) it
an arnbient CAT isotopy of M supported by some member of Ll such that for
eachY ey,if f respectsY xI oristheidentityonYxl,sodoeseach fU),
respectively.

This CAT analogue of [EK, 1.3] (where B : M) is proved as [EK, 1.8] is
proved.

8.9. Locally CAT flat isotopies. For the last application to isotopies we need
two more notions. Let M be a CAT n-manifold, N r CAT p-manifold (0 1 p I
n), and /: If x I + M x.f an embedding of the form (c,t) *, (fr(r),t) such
that / is LIP if CAT-LIP, suchthat f1:N ---+ M is LQS foreach t€I if
CAT: LQS, and such that f-tPM x /] : lfo x / where ,Me is a subset of l[ if
P:0 or alocally CAT flat (p-1)-submanifold of ä.lf if p> 1. (Note that unless
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p: n und No - 0N, / is not open and, thus, is not a (CAT) isotopy in our
terminology.) w" call / a IocaJIy cAT flat isotopy if for each point (r, t) € N x /
there exist a neighbourhood J of. t in .f , an open subset U of. R' (whenever

r 4 No and either P : 0 or c € Olf with P:'J-) or of Ri (in the other cases),

and CAT../-isotopies a:(UnYn,p)xJ'- N x,.I and B:U xJ -'+ M x./ onto
open neighbourhoods of (r,f) in I[ x J and of. f(a,t) in M x J, respectively,

such that B extends f a. In this case, fiIf is a locally CAT flat submanifold of
M fot each f e -I.

Suppose that in the introduction of M , N, and / above, -lf is a locally
CAT flat submanifold of. M and No : .lf O 0M. Tlnenwe call f a locally CLT
extendible isotopy if for each point (r, t) e .M x.[ there exist a neighbourhood .I of
t in I, anopenneighbourhood V of r in M,a'nd a CAT .-I-isotopy g:V x J -'-+

M x J extending flv n lr) x "/. It is easy to see that if / is a locally cAT
extendible isotopy, then / is a locally CAT flat isotopS and that in the LIP case

the converse also holds (in the LQS case the converse is open).

we can now state a cAT analogue of the theorem [EK, 1.4] on extension of
locally flat isotopies of topological manifolds.

g.Lo. Theorem. suppose that f:.lf x.I -+ M x.I is either alocally LIP
flat isotopy of a compaci LIP ma,nifold N into a LIP manifold M or a locally
LQS exten dible isotopy of a compact locally LQS flat submanifold .lf of an LQS

manifold M into M . Let CAT be, respectively, LIP or LQS, and let D be a
neighbourhood of UrrrfrN in M . Then there is an ambient CAT isotopy h of
M supported by D such that f : h(fo x id).

The proof of 8.1.0, based on 7.3 and 8.7, is similar to that of [EK, 1.4].

The following result is our last application. For CAT : TOP it is due to

[CK].

8.1L. Tlreorern. Let CAT be LIP or LQS. ?åen there are only countably
many CAT åomeomorphism classes of compact CAT ma'nifolds.

Proof. By the CAT embedding result [LT, 4.6], it sufrces to show that for all
integers n) 0 and & ) &s > 0 there are only countably many CAT homeomor-
phism classes of compact connected CAT n-submanifolds M of F.2"-11 for which
1h""" ur" CAT embeddings h;:28\ -' M (1 < i < &s) with hit7M - 2lfrn-t
arrd å;: 28" --IntM (ko < i<k) suchthat thesets h@i U < ko) and h;8"
(i > ko) cover M. We can then follow the proof in [CK] for manifolds with empty
boundary; we only resort to D.(R\; {Ri}) and 2*(R";{R"}). o

8.1-2. Remark. For CAT manifolds M with dim M + 4l dim AM , 8'1L
also follows from the TOP version by the CAT Hauptvermutung ([Str, Corol-
luty 3], [TVr, 4.5 and 4.8]). On the other hand, Donaldson and Sullivan ([DS,
Theorem 21, cL. [Str, p. 1221,]) have recently shown that there are compact LIP
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algebraic) 4-manifolds without boundary which are homeomor-
homeomorphic.
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