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RESPECTFUL DEFORMATION OF
BI-LIPSCHITZ AND QUASISYMMETRIC
EMBEDDINGS

Jouni Luukkainen

1. Introduction

Applying the torus technique of Kirby [Ki], Edwards and Kirby presented
in [EK] an alternative to Chernavskii’s [Ch] method for deforming embeddings
of topological manifolds. They proved Chernavskii’s theorem that if U is an
open neighbourhood of a compact set B in a topological manifold M, then in
the space E(U;M) of open embeddings of U into M (with the compact-open
topology) there is a neighbourhood of the inclusion map id: U — M which can
be continuously deformed, within a given neighbourhood of id, into the set of
embeddings coinciding with id on B, in such a way that id is kept fixed and that
no changes to embeddings are needed outside a given compact neighbourhood of
B in U. Furthermore, this theorem was generalized in [EK] to a form which is
respectful to a given closed locally flat submanifold N of M, in the sense that
having U N N as the inverse image of N or being, in addition, the identity on
UNN are properties for an embedding which are preserved under the deformation.
As mentioned in [Ch], the generalization also follows from the proof of [Ch]. In
[EK] there is also a third proof for these results, which uses a torus technique of
Edwards (cf. [Ed]).

Siebenmann [Si] developed Edwards’s method further for deforming, in par-
ticular, embeddings of locally finite simplicial complexes respectfully to all sub-
complexes.

Replacing the torus in Kirby’s method by a compact almost parallelizable
hyperbolic manifold, Sullivan [Su;] proved a nonrespectful analogue of the Cher-
navskii-Edwards-Kirby theorem for LIP (= locally bi-Lipschitz) embeddings of
LIP manifolds without boundary and for LQC (= locally quasiconformal) embed-
dings of LQC manifolds without boundary. (See [TV,] for an exposition of a part
of Sullivan’s theory.) After this Siebenmann and Sullivan [SS, Appendix B] proved
an analogue of the respectful Siebenmann theorem for LIP embeddings of locally
finite simplicial complexes. This result implies a respectful version of Sullivan’s
theorem in the case of LIP embeddings. Furthermore, in [SS] the constructed
deformation was shown to preserve LIP isotopies.
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The proof in [SS] is only an outline. The theorem itself is also stated only in an
absolute form (as above), not in a full relative one as needed for some applications
I have had in mind. The purpose of this paper is to give a detailed presentation
of the Siebenmann—Sullivan deformation theory in the (locally) Euclidean case.
In R™ and in R} our deformations are respectful to all products of coordinate
axes and half-axes. The families ), and Y, respectively, of these products are
convenient both for proofs and for applications to manifolds.

Our case allows some simplifications in the proofs (in particular, technical
results in the appendices of [SS] are not used) and, more important, it is suitable
for LQC embeddings, too. Thus, what we prove, in fact, is a respectful and LIP
parametrized version of Sullivan’s theory.

It should be noted that Sullivan’s proof does not directly generalize to the
respectful case as the proof in [EK] does because the hyperbolic manifolds used
are not related in a simple inductive manner as are the tori (S1)".

The reader is not assumed to be familiar with the above-mentioned papers.
However, for some constructions based on hyperbolic geometry (and thus on
Sullivan’s work [Su;]) we will refer to [TV, Section 2].

We formulate in 3.2 our basic deformation statement D(X;))) in the gener-
ality of deforming embeddings on an arbitrary locally compact, locally connected
metric space X respectfully to the members of quite an arbitrary family ) of
subsets of X . This generality is possible because of the use of LQS (= locally
quasisymmetric) embeddings in place of LQC embeddings. Quasisymmetric em-
beddings of metric spaces were introduced in [TV,]. In Euclidean spaces of di-
mension at least two, quasisymmetry is closely related to quasiconformality. This
relationship will be used in proofs in both directions. To avoid technical difficulties
connected with one-dimensional LQS embeddings, we study this case more closely
in a separate paper [Lu], to which reference will be made in some proofs.

We keep track of the bi-Lipschitz constants, the quasisymmetry parameters,
and the dilatations of the embeddings, and obtain quantitative versions of results
of [SS].

The paper is divided into eight sections. In the preliminary second section we
prove, in particular, a canonical Schoenflies theorem. In Section 3 we introduce
a deformation statement D(X;)), as said above, and prove elementary lemmas
related to it. In Sections 4 and 5 we establish the statements D(R™; Y,) and
D(R%; V). Section 4 is devoted to proving an inductive handle lemma for R® and
another one for R} . In Section 6 we first apply the previously established property
of R™ and of R} to strengthen it in Theorem 6.2, which is the main result of
this paper. Theorem 6.6 is a substitute of this theorem for the majorant topology.
In Section 7 we consider deformation of embeddings of LIP manifolds and of
LQS manifolds. Section 8 gives elementary applications to local contractibility
of groups of CAT homeomorphisms, to CAT isotopies, and to counting compact
CAT manifolds for CAT = LIP or LQS, all known in the context of topological
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manifolds and partially known for CAT = LIP.
In a paper in preparation I shall apply results of the present paper to a study
of locally LIP (or LQS) flat embeddings of codimension at least three.

2. Preliminaries

2.1. Notation and terminology. For an integer n > 0, we let R" be the
Euclidean n-space and R? = {z € R" |z, >0} with R} = R°. Letting ); be
the family of the subsets R!, RL, RL = (—00,0], and {0} of R', we define

Vo={Y1 x---xY, CR"|Y; € ), i=1,...,n}

and Yt = {Y € Y, | Y C R}} for n > 1. We identify R™, m < n, with
the subspace R™ x 0 of R® = R™ x R"™™ if not otherwise stated. For n > 0
and r > 0 we set I" = [-1,1]*, I"*(r) =rI", J* =(=1,1)", J§ = J"NRE,
J*(r) = rJ", B¥a,r) = {z € R" ||t —a| <r} ifa € R", B" = B"™(0,1),
B™(r)=rB™, and S"~! = 0B™. Let I = [0,1].

If X is a topological space and A, B C X, we denote the interior of A by int A
and the inclusion A C int B by A CC B. If M is a manifold, 0M denotes the
boundary and Int M the interior of M. If not otherwise stated, we denote every
metric (occasionally also Euclidean ones) by d and metrize the Cartesian product
of finitely many metric spaces (except for the factorizations R™ = R™ x R"™™)
by the usual maximum metric. Let (X,d) be a metric space. If a € X and r >0,
we let Bg(a,r) denote the open ball {z € X | d(z,a) <r}. If A,B C X, we let
d(A, B) denote the distance between A and B (with d(z,B) = d({z}, B)) and
d(A) the diameter of A.

If AC B, welet id denote the inclusion map A — B.

Let X beaset and U, Y C X. An injection f: U — X is said to respect Y
if 7Y =UNY or, equivalently, if f[UNY]= fUNY.

Suppose that X and Y are topological spaces. Let C(X;Y) denote the set
of all continuous maps of X into Y. We equip C(X;Y") and its subsets with the
compact-open topology if not otherwise stated. Suppose that (Y,d) is a metric
space. If f,g: X - Y and A C X, we write

d(f,9;A) = sup {d(f(z),9(z)) |z € A}

and d(f,g) = d(f,9;X). In the majorant topology of C(X;Y’) an open neigh-
bourhood basis of f € C(X;Y) is given by the sets

N(f)={geC(X;Y) | d(f(a),9(z)) < e(z) forall z € X }

where € € C’(X; (0,00)), while the sets N.(f) with € being a positive constant
form a neighbourhood basis of f in the uniform topology of C(X;Y). If X is
metrizable, the majorant topology is independent of the metric of Y.
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If X is a topological space and if U and A are subsets of X with U open,
let E(U,A; X) denote the set of all open embeddings of U into X which are the
identity on U N A, and let H(X,A) denote the group of all homeomorphisms
of X onto itself which are the identity on A. Let E(U;X) = E(U,0;X) and
H(X)= H(X,0). Note that a continuous injection of an open subset of a manifold
X into X is open if and only if it respects X .

Let X and A be topological spaces, U C X open, and f: U x A - X x A
a function of the form (z,\) — (fa(z),A). If f, also denoted by (fa)rea, is an
open embedding, f is called a A-isotopy (or an isotopy parametrized by A) of U
into X. We let Ip(U;X) denote the subspace of E(U x A; X x A) consisting of
all A-isotopies. Let I5(X) denote the space of all homeomorphic A-isotopies of
X onto X . In the case A = I, the prefix A and the subscript A will be omitted.
Note that if A is a one-point space, we can identify X x A with X and I,(U; X)
with E(U; X). Now suppose that X is a locally compact Hausdorff space and
that X or A is locally connected. Then, by [Si, 1.6], a function f as above is a
A-isotopy if and only if f), € E(U;X) for each A € A and f is continuous or,
equivalently ([Du, XII.3.1]), the function A — f) of A into E(U; X) is continuous.

Let X and Y be metric spaces and f: X — Y an embedding. If there is
L > 1 such that

d(z,y)/L < d(f(2), f(3)) < Ld(,y) for all 2,y € X,

then f is bi-Lipschitz (abbreviated BL). We also say that f is L-BL. As soon as
[ satisfies the right-hand inequality, f is called L-Lipschitz. If thereis n € H(R})

such that d(f( v ))
a), f(z d(a,z)
a(F®), 1) = (565

then f is quasisymmetric (abbreviated QS). We also say that f is 7-QS. The
basic theory of QS embeddings is given in [TV,] and [V&,]. If f is L-BL, f is
n-QS with 5(t) = L?. Like BL embeddings, QS embeddings form a category,
and if f is an #-QS homeomorphism, f~! is n'-QS with n'(¢) = p~1(¢7!)~! for
t > 0. We say that f is, respectively, locally L-Lipschitz for L > 1, LIP, locally
L-BL for L > 1, LQS, or locally n-QS for n € H(R!) if each point of X has
a neighbourhood on which f is, respectively, L-Lipschitz, BL, L-BL, QS, or 5-
QS. (In [LV] ‘LIP’ refers to locally Lipschitz.) If X is compact and f is LIP or
LQS, then f is BL or QS [TV, 2.23], respectively. A map ¢g: X — Y is called
a LIP immersion if each point of X has a neighbourhood on which ¢ is a LIP
embedding.

) for a,b,z € X, b # =z,

2.2. Quasisymmetry and quasiconformality. Let Y € Y,, let p = dimY > 2,
let U be an open subset of Y, and let f € E(U;Y). If there is K > 1 such
that for each component G of Int U the embedding G — IntY defined by f is
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K-quasiconformal in the sense of [V&;], f is said to be K-QC. If f is locally n-
QS, this is the case with K = n(1)?~! by [V&;, 34.2]. Conversely, if f is K-QC,
Lemma 2.3 below implies that f is locally n-QS with 1 depending only on K
and p (in fact, if ¥ is affinely isomorphic with R? or R%, we can choose 7 to
depend only on K by [AVV, 5.23] and [Vay, 35.2]).

It follows that the main results of Sections 5 and 6 for locally 7-QS em-
beddings hold equally well for K—QC embeddings. In fact, these results for QC
embeddings could be obtained without using QS (or locally 7n-QS) embeddings
at all; see 5.9.

2.3. Lemma. Let Y € ), and p = dimY > 2. Suppose that either G is
a connected open subset of Y and F a compact subset of G or F =G =Y,
and let f: G — Y be an open K-QC embedding. Then f|F is n-QS with n
depending only on G, F, and K.

Proof. The case 9Y = { is [Viy, 2.7 and 2.4]. Suppose 9Y # (. Then there
is a BL homeomorphism Y — R% . Thus, we may assume that ¥ = R% . Then
[Viay, 35.2) reduces the claim to the case Y = RP considered first. o

The next two lemmas deal with piecewise definability of the BL or QS prop-
erty for embeddings close to the identity. A number v > 0 is called a Lebesgue
number of a cover A of a metric space X if B C X and d(B) < v imply that
B C A for some A € A.

2.4. Lemma. Let X be a metric space, let A C X, let (Ag) be a cover of
the space A having a Lebesgue number v > 0, andlet L > 1. If f: A — X is
an embedding such that f|Ag is L-BL for each § and d(f,id) < i'y, then f is
L,-BL with L; = max(L,2).

Proof. Let z,y € A. Then ld(f(x),f(y)) —d(z,y)| £ %'y < %d(m,y) if
d(z,y) > v, and {z,y} C Ag for some 3 if d(z,y) <~v. O

2.5. Lemma. Let X, A, (Ag), v be as in 2.4 with A bounded and such that
v < d(Ag) whenever d(Ag) > 0. Let ¢ > d(A)/y. Then for each n € H(R})
there is m; € H(RL) depending only on 1 and ¢ with the following property: If
f: A — X is an embedding such that f|Ag is n—QS for each § and d( f,id) < %7,
then f is 11-QS.

Proof. Since d(f(z), f(y)) > v for z,y € A with d(z,y) > 37 and since
d(fA) < ¢y + 17, the proof of [TV, 2.23] applies. o

In 2.6-2.9 we study the problem of when a BL (or QS) embedding remains
BL (or QS) after a slight BL (or, respectively, QS) perturbation.

2.6. Lemma. Let X be a metric space, let A C V C U C X, and let
f,g: U — X be embeddings such that f and g|V are L-BL, f =g on U\ A,
and d(f,g) < 3d(fA, flU\V]). Then g is 2L-BL. o
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2.7. Corollary. Let X be a locally compact, locally connected metric space,
and let A CV C U C X with A compact and U,V open. Then there is
€ > 0 with the following property: Suppose that A is a metric space, that f,g €
In(U; X), that f =g on (U\ A) x A, that d(h,id;V xA) <e if h= f or g, that
Y C X, and that f|(UNY)x A and g|(VNY)xA are L-BL. Then ¢g|(UNY)x A
is 2L-BL.

Proof. Choose open sets V;,V, C X such that AC Vo, CC Vi CC V with V;
compact. Choose v > 0 with v < d(V,,X \ V1). By [Si, 1.7] there is ¢ € (0, yed
such that if » € E(V;X) and d(h,id) < ¢, then hA C V2 and hV D V3. If now f
and g are as in the corollary, then d(f,g) < 37 and d(f[AxA], f[(U\V)xA]) > 7.
Thus, ¢ is the desired number by 2.6. o

2.8. Lemma. Let X, A, U, V be as in 2.6 with V bounded, let v > 0 be
such that v < d(A,U\V) and such that v < 3d(V) if d(V) >0, let ¢ > d(V)/7,
and let f,g: U — X be embeddings such that f and g|V are n-QS, that f =g
on U\ A, that d(fA, f[U\V]) > v, and that d(h,id;V) < iyif h=forg.
Then g is 711—QS with n; depending only on n and c.

Proof. As shown in [LT, p. 356], there is 7 € H(RY) depending only on 75
such that n(s)n(t) < 7(st) for all s,t € I. Let a,b,z be distinct points in U, and

let
d(g(a),9())
d(g(b),9(z))

We must find n; € H(RL) depending only on (n,c) such that g; < 7:1(p). We
may assume that {a,b,z} meets both A and U\ V as p; < n(p) in the contrary
case. We divide the consideration into eight disjoint cases such that = € A m

Cases 1-3, £ € U\ V in Cases 4-6, and a:EV\Am Cases 7-8. Let ¢ = 2y

and gg = d(f(a) f(2))/d(f(), f(m)) By ci1,...,cs we denote absolute positive
constants.

Case 1: z € A, a,be U\ V. Since d(f(a), f(z)) >~ and d(f(d), f(z)) > 7,

we get
. d(f(a), f(z)) +¢
R ONE)EE

Case 2: z € A, a € U\V, b€ V. Choose y € V with d(y,z) >
max(v,d(b,z)). Then d(f(y), f(z)) > v —¢. Hence

d(9(a),9(2)) d(g(y),9(2)) _ d(f(a), f(x)) n(d(y,@)
" d(9(v),9(2)) d(g(0),9(2) = Fd(F(y), (=) "\ d(b,<)

< 0277(3823) n(jgzzge) < ean(e)n(co).

_ d(a,z)

= (b, 2) and o1 =

< c100 < anlo).

c

IN
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Case 3: z € A, ae€ V, b e U\V. Choose y € V with d(y,z) >
max(7,d(a,z)). Then

_d(g(a),9(=)) d(g(y),9(x)) < n(d(a,w)) LA W), f(=)

“ 7 dg(y) 9(2)) d(f(b),9(=)) d(y,z)) " d(f(b), f(2))

d(a,z)\ (d(y,)
<enl 3053) (555)
Subcase 3.1: d(y,z) < d(b,z). Now o1 < c37(0).

Subcase 3.2: d(y,z) > d(b,z). Now o1 < c3n(e)n(c).
Case 4: t€ U\V, a,b€ A. Asin Case 1, we get

_ d(g(a), £(=))
d(g(b), f(=))
Case 5: € U\V, a€ A, be U\ A. Now

o1 = Ho@), 1))
d(f(b), f(z))
Case 6: € U\V, acU\A, be A. Now

d(f(a), f(=))
= — = < ce00 < cen(0)-
d(g(), f())
Case 7: € V\A, a€ A, be U\V. Choose y € V as in Case 3. Then

o = 6(0),9(2) o), f(2) _ (d(a,x)) <d(y,x)).
d(g(y), 9(z)) d(f(b), f(z)) = \d(y,z)/ "\ d(b,2)

Subcase 7.1: d(y,z) < d(b,z). Now p; < c77(0).

Subcase 7.2: d(y,z) > d(b,z). Since v < d(a,b) < d(a,z) + d(b,z), we have
that d(a,z) > 37 or d(b,z) > 37.

Subsubcase 7.2.1: d(a,z) > 37v. Now g1 < crn(e)n(2ce).

Subsubcase 7.2.2: d(b,z) > 3v. Now g1 < crn(e)n(2¢).

Case 8: € V\A, aeU\V, be A. Choose y € V as in Case 2. Then

_ d(f(a), () dlg(v),9(x)) _ (d(a,w)) : (d(y,w))
T dgw). @) Ag®)e@) ~ \dlw,w)) "\ db,2) )

As in Case 7.2, we have two subcases:

Subcase 8.1: d(a,z) > -;-7. Now o1 < csn(o)n(2¢cp).

Subcase 8.2: d(b,z) > 37v. Now o1 < can(o)n(2¢).

Thus, we can construct n; depending only on (n,c) such that always p; <
ni(e). o

01 < es00 < canlo)-

< es00 < csn(0)-

01

01
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2.9. Corollary. Let X, A, U, V be asin 2.7 with V bounded, and let o > 0.
Then there is € > 0 such that for each n € H(RY) there is n, € H(RY) with
the following property: Suppose that f,g € E(U;X), that f =g on U\ A, that
d(h,id;V) < e if h=f or g, that Y C X with d(VNY) ¢ (0,v), and that
flUNY and g|lVNY are n-QS. Then g|UNY is 7,-QS.

Proof. If v and ¢ are chosen as in the proof of 2.7 with v < %'yo and € < %7,
then ¢ is the desired number by 2.8. o

The next lemma deals with composition of BL isotopies.

2.10. Lemma. Let U, X, and A be metric spaces, let a =ty <t; <--- <
tn = b be real numbers, let L > 1, and let f: U x A x [a,b] = X X A X [a,b] be an
embedding of the form (z, \,t) — (f,\t(ac),)\,t) such that f U = fi,U for each
(A, t) € A X [a,b] and such that f|U x A x [t;=1,t;] is L-BL for 1 <i < n. Then
f is 2L-BL.

Proof. Consider two points y = (z,A,t) and y' = (2',\,t') in 4 = f[U X
A X [a,b]] with t;_; <t < t; <tjy <t' <tj for some 7,5, ¢ < j. Then the
points z;—; = (z', A, t), zx = (&', M tx) for : <k <j—1,and z; =y’ arein A,
whence

d(f7 W), F7HWY) S AT W) £ (i) + Y d(f T (zk-1), £ ()

k=1
< L max(d(z,a"),d(\, X)) + L[t — t'| < 2Ld(y,y').

Thus, f~! is 2L-Lipschitz. Similarly it is shown that f is 2L-Lipschitz. o
The following simple fact about function spaces will be used often.

2.11. Lemma. Let X be a metric space, let A, B C X be compact, let E 4

and Ep be the spaces of embeddings of A or B, respectively, into X, and let
T={(f,9) € EAxEp| fACgB}. Then the function T — E4, (f,g)— g~ 'f,

is continuous.

Proof. Fix (fo,90) € T and ¢ > 0. Since g;': goB — B is uniformly
continuous, there is § > 0 such that if z,y € B and d(go(ac),go(y)) < 26, then
d(z,y) < e. Now let (f,g) € T with d(f, fo) <6 and d(g,90) < 6. Then

d(90g™" f, fo; A) = d(gog™", fof 15 fA) < d(gog™,id; fA) + d(id, fof 71; FA)
< d(gog™",id; ¢B) + d(f, fo; A) < d(g0,9; B) + d(f, fo; A) < 26,

whence d(g7f, 95 fo; A) < €. o
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2.12. We next improve in certain respects the quantitative canonical Schoen-
flies theorem for embeddings near id given in [TV, 3.2]. The construction of the
extension operator is essentially the same as in the proofs of [TV, 3.2] and of
[GV, Lemma 9] and, thus, uses the furling idea of M. Brown. Our proof is de-
tailed except for the tedious verification of the preservation of the quasisymmetry
property in dimension one, for which we refer to [Lu]. Recall that each element of
Y, is a closed convex cone in R™ with vertex 0.

2.13. Theorem. Let n > 1, let (X,Y) = (R™,V,) or (R}, V), and let
A = (B*\ B™(%)) N X. Then there exist a neighbourhood P of id: A — X
in E(A;X) and a continuous map ¢: P — E(B"™ N X;X) having the following
properties:

(1) p(id) = id.

(2) @(h)=h on (B"\ B"(%))NX for each he P.

(3) If h € P respects Y € Y, so does @(h). If h,h' € P respect Y € Y and
h="h" on ANY, then p(h) =¢(h') on B"NY .

(4) Let A be a metric space, and let f = (fa)aea € In(A;X) with fx € P
for each A € A. Define o(f) = (o(fa))rer € InA(B"NX;X). Let Y € Y, and
suppose that f respects Y x A and that f|(ANY)x A € In\(ANY;Y) is (a) LIP
or (b) locally L-BL or (¢) L-BL. Then ¢(f)|(B"NY) x A € IA(B"NY;Y) is,
respectively, (a) LIP or (b) locally L*-BL or (¢) L*-BL with L* depending only
on L.

(5) Y €Y, if p=dimY, if h € P respects Y, and if h|[ANY €
E(ANY;Y) is (a) LQS or (b) n—-QS or, in the case p > 2, (c) K-QC, then
@(R)|B*NY € E(B™"NY;Y) is, respectively, (a) LQS or (b) (when restricted to
B"(3)NY whenever p > 2) n*-QS or (¢) K*-QC with n* and K* depending
only on (n,p) or (K,p), respectively.

Proof. We prove the theorem in the form where (1) is deleted. Then, since
e(id)[B* N X] = B"N X by (2) and since ¢(id) is Lo~BL with Lo an absolute
constant by (4c), replacing ¢ by ¢( - )p(id)~! yields the full theorem.

For positive reals a3 < as and by < by, let a = @(qy,a5551,5,) RE — RL
denote the homeomorphism that maps [0,a;] and [aj,as] affinely onto [0, by]
or [by,bs], respectively, and is a translation on [az,00). Then define a self-
homeomorphism an = @(q;,a551,05;n) Of R" setting an(2) = a(|z])z/|z| for
z # 0. Fixrealnumbers%<a<e<c= % < b < q<r <1 indepen-
dently of n with b/a = 2¢ = % = p and with r > ;i—. Then let &, g, v: R® - R"
be the homeomorphisms

K = Q(1/2,¢c;c,mm)y K= Qb,gsa,q5n)y YV = Q(e,rie,cn)-

For reals 0 < a; < ay, let [aj,a3) = {2 € X | a1 < |z| £ a2} with
[a1] = [a1,a1] and with obvious analogous meanings for (a;,az) and [a;,as). We
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choose a neighbourhood P of id in E(A; X) so small that for each h € P,
h[3] C[0,a), [a] Ch(},e), and [b,g] C R(c,7).

Consider h € P. Define an embedding h: 7,1) — X, which respects 8X,
by

h(z) if |z| > ¢,
(2.14) h(z) = { hvh™phk(z) if |z| < c and pha(z) € hle, 7],
puhk(z) if |z| < ¢ and phk(z) € h[,e] U0, al.

We show that h is well-defined. Let « € [%,¢]. Then «(z) € [c,r], whence
y = hk(z) is defined. Let z = phx(z). To see that Rh(z) is defined in at least one
way, note that if |y| > ¢, then z =y € hlc,r];if y € [b,q], then z € [a,q] C h(3,7 )
if ly] < b, then z € [0,a]; and finally, if z € hle,r], then hvh™1(2) € hle,c] is
defined. To see that h(z) is defined in exactly one way, note that if |z| = ¢, then
z =y € h[r], whence hvh~1(z) = h(z); if z € h[3,¢€], then hvh~!(z) = 2; and
finally, if z € [0,a], then z ¢ hl[e,1). From these considerations it also follows
that

(2.15) h(z) = hvh™'phi(z) if z € [, ] and phe(z) € (2, 7]

and that & is injective. By (2.14), hl[ ,¢| is continuous as the union of two
continuous maps of compact sets. It easily follows that & is indeed an embedding.
Note that

(2.16) h(z) = o h(pz) if 2| =1

Define b € E(B™ N X;X) as follows. Let A = h on [3,1), and set h(0) = 0.
Suppose z € (0,1]. Then ofz € [3,c] for one or two k € N. Let

(2.17) h(z) = o *h(o*2).

By (2.16), h is well-defined. Define @(h) = h. Clearly (2) and (3) are satisfied.
To prove the continuity of ¢, choose numbers s, # 1ndependently of n such
that 2 < s <t < c and «[t] C [0,0). Note that ux|[1] = id. Hence, we
can choose P so small that if h € P, then h[] is contalned in the bounded
component of X \ phk[s] and hk[t] C [0,b]. Since wphk[c] = h[r], it follows that

phkls,c] C k[%,r]. Hence, by (2.15),
(2.18) h = hvh™'phk  on [s,c].
Furthermore, uhk[3,t] C [0,a], whence by (2.14),

(2.19) h=o"'hs on [3,1].
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As d(izl,izz;[O, d) = d(l_zl,l_zz;[%,c]) for hq,ho € P, it follows from (2.18), 2.11,
and (2.19) that ¢ is continuous.

For the proof of (4) and (5), define homeomorphisms o, 7: R® — R" by
o(z) = vi(z) if |z| < ¢, o(z) = z otherwise, 7(z) = o(ez) if |z| < 3, and
7(z) = k(z) otherwise. Then &, y, v, 0, T are ag-BL with a¢ > ¢ independent
of n.

Choose a number u independently of n such that t < u < ¢ and [g] C &[0, u).

We can choose P so small that [0,¢] N hx[u] = @ for h € P. Then, by (2.18),
(2.20) h=ho on [u,1).

Hence, by (2.19) and (2.20),

(2.21) h =" hr on [u/o,1].

Choose numbers v, w independently of n such that s <v<t<u<w<ec.
Let 1 = ¢(id). By the continuity of ¢ and [Si, 1.7}, we can choose P so small
that for each h € P,

(222)  ilw/e,v] C h(u/o,t), ilv,w] C h(s,c), and ifw,q] C A(u,r).

Now let A, f, f = ¢(f), Y, L be as in (4). To simplify notation (only), we
assume that Y = X. Let Z = {[u/p,1],[s,c], [u,r]}. In the cases (a) and (b), by
(2.21), (2.18), (2.20), and the compactness of the sets in Z, for each A € A there
are an open neighbourhood Ay of A and a number Ly > 1, with Ly = a3L3 = L,
in (b), such that each Z € Z has a finite open cover by sets U C Z with f|U X Ay
being L»-BL. In the case (c), f1Z x A is L;-BL for each Z € Z. Obviously, in
(a) and (b) it suffices to consider the restrictions FIB"NX)xAx (A€ A) of f
in place of f. By (2.22) it follows that in (4) we may assume (for some L; > 1
in the case (a)) that f,\|[%,r] and f;lli[w/g, q] are locally L;-Lipschitz whenever
X € A and that f|{z} x A for z € [3,7] and F1{a} x A for = € i[w/g,q] are
L;-Lipschitz.

For k € N, we conclude from (2.17) that f)\|g‘k[%, c] is locally L;-Lipschitz
if A€ A and that f|{z} x A is Ly-Lipschitz if = € o~*[3,c]. Then f,\l[O,r] for
A € A and f|{z} x A for & € [0,7] are L;-Lipschitz. Therefore, fI[O,r] X A is
2L;-Lipschitz. On the other hand, if £ € N and z € i[p™*[w/p,w]], then (2.17)
and (2.22) imply that o*z € i[w/p,w] and f;l(:c) = g‘kf:\‘l(gkw) for each A\ € A.
Thus, we obtain as above that f~! is 2L;-Lipschitz on i[0,q] x A = [0,¢] x A.
Since f = f on [¢,1) x A and f~! = f~! outside [0,b) x A, it follows that (4) is
satisfied, with L* = 2L; in (b) and L* = 2L; + L (or even 2L ) in (c).

Let Y, p > 2, h, K be as in (5¢). Each of &, u, v, 0, 7 is K,~QC with
K, = a2™%. By (2.21), (2.18), and (2.20), h|(u/e,1)NY is K*-QC, K* = K3K*.
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By (2.17), A|(0,1)NY is K*~QC. By [Vi,, 17.3] if Y is a linear subspace of R™
or trivially otherwise, ilIB" NY is K*-QC.

Let Y, p(=> 1), h, n be as in (5a) or (5b). Suppose first that p > 2. In (b),
RANY is K-QC, K =n(1)?~1. Thus, by the above, h|B*NY is K*-QC with
K* depending only on (n(1),p). By 2.3, 71[[0,r]ﬂl’ is n*-QS with n* depending
only on (K*,p). In (a), h is QS on a neighbourhood of [3,7]NY in Y. Since
izl[O,r] depends on hl[-;—,r] only, it follows, cf. the above, that le[O,r] NY is QC.
Thus, iLIB" NY is LQS in (a) by 2.2. For the case p =1, see [Lu, 2.7 and 2.8]. o

2.23. Remark. If Py C P is a sufficiently small uniform neighbourhood of
the inclusion, by 2.5 the parenthetic restriction in (5b) can be deleted for h € Py.

The construction of isotopies in the proof of D(R"; ), ) will ultimately take
place in a situation where the following Alexander’s construction applies.

2.24. Lemma. Let (X,Y) = (R™,Vn) or (R}, Y}) with n > 1, and let
H = H(X,X \ B®). The function v: H x I — H, (h,t) — h¢, defined by
hy(z) = th(z/t) if 0 <t <1 and by ho =id, is continuous and has the following
properties:

(1) v(id,t) =id for each t € I. If h € H respects Y € Y, so does hy for
eacht € I. If h,h' € H respect Y € Y and h|Y = h'|Y, then h|Y = h}|Y for
each t € I.

(2) Let A be a metric space, and let f = (fa)aen € Ia(X) with f|(X \
B") x A = id. Define %*(f) = f* = (fa)reater € Inx1(X). Let Y € Y, and
suppose that f respects Y x A and that f|Y x A is L-BL. Then f*|Y x A x I
is (3L + 1)-BL.

(3) Suppose that h € H respects Y € Y. If h|Y is (a) LQS or (b) locally
n—QS or (c) n-QS, so is, respectively, h;|Y for each t € I.

Proof. The continuity of ¢ is well known. The condition (1) is obvious.
The condition (3) obtains, because for each t > 0 the homeomorphism ¥ — Y,
z +— tz, is a similarity. In (2) it suffices to show, by the continuity of f* and
since (f*)~! = (f~1)*, that f*|Y x A x (0,1] is Ly-Lipschitz, L; = 3L+1. Thus,
consider two points u = (z,\,s) and v = (y,u,t) in ¥ x A x (0,1] with s > ¢.
Let § = |fas(z) — fae(=)|. If |2| > s, then § = |x — 2| = 0, whereas if |z| < s,
then

6 <|sfa(z/s) —tfa(z/s)| + tlfa(z/s) — fa(z/t)|
< ls =t fa(z/s)| + tL|s — t||x|/st < (1+ L)|s —¢t|.

Since fy¢|Y is L-BL, this implies that

|fxs(@) = Fre(y)l < (1 + L)|s — t] + L]z — y| < (2L + 1)d(u, v).
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On the other hand,
|fxe(y) = fur()l = tfa(y/t) — fuly/t)] < tLd(A, p) < Ld(u,v).
Hence, |fas(z) — fue(y)| < Lid(u,v). Thus, d(f*(u), f*(v)) < Lid(u,v). o

3. Deformation statements for metric spaces

3.1. For this section, we fix a locally compact, locally connected metric space
X and a family Y of subsets of X which is weakly locally finite in the sense that
each point of X has a neighbourhood N for which the set {NNY |Y € Y}
is finite. For example, X might be a locally finite simplicial complex with its
barycentric metric and Y the family of all subcomplexes of X as in [SS, Appendix
B]. For the pair (X,)), we first define three deformation statements, which may
or may not hold. We then prove their equivalence, locality, and LIP invariance.
These results could also be used in a detailed proof of the deformation theorem in
[SS].

Note that if U C X is open and P is a topological space, a function ¢: PxI —
E(U;X), (h,t) — hy, is continuous if and only if the function P x I x U — X,
(h,t,z) — hy(z), is continuous, and in this case ¢ induces a continuous map
@*: P — I(U; X), defined by ¢*(h)(2,t) = (h(z),t). Suppose now that P is a
subspace of E(U;X), ¢ is continuous, A is a topological space, and f = (fa)xea
is an isotopy in Ip(U;X) with f) € P for each A € A. Then we can define an
isotopy @*(f) = (fae)aen,ter in Inxr(U; X).

3.2. Definition. We let D(X;)) denote the following statement:

Let A and A’ be closed subsets of X with A CC A', let U be an open
subset of X, and let B and B' be compact subsets of U with B CC B'. Then
the following statement D(X; A, A", U, B, B'; J) always holds:

There exist a neighbourhood P of the inclusion map id: U — X in E(U, A';
X) and a continuous map ¢: P x I — E(U, A; X) having the following properties,
where hy = ¢(h,t) for he P, te I:

(1) ¢(id,t) =id for each t € I.

(2) ho=h for each h € P.

(3) hy=1id on B for each h € P.

(4) hy=hon U\B' forall heP,tel.

(5) If h € P respects Y € Y, then h; respects Y for each t € I.

(6) If h,h' € P respect Y € Y and h = h' on UNY , then hy = A}, on UNY
for each t € I.

(7) Let A be a metric space, let f = (fa)aea € IaA(U;X) with f € P for
each A € A, and let f* = ¢*(f) € Inxr(U;X). Suppose that ¥ € Y, that f
respects Y x A, and that f(UNY)x A € L(UNY;Y) is (a) LIP or (b) locally
L-BL or (¢) L-BL. Then f*|[(UNY)Xx AX I € Iy (UNY;Y) is, respectively,
(a) LIP or (b) locally L*-BL or (¢) L*-BL with L* not depending on (A, f).



150 Jouni Luukkainen

(8) If h € P respects Y € Y, if hlUNY € E(UNY,;Y) is (a) LQS or
(b) locally 7-QS or (¢) 7-QS, and if t € I, then h|UNY € E(UNY;Y) is,
respectively, (a) LQS or (b) locally n*-QS or (c) n*-QS with n* not depending
on (h,t).

We let Dgs(X;Y) denote D(X;Y) with (7) deleted.

3.3. Remark. From (4), (2), and [Si, 1.6.2] it follows that kU = AU for all
heP,tel. Hence, in (5), [UNY]=hAUNY. If h € P respects Y € Y and
RlUNY =id, then (1) and (6) imply that h|JUNY =id foreach t € I. If Q is
a neighbourhood of id in E(U, A; X), it follows from (1) that replacing P by a
sufficiently small neighbourhood of id we may assume that ¢[P x I] C Q.

The following concept will be only an auxiliary one.

3.4. Definition. Welet D;(X; A, A',U, B, B'; ) denote the statement which
we obtain from D(X; A, A',U, B, B'; V) replacing the compact-open topology of
E(U,A’; X) and of E(U,A;X) by the uniform topology and supposing that in
3.2(7) the map A — fy of A into P is continuous.

3.5. Remarks. 1. As in 3.2, we again have in 3.4 that ¢*(h) is an isotopy
of U onto hU for each h € P and that f* € Ipxr(U;X) in 3.2(7). In addition,
the map ¢*: P — I(U;X) is continuous in the uniform topologies.

2. The older deformation statement in 3.4 implies clearly the newer one, with
the same P and ¢. Conversely, 3.8 below shows that D;(X;)) (as defined in an
obvious way) implies D(X;)).

3.6. Definition. We let D*(X;)) denote the following statement:

Let A, A", U, B, B' be as in 3.2. Then the following statement D*(X; A, A',
U, B, B'; ) always holds:

There exist a neighbourhood P of id in E(U, A’; X) and a continuous map
Y: P x I — H(X,A) such that if for each h € P we define an isotopy ¥*(h) =
(he)ter € I(X) by hy = (h,t), then the following conditions hold:

(1) %(id,t) =1id for each t € I.

(2) ho=1id for each h € P.

(8) hi=h on B foreach h € P.

(4) hy=idon X\ B' forall he P, tel.

(5) As 3.2(5).

(6) As 3.2(6) but with h; = h} on Y for each t € I.

(7) As 3.2(7), but we now define f* = *(f) € Ipx1(X) and consider Lip-
schitz properties of f*|Y x A x I € Iprxs(Y).

(8) As 3.2(8), but we now consider quasisymmetry properties of hiY €
HY), tel.

We let DfHs(X;Y) denote D*(X;Y) with (7) deleted.
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3.7. Remarks. 1. The conditions (7a), (7b), (7c), (8a), (8b), and (8¢) of
Definitions 3.2, 3.4, and 3.6 (and the respective conditions of the results in later
sections) will be considered independently of each other in the proofs. The weak
local finiteness of Y will only be needed for (8c) in this section; otherwise the
different elements of ) will be considered independently of each other.

2. In Section 5 we establish D(R™;Y,) and D(R%; V) assuming, however,
that dimY > 2 in 3.2(8b). Siebenmann and Sullivan [SS, Appendix B] proved
essentially D(X;)), with (8) deleted and having in (7) only the LIP part (a), for
pairs (X,)) described in 3.1.

3. Without altering any proof of this paper, we could strengthen the condi-
tions (7b) and (7c) of Definitions 3.2, 3.4, and 3.6 (and the respective conditions
of the results in later sections) to assert that L* can be chosen to be of the form
L* = cL? with ¢,v > 1 independent of (A, f,L) (and depending only on n in
Section 6). Cf. 5.9.

3.8. Lemma. Let 7 = (X;A,A",U,B,B";Y) be as in 3.2, let U; be an open
neighbourhood of B' with compact closure in U, and construct 7y from 7T by
replacing U by Uy. Then D(t) follows from Dy(7y).

Proof. Let P; be the neighbourhood and ¢; the map given by D;(r;). Then
there is a neighbourhood P of id in E(U, A'; X) such that h|U; € P; for each
h € P. Define a continuous map ¢: P x I — E(U, A; X) by

: h|Uy,t Ui,
othty = { P00 ot

Then ¢ trivially satisfies the conditions (1)-(8) of 3.2 with (7c) and (8c) deleted.
If P is small enough, (7c) and (8¢) also hold by 2.7 or, as {U1 NY |Y € Y} is
finite, by 2.9, respectively. o

3.9. Lemma. The statements D(X;)) and D*(X;)) are equivalent.

Proof. Let 7 = (X;A,A",U,B,B";)) be as in 3.2, and construct m; from
7 by replacing B by a compact neighbourhood By CC B’ of B. We first show
that D(r;) implies D*(7). Let P be the neighbourhood and ¢ the map given by
D(71). Choose P so small that hB C By for each h € P. We define a function
Y: PxI— H(X,A) setting

h,t)~ U,
¢’(h,t)={;il(l ) ' zﬁX\B'.

Then % is continuous by 2.11. The conditions (1)—(8) of 3.6 with (7c¢) and (8c)
deleted are easy to verify. If P is small enough, (7c) and (8c) also hold by 2.7
or 2.9, respectively (to apply 2.9, choose an open neighbourhood V of B’ with
V C U compact).
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We now show that D*(r;) implies D(7). Let P be the neighbourhood and
% the map given by D*(m;). Choose P so small that hB; D B for each h € P.
Then ¢: P x I — E(U, A; X), defined by ¢(h,t) = hip(h,t)"U, is the desired
map. O

3.10. Composition. Let U C X be open and B’ C U be compact. Consider
D =D(X;0,0,U,0,B";Y). For i = 1,2, let P; be a subset of E(U;X) containing
id and let ¢;: P; x I — E(U; X) be a continuous map satisfying D. Suppose that
©1[P1 x1] C P2. Then we can define a continuous map pz*@1: Py xI — E(U; X)
by
w1(h,2t) ifo<t<i

(w2 @1)(h,t) = {502(4/91(]7'7 1),2t-1) if 3 <t<1,

and g * ¢; also satisfies D, as 3.2(7) follows from 2.10.
If Z C X is open, we let Y|Z denote the family (Y N Z)yey.

3.11. Lemma. Let Z={Z | Z C X open, D(Z;)Y|Z) holds }.
(i) If X1 € Z and X, C X, is open, then X, € Z.
(1) If X1,X2€ Z,then X;UX, € Z.

Proof. Since (Y|Z1)|Zy = Y|Zy for open subsets Zy C Z; of X, we may
assume that X; = X in (i) and X; U X, = X in (ii).

(1): To establish D(Xy; Y|Xo), we prove D(Xo; A, A',U, B, B'; Y|X,). Note
that E(U;X,) can be considered as a subspace of E(U;X). We can apply
D(X;ANB',A",U,B,B';Y); let P be the neighbourhood and ¢ the map given
by this statement. Then Py = {h € P | AU C X} is a neighbourhood of
id: U —» Xy in E(U,A'; Xo). Through restriction, ¢ defines a continuous map
wo: Po x I — E(U, A; Xy), which is the desired one.

(ii): To prove D(X;)), we prove D(X; A, A", U, B, B'; V). It follows from 3.8
and 3.5.2 that we may assume U to be compact and that it suffices to construct
the desired neighbourhood P of id in E(U, A’; X) to be a uniform neighbourhood
only.

Choose a closed neighbourhood A" CC A’ of A in X. Choose open covers
{X{, X5} and {X{,X}} of X with X! cC X! cC X, for i = 1,2. Let U; =
UNX!; then U = U;UU,, and U; is a compact set in X;, whence d(U;, X\X;) > 0.
Let B; = BNX/; then B = By U B,, and B, is a compact set in U;. Choose
compact sets B}, B}, and Bj with B CC B} CC B} C U; N B’ and with
B,CcCB,cU,NnB.

We first apply D(X;; 4" N X;,4'N X1,U1,Bt,B}; Y|X1); let P; be the
neighbourhood and ¢; the map thus obtained. Choose a uniform neighbour-
hood P of id in E(U,A’; X) such that hU; C X; and h|U; € P; for each
h € P. Define a continuous map ¢}: P x I — E(U,A"; X) letting }(h,t) be
©1(h|Uy,t) on Uy and h on U\ B]. Choosing P small enough, ¢} satisfies
D(X; A", A"\ U,Bf,B}; Y); cf. the proof of 3.8.
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We now apply D(Xz; (AU B;)NX,,(A"UBT)N Xg,Uz,Bg,Bé;)Jle); let
P, be the neighbourhood and ¢, the map thus obtained. Choose a uniform
neighbourhood @ of id in E(U, A" U Bt; X) such that hUz C X2 and h|U; € P,
for each h € Q. Define a continuous map ¢5: @ x I — E(U,AU B;; X) letting
@4(h,t) be pa(h|Us,t) on Uz and h on U \ B;. Choosing Q small enough, Ph
satisfies 'D(X;A U By, A" U B?,U, By, B}; Y); cf. the proof of 3.8.

Choosing P small enough, we have that ¢}[P x 1] C Q. Then ¢ = Ph * @
is the desired map. o

3.12. Lemma. Suppose that the family Z of 3.11 covers X. Then X € Z.

Proof. First note that by 3.11 every open subset of X with compact closure
belongs to Z. To prove D(X;Y), we establish D(X; A,A"U,B,B";Y). By 3.8
and 3.5.2, we may assume that U is compact, in which case there is an open
neighbourhood X, of U with X, compact, and then, in addition, it suffices to
construct the desired neighbourhood P of id: U — X to be only a neighbourhood
of id in the subspace P, of E(U, A'; X) consisting of elements mapping U into
X,. Since Py = E(U, A’ N Xo;Xo) and since E(U, AN Xo;Xo) is a subspace
of E(U,A;X), the neighbourhood P and the map ¢ given by the statement
D(Xo; AN Xy, A'NXo,U,B,B";Y|X,), valid as Xo € Z, are what we sought. o

3.13. Lemma. The statement D(X;Y) is a LIP invariant of the pair (X, Y).
More exactly, if D(X;Y) holds, X' is a metric space, g: X — X' is a LIP
homeomorphism, and V' = {gY |Y € YV}, then D(X';Y') holds. The statement
Dgs(X;Y) is an LQS invariant of (X,)).

Proof. Obviously, D(X;Y) is a BL invariant of (X,)). The LIP invariance
then follows from 3.11(i) and 3.12. The second part is proved similarly; recall only
3.71. o

4. Handle lemmas

4.1. In this section we prove the inductive handle lemmas 4.2 and 4.3. For
integers 0 <p<n>1,weset Yy, ={Y € Vn |R? CY} and y:;p ={Y ey}|
RP C Y}, where the families Y, and Y are defined in 2.1.

Convention. From now on in this paper, we will tacitly assume that in the
condition (8b) of Definitions 3.2, 3.4, and 3.6, the set Y, which will always be a
manifold, is of dimension at least two.

Under this convention, the lemmas in Section 3 are still valid by 3.7.1.

4.2. Lemma. Let 0 < m < p < n > 1 be integers. Let X = R" =
R™ x RP~™ x R"P and Y = Y,,. Suppose that D(R™ \ R?; Y|R"™ \ RP) holds.
Then D(X;A,A',U,B,B';Y) holds, where

A =R™x (RP~™\ B?"™) x R""?,
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A'=R™ x (R?~™\ BP~™(1)) x R""?,
U =5B™ x 5BP~™ x 5B™?,

B =B™(1) x B"~" x B (1),
B'=B™ x 2BP™™ x 2B""?,

4.3. Lemma. Let 0 < m < p < n be integers. Let X = R} = R™xRP~™x
R} and Y = y:;p. Suppose that D(R} \ R?; Y|R} \ R?) holds. Then D(X; A,
A",U,B,B'; Y) holds, where the sets A, A', U, B, B' are the intersections of the
respective sets in 4.2 with R .

4.4. Remarks. 1. We only prove 4.2; obvious modifications give a proof for
4.3.

2. As the construction will show, the following condition (8') can be added
to the list of 3.2 for the claimed deformation statements in 4.2 and 4.3 (the case
p=0):

(8") Let Y1,Y, € Y be distinct and homeomorphic to Rf,_, and let Y =
Y1UY,. If h € P respects Y and Y3, if h[UNY is (a) LQS or (c) n-QS, and if
t €I, then h]UNY € E(UNY;Y) is, respectively, (a) LQS or (c) 7,—QS with
7% not depending on (h,t).

4.5. Hyperbolic geometry. We recall some constructions from [TV, 2.3-2.11].

For m > 1, we let Mob,, denote the subgroup of H (—B-m) of all Mdbius
transformations of B™.

For n > m > 1, welet o denote the restriction to B™\S™~! of the hyperbolic
metric of R™ U {oco} \ S™~! defined in [TV,, 2.4]. The hyperbolic metric o is
invariant under each g € Méb,, that respects S™~1, and o is LIP equivalent to
the Euclidean metric; in particular, |z — y| < o(z,y) for z,y € B \ S™1, as
follows from [TV, (2.6)]. The case m = n gives the hyperbolic metric on B™;
now every hyperbolic ball B,(z,r) is a Euclidean ball.

Let m > 1. Let G be a discrete subgroup of Méb,, acting freely on B™.
Let @ be the orbit space B™/G with the quotient topology. Then the natural
map mo: B™ — @ is a covering map, and @ is an m-manifold without boundary.
Moreover, 7 defines a C'°- (and hence a LIP) structure on Q. The hyperbolic
metric 0@ on @ is defined as follows: If ¢,¢' € Q, 0g(g,q') is the hyperbolic
distance of ;5 '(¢) and 75 '(¢') as subsets of B™. Then , is locally a hyperbolic
isometry. Thus the LIP structure on @ is also defined by the metric og. As
in [TV,, 2.9], we say that G is a Sullivan group and Q a Sullivan manifold if
@ is compact and if for some (and hence for every) point ¢ € Q there is a LIP
immersion a: @ \ ¢ — R™. By Sullivan [Su;], a Sullivan group exists for each
m 2 2. It is easy to see that for m = 1, a subgroup of Méb; is a Sullivan group
if and only if it is generated by one nonidentical increasing map. Every Sullivan
l-manifold is C'*°-diffeomorphic to S*. We fix for each m > 1 a Sullivan group
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G™ and the corresponding Sullivan manifold @™ = B™/G™. Then for each m,
by the compactness of Q™ there is r,, € (0, %) such that mo: B™ — Q™ is a
hyperbolic isometry on a neighbourhood of each closed hyperbolic ball B,(z,rm),
r € B™.

Let 0<m<n>1. Set k=n—m and A} = B"\ S™~! (with S7! =0).
Then there is a natural homeomorphism u: A? — B™ x B¥ C R™ defined by the
so-called Mébius coordinates of A} whenever m,k > 0 [TV2, 2.7 and 2.10] or by
u = id whenever m = 0 or k = 0. Clearly u respects each Y € Y,. For m > 1,
recall the hyperbolic metrics o of AT and ¢ of B™; for m =0, let o denote the
Euclidean metric. Define a metric go on B™ X B* by

oo(z,z") = max (o(z1,2}), |z2 — 25]).

Then u: (A},0) = (B™ X B¥,00) is BL by [TV,, 2.11].

Nowlet 0 < m <p<n>1. Set k =n—m as above. Let Bk = Br—m™ x
B"?. We introduce the norm ||(z,y)| = max(|z|,|y|) on R¥ = R?=™ x R*™?
and define a BL homeomorphism 7o: (R*,]-]) — (R*,]||-||) setting 74(0) = 0 and
7o(z) = |z|z/||z|| for & # 0. Then 7,B* = BF¥. Define a metric ¢ on B™ x R¥
by

o(z,2') = max (o(e1,21), w2 — 25])).-

Replacing here o by og (if m > 1), we obtain a metric on Q™ X RF*, also
denoted by g, with which Q™ x R* will be considered. Let B* = B™ X §k; then
the homeomorphism 7 = id X 70: (B™ x B, po) — (B*,p) is BL and respects
each Y € V,. We obtain a c¢,~BL homeomorphism v = Tu: (A},0) — (B*,e),

where ¢, depends only on n. Suppose m > 1. Let Q* = Q™ x BF. We
define covering maps m = mo X id: B* — Q* and e = 7v: A} — Q*. For each
Y =R™x Y, € YVom, where Y7 C R*, we define a subset Y* = Q™ x Y] of
Q™ x RF. Then e [Q*NY*|=v~![B*NY]=AFNY foreach Y € Vym.

4.6. Lifting homeomorphisms. Let 1 < m < p <n and

Po={he H(Q",0Q") | o(h,id) < 37m }.

Note that Py 1 = P,. Each h € Py has a unique lift to a continuous map
h: B* — B* such that mh = hr and such that h(0) € By(0, 37m) X B*. In fact,
if z € B™ and if

Tt (Bo(z,rm) X ﬁk,g) — (B,Q (mo(2)yrm) X ];’k,g>

is the isometric homeomorphism defined by =, then h= 77 hr, on B,(z, irm) X
B*. This description implies that o( fz.l,fzz) = o(hy,hy) for all hy,hy € Py. In
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pa,rtxcular g(h id) < —rm for each h € Py. It is easy to see that if h € Py, then
h=1 = h=!, whence h € H(B*,0B*).

For h E Py we set h* = v~ lhv € H(AR,0A}). Then h* is an e-lift of h, i.e.,
eh* = he. There is a constant M, depending only on n such that o(h*,id) < M,

for all h € Py. Thus, every h* can be extended by the identity to a homeomor-
phism A: R® — R". Note that 2~! = A1 for h € P,.

4.7. Lemma. The relation h — h is a continuous map Py — H(R™, R"\B")
sending id to id and satisfying the following conditions:

(1) Let Y € Yum. If h € Py respects Q*NY*, then h respects Y. If
hi,hy € Py respect Q*NY* and h; = hy on Q*NY™*, then hi=hyonY.

(2) Let A be a metric space, and let f = (f)\))\EA € IA(Q*) with fy € P,
for each A\ € A. Define f (f)\)AEA € In(R™). Suppose that Y € Ynp, that f
respects (@Q*NY™*) x A, and that f|(Q*NY™) x A is (a) LIP or (b) locally L-
BL or (c) L-BL. Then there is an open cover (A;) of A, consisting only of A in
the case (c), such that f|Y x A; is for each j, zespectwely, (a) BL or (b), (c) I-
BL with L depending only on L and n.

(3) IfY € Ynm, l=dimY, h € Py, h respects Q*NY™*, and h|Q*NY™* is
(a) LQS or (b) locally n-QS or (c¢) 7-QS, then h|Y is, respectzvely, (a) QS or
(b) (if 1 > 2), (c) 7-QS with # depending only on n and n. Here it is provided
that if [ =1, then p(h,id) < ro, where ro > 0 is an absolute constant.

Proof. The continuity of i +— & follows from the fact that d(&, B') < cno(h, ")
for h,h' € Py. Obviously, id = id is true and (1) holds. Consider Y € Y,.,,. Then
e defines a ¢p,—BL homeomorphism

€ (u'l [Bo(z,7m) X P-k] ny, cr) — ((B,Q (mo(z),Tm) X Ek) nY*, g)

for all £ € B™. Consider h € P, that respects Q* N Y*. Then % defines a
homeomorphism hy € H(A? NY) with

hy =e;'(R|Q*NY*)e, on u™? [Bo(z, rm) X Fk] ny

if z € B™.

(2b) for A a singleton Let Y and h be as just with 2|Q*NY™* being locally
L-BL. Then hy is locally L'-BL, L' = ¢2L, in the hyperbolic metric ¢ of AR,
Since AZ NY is a convex subset of R", the proof of [TVy, 2. 12] shows that hy is
L-BL, L =2L'eM~ in the Euclidean metric. Hence, hlY is I-BL.

(2) In the cases (a) and (b), the compactness of @* NY™ implies that for
each A € A there are a neighbourhood A of ), a finite open cover V) of Q*NY™,
and a number Ly > 1, equal to L in (b), such that f|V x Ay and 7YV x Ay are
L -Lipschitz for each V' € V. Thus, in (2) we may assume that there is L >1
such that fi|@*NY™ is locally L-BL for each A € A and such that f|[{z} x A
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and f~!|{z} x A are L-Lipschitz for each z € @* N Y™, and it suffices to prove
that F|Y x A is then L-BL with L depending only on L and n. By the special
case of (b) above, f,|Y is L-BL for each A € A. Obviously,

d(Fx, FasY) < cnolfos fr; QT NY™) < cald(X, N)

for all A\, \' € A. It easily follows that f|Y x A is E-Lipschitz with L =TI + ¢ L.
Thus, also (F]Y x A)~! = f~1[Y x A is L-Lipschitz.

(3): As Q* NY* is compact, (a) reduces to (c). Suppose first [ > 2. In
(b) and (c), hy is locally 7,-QS, n1(t) = c2n(cit) for t > 0, in the hyperbolic
metric o of AP. If 2 € A}, by [TV, (2.6)] the quotient o(z,y)/|z — y| has a
finite positive 11m1t as y — in A?7. This implies that H(z,hy) < mi(1) for each
z € Int(A?NY). Here H(z,hy) denotes the linear dilatation (in the Euclidean
metric) of hy at = in the sense of [Véy, 22.2]. Thus, hy|Int(Af NY) is K-QC,
K= nl(l)’ , by [Vay, 34.2]. Hence, h|Y € H(Y) is K-QC by [Va, 35.1]. By
2.3, h|Y is 71— QS with 7 depending only on K and .

Suppose now [=1. Then m=1,Y =R!, A?NY = B!, and Q*NY* =

= Q!, where Q' is isometrically 1dent1ﬁed w1th the subspace Q! x 0 of Q*.
Moreover, v|B! =id and x|B! = m. Thus, letting hy = h|Q' € H(Q"), we have
that h|B! € H(B!) is the 7-lift h; of h; defined in 4.6 (the case m =p=n =1).
Since h; is n—QS, it follows that k1 |B,, (z, 3r1) is n-QS in the hyperbolic metric
o1 of B! for each z € B'. Furthermore, o1(h1,id) = O'Q(hl,id) < o(h,id).
Hence, by [Lu, 3.2] there is an absolute constant ro € (0,3r1] such that if
o(h,id) < ro, then R|R! is 7-QS with 7 depending only on 17(1) o

4.8. From now on we assume the situation of 4.2. Recall Y = YVpp, and let
={Y")yey.
4.9. Lemma. Let m > 1 and Q = Q™ x(R» ™\R?~™). Then D*(@; y*|@)
holds.
Proof. Let R = R*\R? = R™ x(R"'m\RP_m). Choose an open cover {Q1,
.., Qs} of Q™ such that for each 7 € {1,...,s} there is a LIP homeomorphism
fi: Qi > R™. Let Q; = Qix(R"™ ™\RP™ m) Then f; = fixid: Q; — Risa LIP
homeomorphism with f,[Q, nNY* = RNY for each Y € ). Thus, as D(R y]R)
holds by the assumption of 4.2, D(Q,, y*IQ ) holds by 3.13. As {Ql, Qs }is
an open cover of Q, the lemma follows by 3.11(ii) and 3.9. o

4.10. A modification. Let m > 1. We let D™ denote the hyperbolic ball
B,(0,7,,) C B™. Choose a radial BL homeomorphism £o: R™ — R™ such that
BoR™\ B™ =id and ByB™(1) = D™. Then = f, xid: R* =R™ x R"™™
R" is BL, and Y =Y for each Y € Y,,. Thus, by the aid of 8 we can replace
B™(1) by D™ in the definition of B in 4.2.
The next lemma is the core of the proof of 4.2.
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4.11. Lemma. There are a neighbourhood P of id in E(U,A';X) and a
continuous map @o: P — H(R™ R"™\ B") with ¢o(id) = id which satisfy the
following conditions:

(1) @o(h) =v~'hv on v™!B for each h € P.

(2) If h € P respects Y € Y, so does po(h). If h,h' € P respect Y € Y
and h =h' on UNY, then o(h) = po(h') on Y.

(8) Let A, f,Y,L be as in the condition (7) of 3.2. Define po(f) =
(o(fr)) xea € IA(R™). Then there is an open cover (A;) of A, consisting only
of A in the case (c), such that ¢o(f)|Y x Aj is for each j, respectively, (a) BL
or (b), (¢) Lo-BL with Ly depending only on L and n.

(4) Let h,Y,n be as in the condition (8) of 3.2, with dimY > 2 in (b).
Then ¢o(h)|Y is, respectively, (a) QS or (b), (¢) no—QS with no depending only
on n and n.

The proof of Lemma 4.11 will be finished in 4.14.

4.12. Constructions in the case m > 1. Let ¥ = n — m. Choose a point
q € Q™\meD™ and a LIP immersion ao: Q™\q — 4B™. By the LIP Schoenflies
theorem [LV, 7.7], we may assume that aomy = id on a neighbourhood of D™. Set
a=agxid: (Q™\¢)xR¥ - R® = R™ x R¥. Then ae = v on a neighbourhood
of v"l[ﬁm X Ek] in A}. Let R = %min (rm,UQ(q,woﬁm)), and set D; =
Bog(g,jR) for 1 < j < 8;then D;NmoD™ = § for each j.

We construct open sets Vi,...,Vs in Q™ x R¥ a neighbourhood P of id in
E(U,A’; X), and for each i € {1,...,8}, considering E(V;; Q™ x R*) with the
uniform topology induced by g, a continuous map ¢;: P — E(V;; Q™ x R¥) with
@i(id) = id, such that the following five conditions are satisfied, where h € P and
gi=gi(h) (1<i<8):

(1) ag; = ha|V;, and g; = g; on 7B for i = 2,4,6,8.

(2) If h respects Y € Y, then g; respects Y'*.

(3) If h,h' € P respect Y € Y and h = h' on UNY, then ¢;(h) = ¢;(h')
on V;,NY*.

(4) In the situation of 4.11(3) and defining ¢;(f) = (goi(f)\)))‘GA € Iz(Vi;
Q™ xRF¥), we have that o;(f)|[(V;NY™*) x A is, respectively, (a) LIP or (b) locally
L;-BL or (c¢) L;~BL with L; depending on (L,n,1) only.

(5) In the situation of 4.11(4), ¢:|ViNY™* is, respectively, (a) LQS or (b)
locally 7;—QS or (c) 7;—QS with n; depending on (7,n,7) only.

These properties will usually not be explicitly mentioned again as the con-
struction proceeds.

The maps ¢1,...,9s will be constructed consecutively. We construct P set-
ting first P = E(U, A’; X) and replacing then P gradually by smaller neighbour-
hoods, again denoted by P, whenever need arises.

Choosing P sufficiently small, we may assume that &; = sup { p(g;,id) | k €
P} for 1 <i <8 is as small as needed in the constructions.
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Thus, let A € P. We first construct
g1: Vi = (Q™\ Dy) x 4BP™™ x 4B™"? — (Q™\ D;) x RF

with g1(z,y,2) = (z,y,2) whenever |y| > % as follows. Observing that Vi is
compact (in Q™ x R*), choose a cover {W1i,...,W,} of Vi by open subsets of
(Q™\ D;) x R* such that a|W; is BL for each i and such that o|W; U W; is
injective whenever W; N W; # . Then choose an open cover {Gi,...,Gs} of the
space V; with a positive Lebesgue number such that G; C W; for each t. Finally,
choose P so small that haG; C aW; for each i. Now set ¢1|G; = (a|W;) " ha|G;
for 1 <i < s. Then g¢; is well-defined. As injective, g; is an embedding. For ;
small enough, (4c) and (5c) follow from 2.4 or 2.5, respectively.

We let V5 = (Qm x 4BP~™\ Dy x Ep_m(0.6)) x 4B™"P and define go: V, —
Q™ x RF by

g2=g1U (id]Qm x (4BP~™\ BP~™(0.6)) x 4B"—P).

Assuming ¢; < 0.1 we get an embedding. For ¢; small enough, (4c) and (5c¢)
follow from 2.4 or 2.5, respectively. R

We construct a self homeomorphism g3 of V3 = @ using 4.9. Lemma 4.9
implies ’D*(Q, A1, AUy, By, B V™ [Q) where

= Q™ x (R?™™\ BP™™(0.7)) x (R"7?\ 0),
= Q™ x (RP™™\ BP~™(0.61)) x (R"77\0),
= (Q™ x 4BP~™\ D, x BP~™(0.6)) x (4B™"?\ B"7?(0.7)) C V3,
B; = (Q™ x BP~™(3.1) \ D4 x BP~™(0.62)) x (B™"?(3.1) \ B"~?(0.9)),
B} = (Q™ x BP~™(3.2) \ D3 x BP~™(0.61)) x (B™"?(3.2) \ B"77(0.8)).
Let P; be the neighbourhood of id in E(Ul,Al,@) and ¢¥1: P1 x I — H(@)

the continuous map given by the above deformation statement. Assuming €3 to
be sufficiently small, we have that ¢g,U; C Q and g2|U1 € P1. Then we define

g3 = ¥1(92|U1,1). It follows that g3 =id on A; U (Q \ B}) and g3 = g2 on Bj.

We next construct
g4: Va=Q™ x 3BP™™ x 3B""P\ Ds x BP"™(0.7) x B"? —» Q™ x RF
with g4 =id on Q™ x (3Bp_m \Ep_m(0.7)) x 3B™ 7P, Define open subsets

= (Q™ x 3BP~™\ D5 x B?"™(0.7)) x 3B""?,
N3y =Q™ x 3BP~™ x (3B™?\ B"?)
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of Q™ x RF. Then V, = N, U N;, N; is compact in V; for ¢ = 2,3, and
N,N'N; C int B;. Thus, we can set g4 = (92|N2) U (g3|N3). Assuming €, and €3
to be sufficiently small, g4 is an embedding, and (4c) and (5¢) follow from 2.4 or
2.5, respectively.

We construct gs: Vs = D7 x BP"™(0.81) x B"?(2.5) — Q™ x R* with
gs = g4 outside Dg x BP~™(0.8) x 2B™~? by applying 2.13, together with 2.23
for (5¢) and 2.2 for (5b), to the embedding of Vs \ Ds x BP~™(0.7) x B™? into
Dg x BP™™ x 3B™ P defined by g¢4. This is possible if ¢4 is small enough by the
aid of an auxiliary BL homeomorphism.

We define g¢: Vs = Q™ x 3BP™™ x 3B" P — Q™ x R* with g¢ = id on
Q™ x (3BP~™\ BP~™(0.8)) x 3B""P setting

ge = (94IV6 \-l_je X Ep—m(0.8) X 2'E'n—p> U gs

and assuming that e, and e5 are sufficiently small. Again, (4c) and (5¢) follow
from 2.4 or 2.5, respectively. R
We construct a self-homeomorphism g7 of V7 = @ using 4.9, which allows us

to apply D*(Q; Az, Ay, Uy, By, By; V*|Q), where

Az = Q™ x (RP™™\ BP7™(0.9)) x (R"7?\ 0),
Ay = Q™ x (RP™™\ BP"™(0.8)) x (R"7?\ 0),
U =Q™ x 3BP™™ x (B"?\B"?(})),
By=Q™x BP™™ x (B"P(1)\ B"P(1)),

B; = Q™ x 2B?™™ x (B"7?(0.9) \ B*7?(1)).

Let P, be the neighbourhood of id in E(U,, AL; Q) and thy: Py x I — H(Q) the
continuous map thus obtained. Assuming e¢ to be sufficiently small, we have that
96Uz C Q and gg|U; € P;. Then we define g7 = 92(gs|U2,1). It follows that
g7 =1id on A, U(@\Bé) and g7 = g¢ on Bj.

We finally construct a self-homeomorphism gs of V3 = Q™ x R* setting
gs = ge on Q™ X BPT™ x B"P(3), gg = g7 on Q™ x BP~™ x (B""P\ B"7P(1)),
and gs = id outside Q™ x B?~™(0.9) x B"~?(0.9), and assuming that e¢ and &7
are small enough. To verify (5¢), we first apply 2.5 for gg|(Q™x BP~™x B"~P)NY*
and then 2.9. Similarly, to verify (4c), we first apply 2.4 and then 2.7.

4.13. Constructions in the case m = 0. We modify 4.12. Let V4 = U,
Vi = R = R"\ R?, and V3 = R". For a sufficiently small neighbourhood P
of id in E(U,A’; X) and for each 1 = 6,7,8, we construct a continuous map
@it P — E(Vi;R™) with ¢4(id) = id such that the conditions (2)—(5) in 4.12
are satisfied, where only Q™ x R* is replaced by R™ and Y* by Y. We set
ge = we(h) = h. We then construct g7 = ¢7(h) € H(R) as in 4.12 using
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D*(ﬁ;Ag,Ag,Uz,Bg,Bé;y|ﬁ), where the sets A,, A}, ... are as in 4.12 (delete
Q™) and which follows from the hypothesized D(R; y |1§) by 3.9. We finally con-
struct gg = @g(h) € H(R™) as in 4.12 (delete Q™). Then gs = h on B and
gs = id outside B? x B"7P,

4.14. Proof of 4.11. Suppose first that m > 1. Let P be as constructed in
4.12. If h € P, then gg restricts to a homeomorphism gy € H(Q*,0Q*). Assum-
ing that eg is sufficiently small, we can define g = ¢o(h) as the homeomorphism
Jo given by 4.6 and 4.7. We prove (1). There is a neighbourhood By of B in B*
such that ae = v on v™!By; see 4.12. Choosing P small enough, we have that
gv !B C v~ !By. Then, by 4.12(1), hv = hae = agie = agge = aeg = vg on
v 1B.

Suppose m = 0. Now v is the homeomorphism 7 |B®: B — BP x B"?,
Let P be as constructed in 4.13. Then we can define ¢qo(h) = To_lggTo. For (3a)
and (3b), cf. the proof of 4.7. For (4a), use 2.9. For (4b), use 2.3. o

4.15. Proof of 4.2. It is easy to find a BL homeomorphism w: R® —
R™ which respects each Y € ), and for which w = u on u_l[F"‘(-;-) X Fk]
and wB™ C B™(3) x B*. Then also W = (id x m)w: R® — R™ is a BL
homeomorphism respecting each ¥ € Y,. Let ¢o: P - H = HR",R"\
B™) and %: H x I — H be the maps given by 4.11 or 2.24, respectively. Set
o(h,t) = WY(po(h),t) W h for h € P, t € I. Then ¢ is a continuous
map P x I — E(U, A; X) satisfying the conditions (1), (2), and (5)-(8) of 3.2.
Choosing P so small that wB™ C hB' for each h € P yields 3.2(4). Let
B = B™(1) x BP~™ x B"7P. Since D™ C B™(3) if m > 1, choosing P suffi-
ciently small implies that hB C B whenever h € P. We can now verify 3.2(3).
Note that @ =v on v™'B. Let h € P and g = wo(h). Since 9(g,1) = g, using
4.11(1) we see that ¢(h,1) =wg 'w h=wg v 'h=wv™' =id on B. o

5. Basic deformation property of R" and of R}

In this section we prove that the statements D(R™;Y,) and D(R%; V) are
true.

5.1. Lemma. Let 0 < p < n > 1 be integers, let J = Ynp, suppose that
D(R™\R?; Y|R™\R?) holds, and let X, A, A", U, B, B' beasin3.2 with X =R"
and B C R?. Then there is a compact set By CC B' with B CC By such that
D(R™, A, A",U, By, B';Y) holds.

Proof. Let T be a rectilinear triangulation of R?. Let T" be the first barycen-
tric subdivision of T' and T" the second one. For a simplex o € T, let & be the
barycentre of o, H, = |J{7 |6 € 7 € T"}, and i(H,) = dimo. Then H =
{H, | o €T} is a handle decomposition of R? asin [RS, p. 82]. In fact,if 0 € T,
P,=\{H,| 7 €T, dimr <dimo}, H,=d (U{r|6€T7€T }\P,), and
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m = p —(H,), it is easy to show that (I:.ia,H,, H,n P,) is PL homeomorphic
to (2I™ x IP=™ ™ x IP~™ 2]™ x QIP~™). Setting H, < H, if H,NH, # 0
and i(H,) < ¢(H,) (i.e., if o is a face of 7) we obtain a partial order for H. Let
Ho and H;, respectively, be the sets of the handles H € H such that there is
H' € H with H < H' and with either H'NA # 0 or H' N B # 0, respectively.
Then H < H; € H; implies H € H; for 1 =0,1. Choosing T fine enough we may
assume that (JH, CC A’ and |JH; CC B'. Let H; \ Ho consist of s handles
Hi,...,H, with i(H;) <i(Hj41) forall j <s. Let H}; = (HoNH1)U{Hy, ..., H;}
and P U'H’ for 0 < j <s. Then P, =|JH; is a nelghbourhood of B in RP.

For each H € H with HN H; # 0 we have that i(H) < i(H;) if and only if
HeH,_,

Choose an open neighbourhood Vo CC A’ N B’ of Py in R?. Then, in-
ductively, for each j € {1,...,s} we can choose a PL embedding aj: 617 —
(int B'\ A)NR? and define an open neighbourhood V; CC B’ of P; in R? such
that, setting m = p —i(H;), we have that

o [Im(%) X 2Ip_m] = Hj,
a; Pj_y = 6I™ x (6IP7™\ 2JP7™),
a;[6I™ x (6IP7™ \ JP~™(L))] C Vi,
Vi= (Vic1 \ q[6I™ x IP"™]) Ua; [T™(%) x 6J77™].
Choose positive numbers €9 > &} > & > -+ > ¢, > &, such that Vp x
B"7P(eg) CC A'N B' and «;[6I7] x B" P(gp) C intB'\ A for 1 < j < s.
We show that the compact neighbourhood By = P, x B""?(1¢,) of B in int B’

is the desired set.

For 1 <5 <'s, choose a radial BL homeomorphism ﬂ] 6B" P — B”"’(s )
with 8;B"?() = B"P(¢;). Then v; = a;j x f;: 6I? x 6B ? — B'\ A is a BL
embedding, Whlch respects each Y € V. Let W; = V; x B"7P(¢g;) for j > 0. If
J 2 1,let m be as above, and let

Xj =1;[6J% x 6B"7],
Aj =i [5I™ x (BIP~™\ JP~™) x 5B™"?],
4% = yi[6I™ x (617 \ JP=(1)) x 6577,
Uj = 7;[5J% x 5B™77],
By =;[I™(3) x I"™™ x B"*(3)],
B} = y;[I™ x 2IP~™ x 2B"77).
Then D(R™\ R?; Y|R™\ R?) and 4.2 imply, by 3.5.2, that D;(X;; A, AN X,

Uj,Bj,B;-;y|Xj) holds. By 3.8 it follows that D(R"; 4;, A}, U, B; B' )7) holds
yielding a set P; and a map ¢;. Note that A} C W;_4, W ﬂB' C AU B,
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and W; \ B C Wj_y. Thus, if P} = P; N E(U,W;_1;R"), then ¢,[P, x 1] C
E(U,Wy;R™) and we may assume that [P} x 1] C P}y, for 1 <j < s. Since
Wy Cc A’ and By C W,, we conclude by 3.10 that P = P; n E(U, A';R"™)
is the desired set and ¢ = @ * -+ * (p1|P x I) the desired map satisfying
D(R™; A, A", U, Bo, B, Y). o

5.2. Lemma. The analogue of 5.1 holds where 0 < p<n and Y = y;;p and
where each occurrence of R™ is replaced by R% .

Proof. In the proof of 5.1 replace R™ by R% and B™~?(r) by B*"?(r)NR}"”
for r > 0; note that v; respects R} . Apply 4.3 in place of 4.2. o

5.3. Lemma. The statement D(R™\ R?; Vp,|R"™ \ R?) implies D(R™; Ynp)
whenever 0 < p<n>1.

Proof. We prove D = D(R™; A, A',U, B, B'; Ynp). Choose a closed set A" CC
A’ with A cC A". By 5.1 there is a compact set By CC B' with BNR? CC By
such that
D'= D(Rn’ A”’ A,, U, B07 B') ynp)

holds.
Choose a compact set By CC By with BNR? CC B;. Then B\ int B; is

a compact set in R" \ RP; choose a compact neighbourhood B" C B’ of it in

R™\ R?. Choose an open neighbourhood U; of B" with U; compact in U\ RP.
From D(R™\ R?; V,,|R™ \ R?) it follows that

Dl Rn;AUBl,A”UBO,Ul,B intBl,B";yn
P

holds (see 3.5.2). By 3.8 we can drop here the subscript 1 from D; and from Uj;.
Thus,
D"=D(R"™ AUB,,A"UBy,U,B,B'; Yp)

holds. But D' and D" imply D by 3.10. o
5.4. Lemma. The statement D(R% \ R?; Y1 |R% \ R?) implies D(RY}; V;1)
whenever 0 < p<n.

Proof. In the proof of 5.3, replace (R", Vnp) by (R},Vy,), and apply 5.2 in
place of 5.1. o

5.5. Theorem. The statement D(R"; Y,) holds for each n > 1.

Proof. For 0 < p <n,let y,(f) be the family of thesets Y =Yy x---xY, € Y,
such that p of the factors ¥; C R! are of the form R} or R and the rest of the
form {0}. For suchaset ¥ € VP | define an openset Y*=Y*x.--xY> in R"
letting ¥;* = IntY; if ¥; = RY or RL and letting ¥;* = R! otherwise.
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Let Z={Z| Z Cc R" open, D(Z;Y,|Z) holds }. We show by induction on
n—p that {Y*|Y € y,(f’)} C Z for each p, 0 < p<n. Consider Y € y,(,”) as
above. Then Y*\Y = [J{Y"™ | Y c Y’ € YTV} if p < n. Hence, it follows
from the obvious validity of D(0; {0}) if p = n or from the inductive hypothesis
and 3.11(i1) if p< n that Y*\Y € Z. Let g Y* > R! for 1 <:<n bea LIP
homeomorphism. Then, for a suitable orthogonal map o of R™ permuting the
standard basis of R", we get a LIP homeomorphism g = o(g; X+ -Xgn): Y* - R"
for which g[Y*NY] = R?. Now note that Y’ € Y, meets Y* ifandonlyif ¥ C Y.
Hence, g carries the family (Vn|Y™*)\ {0} onto Vyp,. Thus, Y* € Z by 3.13 and
5.3. This completes the induction.

The case p = 0 then implies that R* € Z. o

5.6. Theorem. The statement D(R%; V) holds for each n > 1.

Proof. Modify the proof of 5.5 as follows. Replace ), throughout by Y.
Excluding the definition of g whenever Y, = R}, replace R* by R}. If Y, =
{0}, let Yy =R} and g, =id: Y} —» R}, replace Ynp by V7, and apply 5.4 in
place of 5.3. o

5.7. Corollary. The statements D*(R™; Y,) and D*(R%; V') hold for each
n>1.

Proof. 5.5, 5.6, and 3.9. o

5.8. Remark. (This remark and a similar one, 6.3, are only needed in order
that in 7.2 the set ON could be included in ).) In the setting of D(R";Y,) in
5.5, we can add the modifications of the conditions (7) and (8) of 3.2 to the list
of 3.2 in which Y is given as the union of two arbitrary sets Y7,Y; € ), that are
l[-dimensional half-spaces for some [ > 1 with Y3 NY,; = 9Y; = 3Y, and in which
f respects Y1 X A and Y3 x A and h respects Y; and Y;. For the modifications of
(8a) and (8¢c) with [ =1, i.e., for the condition (8') in 4.4.2, this is seen from 4.4.2
and the proofs of 5.1, 5.3, and 5.5. The other cases of the modified conditions
easily follow from the respective original ones for P small enough (for (8) use 2.3
and [Va,, 35.1]).

A similar remark concerns 5.6 and 5.7.

5.9. Remark. In the settings of 5.5 and 5.6, the condition (8b) of 3.2 can
be strengthened to the form in which ‘locally n—QS’ is replaced by ‘ K-QC’ and
‘locally n*-QS’ by ‘K*-QC where K* = c¢K" with ¢,v > 1 independent of
(h,t,K)’. An analogous strengthening then also concerns 5.7 and, with ¢ and v
depending only on n, the results of Section 6 (excluding 6.3).

To achieve this, only minor modifications in the proofs are needed. In par-
ticular, let fi,...,fs be as in the proof of 4.9, and choose r > 0 such that the
sets Q) = f7'B™(r) cover Q™. Let Y € Yy with dimY > 2. Then the open
embeddings f; x id|: (Q; x R®*™™)NY* =Y for 1 <i < s form an atlas for Y*
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the coordinate changes of which are BL and, thus, QC. In connection with ¥*
define QC embeddings referring to this atlas (cf. [Ku, 1.2]).

6. Main results in Euclidean spaces

6.1. In this section we apply first the previously established statements
D(R™; Yy) and D(RTY; Vi) to prove Theorem 6.2, which generalizes both of them
and also the result [TV,, 3.4] of Sullivan’s theory. We then use this theorem to
prove Theorem 6.6, an analogue of it for the majorant topology.

6.2. Theorem. Let n > 1, let (X,)) denote either (R™, V) or (R%,V;}),
let U be an open subset of X, let B,B' C U be compact with B CC B' in U,
and, for each v in a finite index set T', let Y, € Y and let Cy and C. be open
subsets of U NY, with C., CC Ci, in UNY,. Let Q be a neighbourhood of
id: U — X in E(U;X). Then there exist a neighbourhood P of id in E(U;X)
and a continuous map ¢: P x I — Q such that if hy = ¢(h,t) for h€ P, t €I,
then the conditions (1)-(6) of 3.2 and the following ones are satisfied:

(1) If y €T, if h € P respects Y,, and h|C! = id, then h|C, = id for
each t € I.

(8) Let A be a metric space, let f = (fa)aen € Ia(U; X) with fy € P for
each A € A, and define f* = ¢*(f) € Inx1(U; X). Suppose that v € T, that f
respects Y, x A, and that f|C! x A is (a) LIP or (b) locally L-BL or (c) L-BL.
Then f*|Cy x A x I is, respectively, (a) LIP or (b) locally L*-BL or (c¢) L*-BL
with L* depending only on L and n.

(9) If y €T, if h € P respects Y., if h|C! is (a) LQS or (b) locally n-
QS or (c) n-QS, and if t € I, then h|C, is, respectively, (a) LQS or (b) (if
dimY, > 2) locally n*-QS with n* depending only on n and n or (c) 1—-QS with
i depending only on n and the sets given in the first sentence of the theorem.

Proof. Let « € (0,1]. This scaling number will be fixed later. Let p denote an
integer variable with 0 < p < n. Let T be the cell decomposition of X consisting
of all closed p-cubes for all p with vertices in (24Z™) N X and with side length
2k. Let T, = {Q € T | dimQ@ = p}. For each @ € T, choose an orthogonal
map Sg: R™ — R"™ which permutes the standard basis of R" such that if ag is
the centre of @ and pg(z) = kSgz + ag for x € R™, then pgl? = Q. Note
that if Y € V,, then poJ"NY # @ if and only if @ C Y. It follows that
{J”ﬂ,uélYH/eyn} c{J"NY |Y €V U{0} }. If Q C OX, we choose Sg
in such a way that it and, hence, pg respect X.

For all p, choose numbers 0 < app—p < **+ < apo < ap—1 < ap < 1 and
0 < bpn_p <+ <bpo<by_1<b, <1 depending only on n and p such that
1—ap > b, and that bp_1 n_pt1 > 1 —apn_p if p>1. Forall p, Q € T, and
integers j, —1 < j < n—p, define sets U, = JP(ap) X J"7P(b,), Q" = (uUp)NX,
By i =IP(ap ;) x I"P(b, ), and @’ = (ugBp,;j) N X in R™. Then

QinQ;=10 if Q,Q:€T, Q1¢ Q2 and Q2 ¢ Qy;
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W@ 7 |QeTy, 0<j<p}dUT,.

Obviously, for all p, ¢=0,1, and Q € Ty, theset A}, ; = JP N pug [U{ Q- j—i |
@Q1eT;, 055< p}] is independent of Q. Let A,; = A}, ; x J"7P. Then

pelApi NUINX =@ N (L{QT7 " Q1 €Ty, 0<j<p)).

For each p, let @, be the neighbourhood of id: U, — J™ and 1, the contin-
uous map given by the statement D(J"; Ap o, 4p,1,Up, Bp,o, Bp,—1; Vn|J™), valid
by 5.5 and 3.11(i). Similarly, for each p < n, let Q;’ be the neighbourhood of
id: UpNnJ} — J} and 1/)1‘,*‘ the continuous map given by the statement D(J_’f_;
ApoNJR Ay N IR U, N JE, BypoNJT,Bp 1 N JFVE|JF), valid by 5.6 and
3.11(3).

Looking more closely at the situation of the theorem, we choose for each v € T
a closed neighbourhood C% C C! in UNY, of the closure C’ of Cy in UNY,.
Define a finite subcomplex

T°={Q€eT|QcCQ forsome Q, €T with QN B #0}
of T and its subcomplexes
T"={QeT’| QC Q; for some Q; € T° with QiNCy#0} (ye?l).

Then Q*NB =0 if Q € T\T°. We fix k so small that Q* C B' if Q € T°,
Q*F‘IY cClifyel' and Q € T, and Q*ﬂCv—(Z)lf'yEFandQeTo\T7
Let T) = TOOT For each v, define open subsets C}, = C;' D C3 D --- D CI of
UﬂY., by C? = C21\U{Q* | Q € TP\T"}. Then &,cc;l,and @'*OY.,CC.{
fQeT", -1<j<n,and dim@ > j. Set B_; = and

=H{Q@"7|QeT), 0<j<p}CU foreach p.

Then B, D B, B,\B,_1 C U{Q°|Q € T} }, and, for each Q € Ty, noldpa N
Up)NX =Q*NBy_y and

/LQ[(ApoﬂUp)UBpo]nX::Q*ﬂB .

Let 0 < p <n. Foreach Q € T), let (Ug,Pq,¥q) denote either (U, Qp,%p)
whenever Q ¢ 0X or (U, N J_,_,Q 1/)"') whenever Q C 0X. Then puqUq = Q*.
There is a neighbourhood P, of the 1nclu51on map in E(U,B,—1;X) such that
for each h € P, and for each Q € T1?7 we have that hQ* C pugJ" and that
hg = ,ualh,uQ|UQ € Pg. We define a continuous map ¢,: Pp x I — E(U; X) by
setting

ep(h1)|Q" = popq(he t)ng'lQ* Q€T
¢pht)=h on UNU{Q™'|QEeT,}.
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Then ¢, satisfies the conditions (1), (2), and (4)—~(6) of the theorem in place of
¢, and ¢,[P, x 1] C E(U, Bp; X). Thus, we may assume that ([P, X 1] C Ppyy
if p < n and that ¢p[P, x I] C Q for each p. Hence, P = Py and ¢ =
@n k% por P X I — Q satisfy the theorem except possibly for the conditions
(7)—(9). We finally show that ¢ also satisfies (7) and, if Py, ..., Py are sufficiently
small, (8) and (9). Here we assume that the composition of ¢q,. ..,y is done in
such a way that ¢(h,t) = ¢,(¢(h,p/(n+1)),(n+1)t—p) if 0<p<n, heP,
and t € I, = [p/(n + 1), (p + 1)/ (n + 1)].

In proving (7)-(9), we may assume that I' consists of only one element, ~,
say. We first prove for each p the conditions (7,), (8,), and (9,) which we ob-
tain from the conditions (7), (8), and (9), respectively, of the theorem replacing
(P,¢,C,,CL) by (Pp,¢p,C2,C?). Let P = {h € Pp | h respects Y, } and
PT =P, . Let Ty = TVDTI?. Recall that Q*NY,, C C? if Q € T, and note that
Q*NC? =0 if Q € TY\T, . It follows that if (h,¢) € P) x I, then ¢,(h,t) defines
a homeomorphism C? — hC?, which is the identity whenever h|CE = id. Thus,
(7p) holds. This implies that (7) also holds. Now, if @ € T,/, let Y, denote
the element of V,, U {0} for which pugJ" NY, = ugl[J™ NY,q] (then Y, C R}
whenever @ C 90X ). Furthermore, let U, =UgNY,q.

To prove (8,), let A be a metric space, and let f = (fi)aea € In(U;X)
be such that fy € P) for each A € A and that f|C% X A is (a) LIP or (b)
locally L-BL or (c¢) L-BL. Consider f® = @2(f) € Inx1(U;X). Let Q € T}.
Let A, denote A with the metric of A divided by x. Then the homeomorphism
(J"NY,0) X Ax = (n@J"NY,) X A defined by pq xid multiplies the distances by
&. It follows that (fag|Usqg)ren, € Ia, (Uyq; Y4q) is (a) LIP or (b) locally L-BL
or (¢) L-BL, respectively. Hence, (¢q(frq, t)]UA/Q),\eAMtE[ € In, x1(Uyq; Yyq) is
(a) LIP or (b) locally L;-BL or (¢) L1-BL, respectively, with L; > L depending
only on L and n. A direct estimation shows that then fP|(Q*NY,) x A x I
is, respectively, (a) LIP or (b) locally L;-BL or (¢) L;-BL. It follows that
f(p)[C$ x Ax I is LIP in (8pa) and locally L;-BL in (8,b). In (8,¢), for P, small
enough, it follows from 2.4 that f®|(U{Q*NY, | Q € Ty }) x Ax I is 2L,-BL
and then from 2.7 that f®|C? x A x I is 4L,-BL.

To prove (8), choose an open subset C of Y, with C, CC CI/ CC C7 in
UNY,. We can choose P so small that for each (h,t) € P¥ x I,

h[B'NCINR[(B'NY,)\CY] =0, A[B'NCIINk[(B'NY,)\CL] =8,

implying, as hs[B'NY,] = h[B'NY.], that h(B'NC,] C R[B'NCY] C hy(B'NC7]
and, thus, that h,C, C hCJ C hyC}. Now suppose that A, f, f*, v, L are as in
(8). Then the conditions (8¢z), ..., (8,¢) for 7 equal to a, b, or ¢ imply that
f*|CEx AxI, is for each p, respectively, (a) LIP or (b) locally L'-BL or (¢) L'-BL
with L' depending only on L and n. Consider (8c). Since (z,A,t) € f*[CyxAxI]
implies that (z,},s) € f*[C} x A x I] for each s € I, the proof of 2.10 shows
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that f*|C, x A x I is 2L'-BL. The conditions (8a) and (8b), with L* = 2L’ are
verified similarly but more easily.

To prove (9,¢), suppose that h € Py is n-QS on CZ. Let @ € T,). Since puq
is a similarity, hg|Uyq is n—-QS. Hence, ¢q(hq,t)|Uyq for t € I is n;-QS with
n1 depending only on n and n. Thus, also ¢,(h,t)|Q* NY, is 7;-QS. It follows,
by 2.5 and 2.9, that if P, is small enough, ¢p(h,t)|CE for t € I is 72-QS with
n2 not depending on (h,t).

The proofs of (9,a) and (9,b) are similar but simpler. The condition (9)
follows. o

6.3. Remark. To 6.2, we can add the modifications of the conditions (5)—(9)
in which Y and Y, are of the same form Y; UY; as in 5.8 and in which &, A', and
fa for X € A respect Y; and Y,. For (8) and (9) this is shown by an application
of 5.8 to the proof of 6.2. We can similarly strengthen 6.4, 6.6, and 6.7 below.

The following result generalizes D*(R"; V) and D*(R7}; V).

6.4. Corollary. The modification of 6.2 holds where Q is a neighbourhood
of id in H(X), where the conditions (2)-(4) and (6) of 3.2 are replaced by the
respective conditions of 3.6, and where in (8) and (9) the set C., is replaced by
CyU(Y,\ B).

Proof. Let B; and Bj be compact sets with B CC B; CC B} cC B’'. For
each 7, let CJ be an open subset of Y, with C, CC CY CC C! in UNY,. Apply
6.2 replacing (B, B',(Cy)yer) by (Bi1,B{,(CY)ver) and substituting E(U; X) for
Q. Let P be the neighbourhood and ¢, the map thus obtained. We may assume
that hB C By if h € P and (cf. the proof of 6.2(8)) that hCy C po(h,t)CY for
each h € P respecting Y.,. Define ¢(h,t) extending o(h,t)"1h by id. If P is
small enough, ¢ satisfies (8¢) and (9¢) by 2.7 or 2.9, respectively. o

6.5. Majorant topology. The next theorem is a modification of 6.2 to the
case where B is allowed to be a possibly noncompact closed subset of U. We
now must consider only embeddings h € E(U; X)) that are sufficiently close to the
inclusion map in the majorant topology. It can be shown by the aid of [Si, 1.7]
that if X is a locally compact, locally connected metric space and U C X is open,
there is a majorant neighbourhood P of id in E(U;X) such that AU = U for
each h € P,ie., P C H(U). Thus, without loss of generality, it suffices to only
consider self-homeomorphisms of U.

Let X be a metric space. We will use the fact [KS, pp. 46-47] that relative to
the majorant topology, H(X) is a topological group. For the majorant topology
of I(X), note that for each € € C'(X x I;(0,00)) thereis &' € C(X;(0,00)) with
e'(z) < e(z,t) [KS, Lemma on p. 47).

6.6. Theorem. Let n, X, Y, U, B, B', and (Y,,C,,C’) er be otherwise
the same as in 6.2, but, more generally, suppose that B and B' are only closed
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in U, not necessarily compact, and allow I' to be possibly infinite still supposing
that the family (C)~er is locally finite in U. Let Q be a neighbourhood of id in
H(U) with respect to the majorant topology. Then there exist a neighbourhood
P of id in H(U) with respect to the majorant topology and a continuous map
¢: P x I — Q (that is, in the compact-open topologies of P and Q) satisfying
the conditions (1)—(9) in 6.2, with (9c) excluded, such that the induced continuous
map ¢*: P — I(U) is also continuous in the majorant topologies of P and I(U).

Proof. We may assume that @ = H(U) N N.(id) for some ¢ € C(U;(0,00)).

We first prove the special case where B is the union of a disjoint family
(Bj)j>1 of compact sets each open in B. Choose for each j an open neighbour-
hood U; of B; in U with U; C B' compact such that the family (U;);>1 is disjoint
and 1ocally ﬁnlte in U. Then for each j choose a compact neighbourhood Bj L of
B; in U; and a positive number ¢; with £; < min s—U_j. For each j, we apply 6.2
with Uj, Bj, B}, I'y={~el | CyNU; # 03, cynUj, C;ﬂU]‘, E(Uj;X) substi-
tuted, respectively, for U, B, B', T, C,, C., Q; let P; be the set and ; the map
we thus get. Then there is a number §; > 0 such that if P; = E(Uj;; X) N Ne,(id),
then P; C P; and [P} x I] C N(id). Choose 6 € C(U;(0,00)) such that § < e
and §(z) < 6 for x € Uj, j > 1. Let P = H(U)N Ng(id). For he P, t € I,
define ¢(h,t) = hy in Q by

(o) = 4 PilhlUst)(2) ifeelj, 521,
(@) = h(z) if 2 € U\ Uj»1Bj-

Then ¢ is the desired map if only for (8c) we choose the €;’s and § more carefully
so as to satisfy, in addition, 3¢; < d{U;,Uy) if j #k, 3¢; < d(B;,U\U;)if j > 1,
and 36(z) < d(z yUj»1Bj YifzeU\ Uj»1U;- Namely, these inequalities yxeld
the necessary estimates for d(¢*(f)(z, A t) (' N ) if z e B} and either
o' €Uk (k#7) or ' ¢ Ui Uk

We now prove the general case. Choose a closed subset B" of U with B CC
B" cC B' in U. For each v € T' choose open subsets C} and C3 of ¥, (C3 is
needed only for (8¢c)) such that C, cC C3 cC CJ cC C’ in U ﬂ Yy and such
that (CJ)yer is locally finite in U. Using [Sl 1.7] i is easy to see that assuming ¢
to be small enough, we have for each v € T’ that AC, C h'C3 whenever h,h' € Q
respect Y. In a standard way, choose a family (D ]) j>1 of compact subsets of U
whose interiors (in U) cover U and for which D;ND; =0 if |¢ — j| > 1. Then
E; = U;>1D2i-1 and E; = |J;5,;D2; are closed in U, and U = int E; Uint E,.
Let By = BN Ey and B} = BN Ey, k =1,2. There is an open neighbourhood
C of B\int E; in U with C cC C' = int BY in U. We can then apply the special
case above substituting By for B and the family (Y,,C3,C) er, extended by
(X,C,C"), for (Y,,C4,C)yer. Let P2 C Q be the set and ¢o: Po X I — Q
the map thus obtained. The sets C' and C' will only be needed in (7); note that
B C B, UC. We can now again apply the special case, with B}’ substituted for
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B, CJ for Cy (v €T), and P, for Q. Let P be the set and ¢1: P x I — P,
the map thus obtained. Then ¢ = ¢y xp1: P X I — Q, defined as in 3.10, is the
desired map. o

6.7. Corollary. The modification of 6.6 holds where the conditions (2)—(4)
are replaced, respectively, by the conditions hy = id, h1|B = h|B, and hy|U\B' =
id.

Proof. By (1), we may assume that @ = H(U). Apply 6.6 for Q = H(U)
with B and (Cy)yer replaced by a set B" and a family (C!)yer as defined in
the proof of 6.6. Let P be the set and (o the map thus given. We may assume
that AB C B" if h € P and that hC C @o(h,t)C’] if h € P respects Y,. Set
o(h,t) = @o(h,t)"'h for he P, t€l. o

7. Deformation on manifolds

7.1. Terminology. Let 0 < p < n be integers, and let CAT denote either LIP
or LQS. We call a separable metric space M a CAT n-manifold if each point of
M has an open neighbourhood CAT homeomorphic to an open subset of R7}. (A
definition based on atlases is essentially equivalent; see [LT, 4.7].) A subset of a
CAT manifold M is called a CAT submanifold of M if it is a CAT manifold in
the induced metric. Such is the boundary M of M.

Define Yoo ={0} CR", Y, ={z€R" |21 = =2,_1 =0, 2, >0}
ifn>1l,and Vpop={c€eR" |21 = =24p =0, Tpy1 >0, 2, > 0}
if 2<p<n. Wecall a subset N of a CAT n-manifold M a locally CAT flat
p-submanifold of M if for each point ¢ € N there exist an open neighbourhood V
of z in M, an open subset W of R™ or of R} whenever p < 1 or of R? whenever
p > 2, and a CAT homeomorphism f: V' — W such that f[V N N]=WNY,,.
This means, in particular, that N is a CAT submanifold of M, which meets OM
transversally in a certain sense.

If N is a locally CAT flat p-submanifold of M, for each point z € N
there exist an open neighbourhood V' of z in M and an open CAT embedding
f:V = R} such that VNN = f~'R% (see [TVj, 3.12] for CAT = LQS).

7.2. Setting. In this section we consider deformation of embeddings on man-
ifolds in the following three cases. In Case 1 and in Case 2, we let CAT be, re-
spectively, LIP or LQS, let M be a CAT n-manifold (n > 0), let N be a closed
locally CAT flat p-submanifold (possibly empty) of M (0 < p < n) or of OM
(0<p<mn),andlet Y ={M,dM, N, dN, NNOM, cl(ON \ M), (N n dM),
I (M\N),dcl(M\N),cl(0M\ N)}. In Case 3, we let CAT = LIP, let N be
a LIP (n — 1)-manifold (n > 1), let M be the product LIP n-manifold N x I,
and let Y = {M,0M,N x 0,N x 1,0N x I,ON x 0,0N x 1}. Note that in all
three cases the elements of ) are closed CAT submanifolds of M. In Cases 1 and
2, note further that if N ¢ OM, p > 1, and h is an open embedding of an open
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subset of M into M which respects ON, then h respects N N OM = ON N OM
and cl(ON \ OM), too.

In the proofs of 7.3-7.6 we assume that n > 1; these results are trivially true
if n=0.

7.3. Theorem. In Cases 1 and 3, D(M;)) and D*(M;)) hold. In Case 2,
Dqs(M;Y) and Dgg(M;Y) hold.

Proof. In Cases 1 and 3, D(M;)Y) immediately follows from 5.5, 5.6, 5.8, 3.13
(cf. the proof of 7.4), and 3.12. By 3.9, D*(M;Y) follows. The theorem for Case
2 is proved similarly (recall 3.7.1). o

We devote the rest of this section to generalizations of 7.3.

7.4. Theorem. In Cases 1 and 3, the analogues of 6.2 and 6.4 hold where
(X,Y) is (M,Y), where L* in (8) depends only on L and the family 7 of all the
displayed subsets of M, and where n* and 7j in (9) depend only on n and T.

Proof. We first deduce from 6.2 its analogue in question—let it be called
Theorem A—assuming, without loss of generality, that @ = E(U; M). We choose
open subsets Vy,...,V, of U in B’ such that for each V; there is a LIP home-
omorphism g¢; of V; onto R™ or onto R%} having the following properties: The
sets A; = g7 'B™ cover B, and for each Y € Y, either ¢;[V;NY] € Y, U {0} or,
in Case 1 with p > 2, with NNdV; # 0 # ONNIntV;, and with ¥ = ON or
(if p=n)Y = dcl(M\ N), the set g;[ViNY] is the union of two half-spaces
in Y, meeting at their common boundary. Let M; = gi_lB”(E)), U; = gi—lB”(4),
B! = g7'B™(3), and D! = ¢;'B™(2). Let A} = A;jU---UA;if0<:<r.
Define inductively an open neighbourhood D; of A¥ in U as follows. Let Do = 0.
For ¢ > 0, choose an open neighbourhood D} CC D;_; of A}_; in U and set
D; = D, U D}. Finally, if ¥ € ', choose open subsets C?,, Cf,, ey C','Y"‘1 of
UNY, such that CY=C!, CI*! =C,, and Ci CC Ci'inUNY, for i >1.

Let 1 <i<r. As g;|M; is BL, 6.2 and 6.3 imply that Theorem A holds if we
substitute (M;, Y|M;, U;, DY, B!) for (M, Y, U, B, B') and (Y, N M;, C;ﬂ U;,
C,iy_l N U,‘),yer‘ , extended by (M,‘, D; NU;, D;—1N U,‘), for (Y.y, C—Y, ny)‘yer. Let ’P;
be the set and ¢} the map thus obtained. Then there is a neighbourhood P; of id
in E(U; M) such that h € P; implies hU; C M; and h|U; € P;. For (h,t) € P;xI,
extend @'(h|U;,t) by h|U\U; to pi(h,t) € E(U; M). Then ¢;: PixI — E(U; M)
satisfies Theorem A in place of ¢, with the possible exception of (8¢) and (9¢), if
B, C,, C, (v €T) are replaced by DY, C:, Ci7' (y € T'). Moreover, if h € P;
and h|D;_; = id, then ¢;(h,1)|D; =id. If P; is sufficiently small, (8c) and (9c)
follow from 2.7 or 2.9, respectively.

We may assume that ¢;[P; X 1] C Pit1 for ¢ <r. As D, D B, it follows that
P =P; and ¢ = @, *-- - * p; satisfy Theorem A, at least if for (8c) we choose P
so small that h,C, C hyCJ for all ¢,¢' € I whenever h € P respects Y, ; cf. the
proof of (8¢c) in 6.2. '
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The analogue of 6.4 in question is deduced from Theorem A as 6.4 is deduced
from 6.2. o

7.5. Theorem. In Cases 1 and 3, the analogues of 6.6 and 6.7 hold where
(X,Y) is (M,Y) and where the parts (8a) and (9a) only are retained of the
conditions (8) and (9) stated in 6.2.

Proof. The analogue of 6.6 is deduced from 7.4 as 6.6 is deduced from 6.2,
and it implies the analogue of 6.7 as 6.6 implies 6.7. O

7.6. Theorem. In Case 2, the analogues of 7.4 and 7.5 hold where the
condition (8) is deleted.

This is proved as 7.4 and 7.5.

7.7. Remark. For CAT = TOP, i.e., for topological manifolds, 7.4 and 7.5
with (8) and (9) deleted are proved similarly. These results are due to Chernavskif
[Ch, 1.22 and 5.1] and Edwards—Kirby [EK, 5.1 and Note after it, 6.2 and Remark
after it, 7.2].

8. Applications

8.1. Local contractibility. By [Ch, 1.14] and [EK, 1.1], the homeomorphism
group H(M) of a compact topological manifold M is locally contractible. If
(M,Y) is as in Case 1 or in Case 3 of 7.2 and if M is compact, the statement
D(M;0,0,M,M,M;Y), valid by 7.3, implies that along with the group H(M),
certain of its subgroups are locally contractible (cf. [EK, 7.3]). If (M,D) is as in
Case 2 of 7.2 and M is compact, a similar fact follows from Dgs(M;Y). It is
well known ([Ch, 1.18], [EK, p. 77]) that if M is a noncompact manifold, H(M)
need not be locally contractible. However, if we consider H(M) and I(M) with
the majorant topology, a weak form of local contractibility holds even then ([Ch,
1.13], [EK, 6.2]). In our case this is shown by 6.6 and by its analogues in 7.5 and
7.6 for the group H(U) considered and for some of its subgroups if we substitute
U for B and for B' and (Y, UNY, UNY)yey for (¥y,Cy,C!)yer.

Chernavskii [Ch, 1.21] showed that H(M) is locally contractible also when-
ever M is homeomorphic to the interior of a compact manifold. We prove two
results in this direction, Theorems 8.2 and 8.4, the first of which implies that along
with H(R™), certain of its subgroups are locally contractible.

8.2. Theorem. Let n > 1, and let (X,)) denote either (R™,Yn) or
(R%,Y1). Then there exist a neighbourhood P of id in H(X) and a contin-
uous map ¢: P x I — H(X) such that if h€ P, t€ I, hy =¢(h,t),and Y € Y,
the following conditions hold: (1) h = id implies h, = id; (2) ho = h; (3) hy =id;
(4) RY =Y implies h;Y =Y ; and (5) if kY =Y and if h|Y is (a) id, (b) LIP,
(c) L-BL, (d) LQS, (e) locally n-QS, or (f) n-QS, then h:|Y is, respectively,
(a) id, (b) LIP, (c) L*-BL, (d) LQS, (e) (if dimY > 2) locally n*-QS, or (f)
n*-QS with L* depending only on (L,n) and n* only on (n,n).
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__Proof. Let Pq be the set and ¢: PoxI — H(X) the map given by D*(X;0,0,
X,B"nX, 2B"NX; V). Let P =PyNH(X). For h e P,let g = YP(h,1) € H(X).
Then g =h on B"NX and d(g,id) < co. Set

o(h,1 —t)(z) =tg(t 2g " h(tz)) for 0<t<1, z€X,

and ¢(h,1) =id. Then ¢ is the desired map. O

8.3. Remarks. 1. An analogue of (5b) and (5¢) for A-isotopies can be added
to 8.2. Now L* may depend also on t. The case of locally L-BL A-isotopies also
applies.

2. A more elementary proof for 8.2 (with 8.3.1) in the case (X,)) = (R",
{R°,R,...,R"}) is provided by a construction of the bounded homeomorphism
g using the method of [EK, Section 8], and then also the dimensional restriction
in (5e) can be dropped. Moreover, choosing in this proof the auxiliary maps from
CAT = PL or DIFF, we can add to the condition (5) of 8.2 a part (g) where h¢|Y’
is a CAT embedding whenever h|Y is a CAT embedding. In this way and with
Y = R", (5g) was observed by Gauld [Ga, Proposition 1] and (5b) by J. Vaisala
(unpublished).

8.4. Theorem. Let Q be a compact LIP manifold, let P be a closed locally
LIP flat submanifold of Q with PN 9dQ = OP, and let M = IntQ and N =
Int P. Then there exist a neighbourhood P of id in H(M) and a continuous map
©: P x I — H(M) satisfying the conditions (1)~(6), (7a), and (8a) of 3.2 in the
case X =U = B = B' if (M,{M,N}) is substituted for (X,}).

Proof. We make use of a LIP collar of (8Q,0P) in (@, P), provided by an
obvious modification of the proof of [LV, 7.4]. So, let ¢: 0Q x [0,1) — Q be
an open LIP embedding such that ¢(z,0) = @ for each z € 9Q and such that
¢™1P =98P x[0,1). Then B = M\c[0Q x[0,3)] is compact. By D(M; {M, N}),
valid by 7.3, it suffices to prove the theorem with P = H(M,B). We then prove
the theorem with [P x I] C P. In this way we may replace M by 0Q x (0,1),
N by 0P x (0,1), and B by 0Q x [3,1).

Define a LIP homeomorphism 6;: 8Q x (0,t) — 8Q x (0,1) for t € (0,1] by
§y(z,s) = (z,s/t). If h € P, we define ¢(h,1—t)=h;_ € P for t € (0,1] by

_ [ 67 héy(z) if z € 0Q % (0,1),
hi—4(z) = {mt t if z € 0Q x (t/2,1),

and set ¢(h,1) = h; =id. Since §; ' is 1-Lipschitz and d(6;t, 651 < |t =t if
t,t' € (0,1], we get that if h,h' € P and (z,s,t),(z',s',t") € 0Q x (0,1) x I with
s<t,s' <t then

d(hi—4(z,8), hi_y(z', ")) < d(h(z,s/t), R(z',s'/t") + |t =]
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It follows that ¢ is continuous. Clearly ¢ satisfies (1)-(6) and (8a). To see (7a),
use the above inequality to establish that ©*(f)|{(z,s,A,t) € 0Q x (0,1) x Ax I |
(z,8) €Y, s <1—t} is locally Lipschitz, and note that *(f)™! = *(f~1).

o

8.5. Remark. If ¢ in 8.4 is constructed as in the proof, the continuous map
@*: P — I(M) is also continuous in the uniform topologies .

8.6. CAT isotopies. We let CAT denote either LIP or LQS. Let X and
A be metric spaces, U C X open, and f = (fa)aear € Ia(U;X). We call f
a CAT A-isotopy if f: U x A — X x A is LIP whenever CAT = LIP or if
fa:U — X is LQS for each A € A whenever CAT = LQS. A bijective isotopy
h = (h¢)ter: X x I — X x I with hg =id is called an ambient isotopy of X ; then
h is said to be supported by a set D C X if h|(X \ D) x I =id.

We give three consequences of 7.3 to isotopies. The first of them deals with
covering CAT isotopies by ambient CAT isotopies.

8.7. Theorem. Let CAT, M,Y be as in Case 1 or in Case 2 of 7.2, let
U C M beopen, BC U compact, f: U xI — M x I a CAT isotopy, and D
a neighbourhood of the compact set |J,c;ft+B in M. Then there is an ambient
CAT isotopy h of M supported by D such that f = h(fy xid) on B x I and
such that the following condition holds:

(1) Let Y € Y. If f respects Y x I, so does h. If, in addition, f = fy x id
on (UNY) x I, then hlY x I =id.

This CAT analogue of [EK, 1.2] is proved as [EK, 1.2] is proved.

For CAT = LIP, 8.7 (without (1)) is already given in [SS, p. 519]. A gener-
alization of 8.7 to the case of a noncompact B and of a general parameter space
A can be obtained straightforwardly modifying [Si, 6.5 and 6.6].

8.8. Theorem. Let CAT, M, Y be as in 8.7, let B C M be compact, and
let U be an open cover of B in M. Then every ambient CAT isotopy f of
M supported by B can be written as f = f)f2 . f*%) where each fU) is
an ambient CAT isotopy of M supported by some member of U such that for
each Y € Y, if f respects Y x I or is the identity on Y x I, so does each fU),
respectively.

This CAT analogue of [EK, 1.3] (where B = M) is proved as [EK, 1.3] is
proved.

8.9. Locally CAT flat isotopies. For the last application to isotopies we need
two more notions. Let M be a CAT n-manifold, N a CAT p-manifold (0 < p <
n), and f: N x I — M x I an embedding of the form (z,t) — (fi(z),t) such
that f is LIP if CAT = LIP, such that f;: N — M is LQS for each t € I if
CAT = LQS, and such that f~1[0M x I| = Ny x I where Ny is a subset of N if
p =0 oralocally CAT flat (p—1)-submanifold of N if p > 1. (Note that unless
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p=mn and Ny = ON, f is not open and, thus, is not a (CAT) isotopy in our
terminology.) We call f a locally CAT flat isotopy if for each point (z,t) € N x I
there exist a neighbourhood J of ¢ in I, an open subset U of R™ (whenever
z ¢ Ny and either p =0 or z € N with p =1) or of R%} (in the other cases),
and CAT J-isotopies a: (UNY,p) X J — N x J and B: U x J — M x J onto
open neighbourhoods of (z,t) in N x J and of f(z,t) in M X J, respectively,
such that B extends fa. In this case, ftIN is a locally CAT flat submanifold of
M for each t € I.

Suppose that in the introduction of M, N, and f above, N is a locally
CAT flat submanifold of M and Ny = N N9M. Then we call f a locally CAT
extendible isotopy if for each point (z,t) € N x I there exist a neighbourhood J of
t in I, an open neighbourhood V of z in M, and a CAT J-isotopy ¢: V x J —
M x J extending f|(V N N) x J. It is easy to see that if f is a locally CAT
extendible isotopy, then f is a locally CAT flat isotopy, and that in the LIP case
the converse also holds (in the LQS case the converse is open).

We can now state a CAT analogue of the theorem [EK, 1.4] on extension of
locally flat isotopies of topological manifolds.

8.10. Theorem. Suppose that f: N x I — M x I is either a locally LIP
flat isotopy of a compact LIP manifold N into a LIP manifold M or a locally
LQS extendible isotopy of a compact locally LQS flat submanifold N of an LQS
manifold M into M. Let CAT be, respectively, LIP or LQS, and let D be a
neighbourhood of | J,c feN in M. Then there is an ambient CAT isotopy h of
M supported by D such that f = h(fo x id).

The proof of 8.10, based on 7.3 and 8.7, is similar to that of [EK, 1.4].

The following result is our last application. For CAT = TOP it is due to
[CK].

8.11. Theorem. Let CAT be LIP or LQS. Then there are only countably
many CAT homeomorphism classes of compact CAT manifolds.

Proof. By the CAT embedding result [LT, 4.6], it suffices to show that for all
integers n > 0 and k > ko > 0 there are only countably many CAT homeomor-
phism classes of compact connected CAT n-submanifolds M of R?"*! for which
there are CAT embeddings h;: 2B% — M (1 <1 < ko) with R;7'OM = 2B™!
and hi: 2B™ — Int M (ko < i < k) such that the sets hiﬁ_’}_ (1 < ko) and h;B™
(i > ko) cover M. We can then follow the proof in [CK] for manifolds with empty
boundary; we only resort to D*(R%; {R%}) and D*(R"; {R"}). o

8.12. Remark. For CAT manifolds M with dim M # 4 # dimdM, 8.11
also follows from the TOP version by the CAT Hauptvermutung ([Su;, Corol-
lary 3], [TV,, 4.5 and 4.8]). On the other hand, Donaldson and Sullivan ([DS,
Theorem 2], cf. [Sus, p. 1221]) have recently shown that there are compact LIP
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(or even complex algebraic) 4-manifolds without boundary which are homeomor-
phic but not LQS homeomorphic.
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