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A MAFUTINGATE APPROACH TO
RETIABILITY THEORY:

ON THE ROI,E OF FILTRATION
IN THE MODET SPECIFICATION

E. Arjas and I. Norros

L. Introduction

Consider a device ("system") consisting of ft parts ("components"). The life
lengths of the components form a non-negative random vector S : (Sr, . . . , Sr) .

We assume that S is defined on a probability space (Q,f ,P). The rnarked point
process (MPP) (Tn,In)n>r associated wjiå S is defined as follows:

rntl

Tn+r: i"f {Sr:1( i < ft,'Si >7"}, n2t;

In: {i : S; :7,-7 .

("") ir then the ordered sequence of failure times and (I') is the corresponding
sequence of failure patterns.

Suppose now that the device is under observation ("monitored") in some

way. A convenient mathematical model for this is a fiItration (history) F =
(f)r>o, Ft e .F, satisfying the "usual conditions" concerning right continuity
a,nd c-ompleteness.

Examples. Let F be the filtration generated by the marked point process

(Tn,I*). This corresponds to the case where all component failures are immedi-
ately observed but no other stochastic information is available. This case is called
component level monitoring. Another extreme case is system level monitoring,
where the system failure time alone is observed. In this case, F is a filtration
generated by a single stopping time.

Next we define a natural notion o! hazard, based on a given type of monitoring.
For each nonempty set .I e {1,.. ., å} consider the counting process

lfr(/) = I L{r.St,rn-.r}.
n>l

inf S,;
r <i<k
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This means that N1(I) : 1 if a failure with exactly the pattern -f occurs before
or at t, and 0 otherwise. Suppose that N1(/) is F-adapted. Denote the F-
compensator of N(/) by ,a(f . The process Ä(/) satisfies the following intuitive
requirement fot haaa,rd:

dAr(I) : P(7, e dt,In : I I f,r-) for t € (Tn-t,Tol.

Remarks. 1. If a process lf(/) is not F-adapted, one can instead consider
the F-submartingale E[Nr(I) I f,r] urrd its compensator.

2. This formalism can easily be extended to cover other instanta^rreous events
than failures: €.g.r replacements, repairs etc.

2. On the role of filtration in reliability modeling

2.1. Ageing

The following strong form of ageing was defined in Arjas [1]. Denote by

t?1 : (S - t. 1)+

the vector of residual component life lengths at time t (the positive part is taken
componentwise).

Deffnition. T6e random life length vector S is said to have increasing failure
rate with respect to the filtmtion F (in short: S is F-IFR) if the conditional
distribution

P(Rt e 'l f,)
is non-increasing in t in the sense of stochastic ordering.

The intuitive meaning of increasing failure rate distributions is that older
components have stochastically shorter residual lives. However, this interpretation
is not quite straightforward. The example below shows that iåe choice of frltration
is crucial.

Suppose that S is F-IFR and that e : (9t) is another filtration such that
9t e f,t for all t. Does this imply that S is G-IFR? In particular, does IFR relative
to component level monitoring imply IFR relative to system level monitoring?

The answer is ttno", and there is a very simple counterexample. Indeed,
the systern consisting of two exponential components in parallel, which has been
used to show that the class of IFR distributions is not closed under formation of
systems of independent components (see Barlow and Proschan [4]), works also in
our slightly difierent setting.

Example. Let .9r and 5z be independent and. exponentially distributed with
unequal parameters. Consider the parallel system consisting of these components,
with system life length r : Sr V,92. Now, if

fr: o {11sr<";,11sr<r1is < t} ,
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it is obvious that S is F-IFR, and so is r. On the other hand, if

9t:o{11,<,1is<t},

then r is not G-IFR (which here reduces to the standard univariate notion of
rFR).

Remark. The answer can be ttyes" for weaker ageing properties, such as

"new better than used (NBU) with respect to F", see Arjas [1].

2.2. Dependence

In this section, we consider "the dependence on the choice of history" of the
following notion of positive dependence.

Deffnition (Arjas and Norros [2], Norros [7]). A system with component
life length vector S is said to be wea,kened by failures (WBF) if the conditional
distribution

P(& e'l ft)
jumps downwards at the failure times .9;, where F is the filtration generated by
all component failure times ^9;.

The intuitive meaning of this definition is that each failure causes a stochastic
decrease of the lifetimes of the remaining components.

Remarks. 1. If S is IFR with respect to its internal (componentwise) historg
then it is also weakened by failures. Indeed, the definition of IFR with respect to
internal history includes the decrease of the conditional distribution of the residual
lifetimes at failure times.

2. It can be shown that WBF implies the association of the random variables
S;. (See Arjas and Norros [2], Norros [7].)

Suppose that monotone subsystems are formed by components ,S1,...,St.
Fbr example' let 

r; : ö;(st,.. . , sr), i : r,. . .,rn,
where the functions di consist of successive V- and A-operations. Let F be the
internal history of (,91,...,,Sr) and G that of (rr,...,r-). Clearln G is a sub-
history of F. A special case is a pafiially observed system S, for example, rn < t
and r;: Sr, f :7r...rrn.

Now we can ask the following question: if the system (St,...,^9p) is WBF,
does it follow that the system (rt,.. ., r-) is also WBF (with respect to G)?
As in the previous section, the answer is, somewhat surprisingly, negative. The
following counterexample is based on the idea that the "positive message" that
a,n unobservable component still works can be "encoded" in the failure fime of an
observable component.
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Example. Consider a system with three components S = (Sr,^92,,S3) and
let F : (fr)r>o be the internal history:

F, : o{11s.3r1; i : 7,2,3, 
" 

< t}.
Let the predictable F-intensities (that is, derivatives of compensators) of Sr, Sz
and 5s be given by

)r(1): 1{s,.r}
Ir(2) : [11rgsr] 4 2.11r>sr]] .11r5sz]

)r(B) :
: 

f11r^r5s,y'11r,-y(t) * 11rnr>sr) (å'11s,,11(t) + 112,""y(t))] .r1r<""r.
[ \r -

It is straightforwa^rd to check that S is supportive (see Norros [8]), and this con-
dition implies the WBF property. (Thus, this counterexample works also for sup-
portivity.) The point is that if ,91 occurs during (0,1), then the fact that ,\(3)
vanishes on (1,2] is compensatedby its greatervalue (1-Sr)-t on (,91,1].

Now consider the slightly coarser history G = (9r)t20, where only the failures
of components 2 and 3 are monitored:

g, : o(\6,<sli i = 2,3, s I t).
The G-intensity of ^92 is

i"1z; : [.p(s, > s lg) +2. p(&< 
" I g")]. l{s<sz}:

To show that (S2, ^93) is not WBF it suffices to show that P(S1 ( s | 9,) can
jump strictly downwards at a time t when ,9s occurs and .92 has not yet occurred.
Indeed, then the intensity i1Z; "f ,92 jumps d.ownwards, and the conditional
distribution of .92 does not decrease, as it would if (^92,,93) were WBF. We show
that this is the case on the set {,92 ) .9a € (1, 2)} .

Let us denote by p(") the continuous deterministic function
p(s):P(St >s lSz >s, 53 )s)=P(Sr >s lSz )s, ,S3 )s),

and let i"1S; l" the G-intensity of .93. Suppose that we are on the set {S2 >
,9s e (1,2)], and denote ^93(c.r): t € (1,2). Then the jump of P(^S1 > s lg,) at
fis

- p(t)

since År(3) < 1 (* a weighted average of 0 and 1). The infinitesimal Bayes
formula used above can be established rigorously by filtering theory of marked
point processes (see Brdmaud [5j, Chapter 4).
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2.3. lbansformation of hazard

In this third section we stuäy how the effects of certain transformations of
the compensators depend on the choice of filtration. Let .9 be a finite totally
inaccessible (unpredictable) stopping time on a filtration F : (ft)t>o satisfying
the usual conditions. Denote 7[, : 111>s1 and let ,4r be the F-compensator
oJ N.

Example L. "Proportional improvement". Let o be a number in the interval
(0,1). Define the probability measure P' by

(!b\ - oNr"(r-a)år.
\dP / r,

It is well known that the F-compensator of /V with respect to P' is aÄF (see

Br6maud [5], Chapter 6). This can also be interpreted in the following way: if
the haaard of S is reduced by a factor o and nothing else is changed, then the
resulting probability distribution is Po.

Example 2. "Minimal repair" Suppose that when ,5 appears, it is imme-
diately "erased" and the history continues "as if nothing had happened". The
second appearance of ,5 (interprete: second failure) is "accepted" normally. We
have shown elsewhere (Nortos [9], Theorem 2.1 with n : 1) that this kind of
ttimprovement" of .9 corresponds to transforming the original measure P into a
probability Q such that

-1-.nrr+Al

By Girsanov-type theorems for point processes (see Br6maud [5], or, for example,
Arjas and Norros [3], Proposition 2), the Q-compensator of ,S is

Bf : lo'#7y*3 - ÄI - rn (r + .rf ) .

Extending from this, we consider transformations of the compensator LF
which are of the form

Bl - s(ÄI) '(aI)aa|,

where 9 : R+ 
- 

R+ is difierentiable and increasing and g(0) :0, g(m) : m.
Now we ask the question: how does the effect of this transformation on the

distribution of ,S depend on the choice of the filtration F? Denote by G : (9t)t>_o
the minimal filtration 

gt: o{Ils<,y; s ( t}.

(Yu),,

: 
lo'n
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the function g satisfy the above conditions and denote

Bl - g(Al), B? : g(AF).

QF and ge be the measures defined by

(#) ,,: s'(/r) 
*'"ot-st 

'

(#) n,: s'(e?)'' eA?-ar '

main result is the following.

Theorem (Atjas and Norros t3]). Srppose g is sucå that the function

> e e(-lnc)

is concavefor a C (0, 1). ?åen S isstochasticaJly smaller under Qt thanwtder
Qc.

Proof. Use Jensen's inequality and the fact that

16711"A1dP

is a probability measure on ft.
It is easy to check that both the proportional improvement and the minimal

repair transformation satisfy the conditions of the theorem. The latter case has
some practical significance. Indeed, it says that the usual way of modeling minimal
repair (conditioning only on the minimal history) gives always a too optimistic
result in comparison with the more complex model with a richer filtration. A
more detailed discussion can be found in Arjas and Norros [3].

3. Concluding remarks

In traditional reliability theory there is much emphasis in classes of distri-
butions, which typically describe ageing and dependence, and the preservation
of the defining class property in transformations which correspond to "reliabil-
ity operations". In the present approach the filtration is an integrul part of the
given definitions, and actual distribution theory is less centraL. Consequently, the
question "What properties are preserved under reliability operations?" must be
answered differently here.

As we have seen above, the operation of changing a bigger filtration into
a smaller one, which means that some of the conditioning random information is
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Iost, is pa,rticularly subtle: none of the properties we have discussed above in detail
needs to remain true if the level of conditioning changes in this way. This message

could be taken as a disappointment to a mathematician-certainlS a number of
natural conjectures regarding the preservation of a class property turn out to be
false. On the other hand, the fact that so much depends on the conditioning
stresses the importance of choosing the filtration explicitly. This point is well
illustrated by the above Theorem.

Finally we remark about a parallel between our conclusions and the well
known "simpson's paradox" in statistics (see, e.g., Cohen [6]). Stated in simple
demographic terms, the crude death rate in country A may be less than that
in country B, although every age-specific death rate in country A exceeds the
corresponding rate in country B. Here, too, the question is about the distribution
of a^rr unknown "underlying" random variable.

t1l
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