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A NOTE ON A PROBABILISTIC DECOMPOSITION
OF LINEAR DELTA MODULATOR

OF A \MIENER PROCESS

T. Koski

1. Introduction
Linear delta modulation (LDM) is a causal, recursive analog-to-digital (and

vice versa) technique of data compression. The engineering work devoted to LDM
and its modification is covered in [14]. Some of the research in the mathematical
treatment of LDM is found in [5], [6], [13] and [17]. I\rrther references e.g. to the
works of T. Fine and J. Kiefer are found in [9].

This paper considers the LDM of a standard Wiener process (although some
extensions are outlined). That this should be, in a certain sense, the proper way of
tracking a time sampled Wiener process has been stated in [1]. Here we provide a
probabilistic decomposition of the decoded process, by means of Ito's rule, viewing
the decoded variable as a functional of the Wiener process. Other results on LDM
of Wiener processes are found in [11].

The basic definitions of the LDM model are presented in Section 2. The
main result, a probabilistic structure for the encoder, is given in Section 3. It
turns out that the encoder can be written as a sum of a firnction of the predicted
reconstruction etror and a stochastic integral. This shows that there is a certain
martingale structure associated with the decoded process, the properties of which
are studied in this section. It is quite obvious that the representation can be
extended to other (diffusion) sources. Explicit results are given for the Ornstein-
Uhlenbeck case (see also [9]).

Section 4 contains an application of Malliavin's calculus on the predicted error
part in the encoded process. It turns out that this part has a probability density
with respect to the Lebesgue measure.

2. Linear delta modulation of a Wiener process

Let (A,f,,P) be a complete probability space and -d : {-r,}Eo be a real
(source) stochastic process defined on it (in fact wd is a time-sampled Brownian
motion(B.M.)).Let d> 0 and 0(c( 1. Theencoderof theLDMisdefinedby
the predictor

(2.7) b; : sgn (*r, - czt;-r)
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where we take

(2.2)
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(+I, r)0,
sgn(r)-{ 0, x:0,

t -1, r ( 0.

In (2.1) the process zd - {tr,}Eo is the decoded sequence

that approximate wd and is recursively generated by means

(2.3) zti : czt;-r * dh .

The engineering
integration" for
(2.3) yields

(2.4)

of random variables
of the corrector

terms for (2.3) are "ideal integration" in case c - 1 and "Ieaky
c 11 . Further, d may be regarded as a quantization step. Solving

N

zti-cizto+d|"i-ibi.
J'

When dealing with LDM of B'M' it is natural to set z4 : 0 ' Then it follows for
the leaky integrator that

(2.5) lrr,l

for every t;. Regard now the random variables u1, &s samples at deterministic
times of an underlying B.M. ur : {rr l t > 0} defined on (O, f, P). Let

(2.6) ft:o(w"10<s<t)
designate the sigma-algebra generated by the process to up to time t. It is evident
by construction that 21, eannot converge anywhere on O as i --+ oo, if tu is the
source process. Hence it follows that

2.1. Proposition. Let wd be a sampled B.M. Then (z1,,fr)?o cannot be

an asymptotic martingale if 0 < c I 1.

The proof follows immediately by Proposition 2.2 in [4] in view of (2.5). In
particular this means that (21,,f,t,)ps cannot be a martingale (sub- or quasi). It
can be seen that a similar conclusion holds for the ideal integrator, too. However,

we shall discover that a martingale structure is associated with LDM of B.M.
The basic point of departure is the following observation: (2.5) entails

Elrr,l'<d2lQ-c)2
for lea^ky integration. Hence a;n! 21, may be viewed as a square integrable func-
tionaJof ur up to l;. As is well established (c.f. [2] and [10]' Theorem 5.6), any
such functional of the Wiener process '.Dt; : (wr,fr)o<r<; cärr be written as a
sum of an random variable and a stochastic integral.

Note also lhat Elz1,l' 1 
"t 

( oo for some finite constant c; if ideal integra-
tion is considered, since any 4, has a range consisting of some finite, countable
number of values. Consequently we need not consider separately the two cases in
Propositions 3.1 and 3.4.
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3. The representation of LDM by means of a stochastic integral

First we make some elementary observations about the function

(3.1) V(t, x; z,t;)

where z€R and

(3.2) k(t, ri t;

k(t,n - y;t;) sgn(y - z)dV

is the heat kernel. The classical change of variable ([15], p.

(3.3) r:(v - x).@(t;-t))-t/'

gives after an elementary calculation that for O - (z - ") I

(3.4) V (t, ni z,t;) : erfc(O) - 1

where erfc is the complementary error function

:l:

32)y1r

(3.51_ erfc(r) - +" l,* "-" d,

([15], p. 10). By quick separate consideration of the three cases sgn(o - z) : tI
or 0 one sees that

(3.6) 
W7(r,c;z,t;): 

sgn(o - z)

for every n and, z. (This is more than can be expected in the general case, c.f. [15],
Chapter VII, a^nd is the reason for the definition (2.2)). It is also a straightforward
matter to check that the firnction (t,a) +V(t,a;z,f;) solves (for fixed t; and z)
the backwa,rd heat equation

(3.7) viQ,r) ++V:,(t,*) : 0 for (t,*) € [0, t;Ix] - oo, mI

where Vl and Vj', denote partial differentiation. The boundary values are those
in (3.6). The basic rules of stochastic calculus provide the link between (3.1)-(3.7)
and the LDM for tod (c.f. [3]).
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3.1. Proposition. Let wd consisf of äsqete time samples of a standatd
B.M. w and let zd be the corresponding eicoded process (evolving according to
(2.3)). Then the equality

-tt)E)' /nn1td -s) dw,

CZt;_t - Wt;_t

)-1
(3.8)

holds, P -aJmost surely, for arry i.
Prcof. In view of (3.7) a formal application of lto's difrerentiation rule yields

(3.9) V (tr,1!1;icz1,-,,t;) -V (t;-r,.r,-,;c21,-,,t;) :

: [" vj (s,w";c21,-,,t;) dw".
J t;-r

It may be noted that Vj(s, ?Dgiczlr_r,f;) is .F"-measurable, as it should be, and

(8.10) [" ,[vlG,u)sicz1,-,,r;)]2ds < oo.
J t;-r

In order to check (3.10) we observe that

( 
"-(z-x)2 

l+r(t; -s)(3.11) Vl(s,r;z,t;):lW s(f;,
(0 s:fi.

which is in its turn readily established e.g. by diferentiating (3.1) and performing
the change of variable (3.3) in the resulting integral.

Here

E lv;(r,, siczt;-L,tn)]' : *rlr- 
(""ri-1- -")'/zr(t;-')]

: t nl 
"l "-("',i-1- 

-")' /ztr(t;-s)tt-s L L

f,;-']]

Given fi,-, the random variable ur" has a normal distribution JV(rpr,_r;s) a,nd
z1r-, has assumed a fixed value in some finite and countable set. Under these
circumstaJrces it can be calculated, in a straightforward manner, that for a con-
stant M

(3.12)
" f 

('- ("'"d-1 - '")' /zr(t;-")) ,r,-,] - 114 rffi B 
[ev" 

r'l]
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where y"(i) is a random variable which is easily seen to be almost surely uniformly
bounded in s € [t;-r,tl]. Hence

is a well defined stochastic integral in Ito's sense and (3.8) is valid.

- u),)t 1+n (tn - t

Let us

))a-,,

now set

(3.13) x;(u) -

(3.14) Ft, (u) -

Evoking

3.2.

(3.15)
j:l j:t

The elementary properties of stochastic integrals as well as the fact that every
Fr, (.) is Ft;-r-measurable entail, by virtue of (3.15), that the conditional variance

of 21, equals

Proposition 3.1 and these notations in (2.4) yields the decomposition

Corollary.
ii

zt; : d,ci t "-jEr,(.) * d,ci t c-j* j(-).

(3.16)

which would seem to indicate that some interesting information about the process

{rr, }Eo could be obtained in terms of the properties of the martingale (S;' f,r, )Eo
where

"1Q,, 
- Elr,, I rt;-,1)' I o,-,] - Eb?@) | Fr,-,) ö

Sr:i ti(w), So:0.
j=t

For example we find the following using Theorem 2.1'5 in l7i

3.3. Proposition. Let {a,}po be the d.ecoded sequence of the leaky inte-

sration r,om åt n.v. Suppose Ä"f22, \M) < oo. Tåen

t E l*?@) 1f,,-,) ( oo

i=1

(3.17)

(3.18)
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almost surely, and

(3.1e)
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n,

t cn-;r;(w) * 0

f:1

dxt - -pfitdt * dwt) ro :0

B.M. and p, > 0.

aJmost surely, as n --+ oo.

The proof will be published elsewhere. This result is mostly of theoretical
interest, since in practice t; - t;-t is almost constant.

Suppose now that the process being linearly delta modulated is an Ornstein-
Uhlenbeck process (O.U.) (or Gauss-Markov process). Denoting the time samples
by {"r,}Eo and letting {rr,}70 denote the corresponding output of the decoder,
we obtain by explicit calculation exactly similar to above (but somewhat more
arduous) that

3.4. Proposition. Let the process , = {at I t > 0} have the stochastic
differentiaJ

(3.20)

where lD is a standard
Then

t/tt(rtri-r - rt;-t€ - tr(t; -t;-

.*

(3.21) sgn (*r, - czt,-r) - erfc(
-2t G;-t;-))t /2

(* r"-tt(t;-s) - c

1 ))

tr-r)

(t - '
1

)o',
2

a.

(t - e-2rt (t; -s))

(3.22)

(3.23)

We omit the detailed proof but point out that the partial differential equation
corresponding to (3.6)-(3,7) is in this case

V; +*r:,- ttnVl:O for (t,*) e I0,t;[11] - m,rc[,

tt?V(t,niz,t;) - sgn(n - z).

The statement of the counterpart of Corollary 3.2 is obvious. Further analysis of
the Ornstein-Uhlenbeck case using this representation in order to derive results
like in [6] and [13] is in progress, see [9].

The formula (3.21) provides some further insight to the probabilistic mecha-
nism in the coder of LDM. The a,rgument czlr-, - a1r-re-F$i-'i-r) in erfc(.) is
nothing else but the difierence between the ptedicted vaJue of os, and the pre-
dicted value of 21, given the information f1,_, . We shall hence call the functional
Fr,(.) defined in (3.1a) the predicted-error transform..



Decomposition of delta modulator of a Wiener process 215

4. The absolute continuity of the distribution induced by
the predicted-error transform

We shall now prove that the random variable Fr,(.) in (3.1a) induces a
probabiiity distribution with a density w.r.t. the Lebesgue mea,sure. Since F1,(ur)
is another functional of the Wiener process rlt;-' : (u1rf,1) 0 < t < t;-1 , this
proof is appropriately done as an application of Ma,lliavin's caJculus (in the form
elaborated in [12] and [16]).

Fr,(.) is a square integrable (.OlF4(to)12 < m) functional of tot'-' . Let us
suppose that u: {u" I 0 < " 

< t;-r} is a random process on (O,F,P) with
Lebesgue measurable and square integrable sample paths. We shall in the sequel
select u so that any us will additionally be adapted to F", although the work of
Zakai and Nualirrt [12] shows that this is not necessary.

It will first be proved that the dbectional derivative of F1,(u;) in the tu"ils
direction defined as

will exist almost surely. Then, roughly stated, if we can exhibit a process u such
that the requirements above are satisfied and such that

DuF.t,(r) + A

our claim about the existence of the density will be established.
We need first a simple observation about the effects of a pa.rticular perturba-

tion on linear delta modulation. Let us set for e ) 0

(4.1)

(4.2)

Dult,(r)- {rrr,(,+ tIu,d,s) l"-o

uhdhlr>0)wr: {*r*,l,
4.L. Lemma. Let zf, and 4, designate the decoded variables corresponding

to the LDM of the processes w" and w, rcspectively. Then there exists a positive
number €q such that zf. and 4, designate the decoded variables conesponding
to the LDM of tåe processes w" and w, respectively. Then there exists a positive
number e4 su&. that

(4.3) zf.-zt; P-a.s.

for every e S ett (or a modification of the process z sudr that (a3) holds).

Proof. We shall proceed inductively using (2.3). Since

z3:Zo:?t)o-0,

zl,,- sgn (*r, * e 
lo" 

u"d,s) ,

zh-sgn(urtr).
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The equality (4.3) hotds obviously for e ( €6, with sort€ €1,, with the exception
of the event to1, : 0, the probability of which is zero, since to1, is continuously
distributed. (Hence we can modify the variable 21, so that it has a value different
from zero for all e e O .)

Assume now that €ti-, has
surely for g < €ti-t.

Thenfor €<€t;-t

been established so that zi._l : zt;-, almost

[r*" (*i, - czli-,) - ssn (*r, - szt;-,)]

- sgn (*r, - szt;-r)] .

By the same argument as above we can find €t;1€t;-r such that (4.3) holds for
e1e4.

Note that the finite union of exceptional sets, where the equalities (a.3) do
not hold, has measure zero, and that there is no difficulty in modifying z in the
way desired.

The result of the lemma is intuitively obvious in saying that for sufficiently
small e the process z" has on any finite interval paths that are identical with the
paths of a modification of z. (Note that the number of paths is finite.)

4.2. Lemma.
ft;- t

(4.4) Du[Fr,(.)] :Vl(t;-r,tt)t;-JZti-t,rt) 
Jo u"d,s

where {u" I " 
> 0} åas squate integrable sample paths.

Proof. By Lemma 4.I, with e <

F,, (, * e I "" dr) - Ft; (r) - "rf. (

- "rf. (

27. - zt; : c (ri,-, - zti-r) + d

- d ['*" (*i, - cz|;-.)

€t,

)

-, V:(tn-r ,rDt;-ti zt;-r,tn) 
lo"-'l(",,(.* ,Io"-'

CZt;_t - U)t;_r

:

Mean value theorem gives now

where 0 < O < 1. Then it is immediate that

- V;(tn- rtwt;-t
rti-r

.u 
Jo u"d,s

V (ti-t r wt; t zt-r rtt)

*e 
" lo"-'u"d,s; 

z4-,,tn)

4r(t; - t;-r)

4n(t; - ti-l)
V (ti-rtuti _ri zt,-r,t;)

u, d*) - Ftifr)) u" ds
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almost surely as asserted.

4.3. Proposition. Thefitnctional F1,(to) induces on [-1,1] aprobability
measure that is absolutely continuous with respect to the Lebesgue measure.

Proof. Set

u" : V: (",."; zti-r,t j) for s elti4,til, j :0,. . .,i.

Then the sample paths of u: {u" I 0 < 
" 

< t;-r} are Lebesgue measurable and
integrable as well as .F"-adapted. Also D"(D"[F1,(.)]) exists by an argument
similar to that used in the proof of lemma 4.2.

But then

almost surely since Vj(t;-lruri-ri zt,-rrt;) ) 0 for every t.l as is seen by (3.11).
Hence the probability law of F4(ra) possesses a density by Theorem 5.2 of [12]
(c.f. Proposition 2.3.1. in [16]).
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