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A NOTE ON A PROBABILISTIC DECOMPOSITION
OF LINEAR DELTA MODULATOR
OF A WIENER PROCESS

T. Koski

1. Introduction

Linear delta modulation (LDM) is a causal, recursive analog-to-digital (and
vice versa) technique of data compression. The engineering work devoted to LDM
and its modification is covered in [14]. Some of the research in the mathematical
treatment of LDM is found in [5], [6], [13] and [17]. Further references e.g. to the
works of T. Fine and J. Kiefer are found in [9].

This paper considers the LDM of a standard Wiener process (although some
extensions are outlined). That this should be, in a certain sense, the proper way of
tracking a time sampled Wiener process has been stated in [1]. Here we provide a
probabilistic decomposition of the decoded process, by means of Ito’s rule, viewing
the decoded variable as a functional of the Wiener process. Other results on LDM
of Wiener processes are found in [11].

The basic definitions of the LDM model are presented in Section 2. The
main result, a probabilistic structure for the encoder, is given in Section 3. It
turns out that the encoder can be written as a sum of a function of the predicted
reconstruction error and a stochastic integral. This shows that there is a certain
martingale structure associated with the decoded process, the properties of which
are studied in this section. It is quite obvious that the representation can be
extended to other (diffusion) sources. Explicit results are given for the Ornstein—
Uhlenbeck case (see also [9]).

Section 4 contains an application of Malliavin’s calculus on the predicted error
part in the encoded process. It turns out that this part has a probability density
with respect to the Lebesgue measure.

2. Linear delta modulation of a Wiener process

Let (22, F,P) be a complete probability space and w? = {wy,}$2, be a real
(source) stochastic process defined on it (in fact w? is a time-sampled Brownian
motion (B.M.)). Let d > 0 and 0 < ¢ < 1. The encoder of the LDM is defined by

the predictor

(2.1) b; = sgn (wy;, — czy,_,)
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where we take

+1, >0,
(2.2) sgn(z) = { 0, z=0,

-1, z2<0.
In (2.1) the process z¢ = {z,}32, is the decoded sequence of random variables
that approximate w? and is recursively generated by means of the corrector
(2.3) 21, = czy;_, +db;.
The engineering terms for (2.3) are “ideal integration” in case ¢ = 1 and “leaky

integration” for ¢ < 1. Further, d may be regarded as a quantization step. Solving
(2.3) yields

(2.4) 2y = 'z +d )b

Jj=1
When dealing with LDM of B.M. it is natural to set z;, = 0. Then it follows for
the leaky integrator that

. | <

(25) el < T

for every t;. Regard now the random variables w;, as samples at deterministic
times of an underlying B.M. w = {w; | t > 0} defined on (Q,F, P). Let

(2.6) Fi=o(ws|0<s< 1)

designate the sigma-algebra generated by the process w up to time ¢. It is evident

by construction that z;, cannot converge anywhere on Q as ¢ — oo, if w is the
source process. Hence it follows that

2.1. Proposition. Let w? be a sampled B.M. Then (z;, Ft;)?2, cannot be
an asymptotic martingale if 0 < ¢ < 1.

The proof follows immediately by Proposition 2.2 in [4] in view of (2.5). In
particular this means that (24, F )32, cannot be a martingale (sub- or quasi). It
can be seen that a similar conclusion holds for the ideal integrator, too. However,
we shall discover that a martingale structure is associated with LDM of B.M.

The basic point of departure is the following observation: (2.5) entails

Blz? < /(1 - o
for leaky integration. Hence any z;, may be viewed as a square integrable func-
tional of w up to t;. As is well established (c.f. [2] and [10], Theorem 5.6), any
such functional of the Wiener process w = (w¢, Ft)o<i<y; can be written as a
sum of an random variable and a stochastic integral.

Note also that E|zy,|% < ¢; < oo for some finite constant c; if ideal integra-
tion is considered, since any z;, has a range consisting of some finite, countable
number of values. Consequently we need not consider separately the two cases in
Propositions 3.1 and 3.4.
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3. The representation of LDM by means of a stochastic integral

First we make some elementary observations about the function
oo
(3.1) V(t,z;2,t;) = / k(t,z — y;t;)sgn(y — 2)dy
—0o0

where z € R and
6—32/4(t,--—t)
e 0Zt<lh
(3:2) k(t,z;t:) = { Var(ti—t)
0 t=1t;
is the heat kernel. The classical change of variable ([15], p. 32) y — r
(33) r=(y—2) (4t -1)7"
gives after an elementary calculation that for © = (z — z)/\/4n(t; — t)
(3.4) V(t,z; 2,t;) = erfc(©) — 1
where erfc is the complementary error function

(3.5) erfe(c) = % e~ dr

([15], p. 10). By quick separate consideration of the three cases sgn(z — z) = +1
or 0 one sees that

(3.6) ltlTrtn V(t,z;2,t;) = sgn(z — 2)

for every z and z. (This is more than can be expected in the general case, c.f. [15],
Chapter VII, and is the reason for the definition (2.2)). It is also a straightforward
matter to check that the function (¢,z2) — V(¢,z; 2,t;) solves (for fixed ¢; and z)
the backward heat equation

(B7)  Vi6a)+ 3VAL) =0 for (52) € [0,{x] — oo,o0]

where V; and V), denote partial differentiation. The boundary values are those
in (3.6). The basic rules of stochastic calculus provide the link between (3.1)—(3.7)
and the LDM for w? (cf. [3]).
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3.1. Proposition. Let w? consist of discrete time samples of a standard
B.M. w and let z¢ be the corresponding encoded process (evolving according to
(2.3)). Then the equality

CZ¢. — Wy,
b; = ety ) =erfol Bt 1 )
sgn (Wi = czti-0) < 4r (t; — ti—l))

t; 2
(38) +/ t.]' - e—(cz:;_l—wa) /41r(t.~—s)dws
2 T

holds, P-almost surely, for any 1.

Proof. In view of (3.7) a formal application of Ito’s differentiation rule yields
(39) V (ti, Wi, CZt;_ 15 t,) — V (ti—la We;_1yC2¢4_1> t,) =

t;
= / v, (s,ws;cztl._l,t,-) dw, .
t

i—-1

It may be noted that V)(s,w,;cz¢,_,,ti) is F,-measurable, as it should be, and
ti
(3.10) / E[v] (s,ws;czt,._l,t,-)]zds < oo.
ti—a

In order to check (3.10) we observe that

e—(z—2)*/4m(ti—s)
(3.11) V;(S,I;Z,t,‘) = m S <ti,
0 s=1t;.

which is in its turn readily established e.g. by differentiating (3.1) and performing
the change of variable (3.3) in the resulting integral.
Here

2
E V! (s, wsiczq, t)]" = — E[e‘(cz'i—l‘"") /n(n—a)]

t;—s

= 1 E [E [e"(cz‘i—n‘wa)2/2"(ts—3)

ti—s

Given Fi,_, the random variable w, has a normal distribution N(wy,_,;s) and
zy;,_, has assumed a fixed value in some finite and countable set. Under these
circumstances it can be calculated, in a straightforward manner, that for a con-
stant M

(3.12) E[(e"(“‘-‘—l"”')2/2”(“"-’)> ' ]-'ti_l} = M\, —sE [ey.(i)]
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where y,(4) is a random variable which is easily seen to be almost surely uniformly
bounded in s € [t;_1,t;]. Hence

t;
/ v, (s,ws;zt‘_l,ti) dw,
t

i-1
is a well defined stochastic integral in Ito’s sense and (3.8) is valid. Let us now set

t;

(3.13) =zi(w) = / (t;i — s) "% exp (—(czt,._1 - ws)2/47r (ti — s)) dw,,

t;—1

(3.14) Fy(w) = [erfc(ﬁ-—ﬂ—) . 1] .

\/4r (t,' — t,‘_l)

Evoking Proposition 3.1 and these notations in (2.4) yields the decomposition

3.2. Corollary.
(3.15) zy, = dc' Z IRy (w) + dc' Z cIzi(w).

i=1 =1

The elementary properties of stochastic integrals as well as the fact that every
F.(w) is Fy,_, -measurable entail, by virtue of (3.15), that the conditional variance
of z;, equals

(3.16) E[( B[ | Fo])’ f] — B [2lw) | Fu,] -

which would seem to indicate that some interesting information about the process
{24,332, could be obtained in terms of the properties of the martingale (S;, F¢,)$2,
where

(3.17) Si= zz:xj(w), So=0.

For example we find the following using Theorem 2.15 in [7]:

3.3. Proposition. Let {z,}2, be the decoded sequence of the leaky inte-
gration LDM of B.M. Suppose that Y oo, /(ti — ti_1) < co. Then

(3.18) }: E [z} (w) | Fi_,] < o0
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almost surely, and
(3.19) > e ii(w) = 0
=l

almost surely, as n — oo.

The proof will be published elsewhere. This result is mostly of theoretical
interest, since in practice t; — ¢;_; is almost constant.

Suppose now that the process being linearly delta modulated is an Ornstein—
Uhlenbeck process (0.U.) (or Gauss—-Markov process). Denoting the time samples
by {z¢}2, and letting {z, }2, denote the corresponding output of the decoder,
we obtain by explicit calculation exactly similar to above (but somewhat more
arduous) that

3.4. Proposition. Let the process ¢ = {z; | t > 0} have the stochastic
differential

(3.20) dzy = —pzidt + dwy, z9=0

where w is a standard B.M. and p > 0.
Then

\//_t(czt,._l - mt;_le_-“(t"—ti—l))) 1

(3.21) sgn (zy, —czq;_,) = erfc( - e—Zu(te—t-‘—l))l/z

2 t; —u(ti—s) Ty —u(ti—s) _ CZ+. 2
7 e p(—ﬂ( € t,_l) )dw,.

+—ﬁ ti_, V1 —e—2n(ti—9) 5 (1 — e—2u(t.~—s))

We omit the detailed proof but point out that the partial differential equation
corresponding to (3.6)—(3.7) is in this case

(3.22) Vi + %VI'; —pzV,; =0 for (t,z)€]0,t[x]— 0,00,
(3.23) ltlTrtn V(t,z;2,t;) = sgn(z — 2).

The statement of the counterpart of Corollary 3.2 is obvious. Further analysis of
the Ornstein—Uhlenbeck case using this representation in order to derive results
like in [6] and [13] is in progress, see [9].

The formula (3.21) provides some further insight to the probabilistic mecha-
nism in the coder of LDM. The argument czy,_, — @¢,_, e #(&~%-1) in erfc() is
nothing else but the difference between the predicted value of z;, and the pre-
dicted value of z,, given the information F;,_, . We shall hence call the functional
Fy,(w) defined in (3.14) the predicted-error transform.
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4. The absolute continuity of the distribution induced by
the predicted-error transform

We shall now prove that the random variable Fy (w) in (3.14) induces a
probability distribution with a density w.r.t. the Lebesgue measure. Since Fy,(w)
is another functional of the Wiener process w%-1 = (wy, F;) 0 <t < t;_1, this
proof is appropriately done as an application of Malliavin’s calculus (in the form
elaborated in [12] and [16)).

F.,(w) is a square integrable (E|Fy,(w)|? < oo) functional of w%-1. Let us
suppose that v = {us; | 0 < s < t;—1} is a random process on (Q, F, P) with
Lebesgue measurable and square integrable sample paths. We shall in the sequel
select u so that any u, will additionally be adapted to F,, although the work of
Zakai and Nualart [12] shows that this is not necessary.

It will first be proved that the directional derivative of Fy,(w) in the [u,ds
direction defined as

(4.1) D,Fy(w) = ggFt; (w+ e/us ds)]e=o

will exist almost surely. Then, roughly stated, if we can exhibit a process u such
that the requirements above are satisfied and such that

D,F,(w)#0 a.s.

our claim about the existence of the density will be established.
We need first a simple observation about the effects of a particular perturba-
tion on linear delta modulation. Let us set for € > 0

t
(4.2) wez{wt-f-e/ uhthtZO}.
0

4.1. Lemma. Let z;, and 2y, designate the decoded variables corresponding
to the LDM of the processes we and w, respectively. Then there exists a positive
number €y, such that zj, and z designate the decoded variables corresponding
to the LDM of the processes w. and w, respectively. Then there exists a positive
number ¢y, such that

(4.3) z5, = 2y P -as.
for every € < ey, (or a modification of the process z such that (4.3) holds).
Proof. We shall proceed inductively using (2.3). Since

zg =20 =wp =0,

t
z; = sgn(we, +e/ ugds),
0

ze, = sgn(wy, ).
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The equality (4.3) holds obviously for € < e;, with some e, , with the exception
of the event w, = 0, the probability of which is zero, since wy, is continuously
distributed. (Hence we can modify the variable 2z, so that it has a value different
from zero for all w € Q.)

Assume now that e;_, has been established so that zf,_, = 2z¢_, almost
surely for € < ey,_, .

Then for € <ey,_,

Ztei — 2t =C (Zts;_l - zti—l) +d [Sgn (wtc. - czte.‘-l) —sgn (wt-‘ - czti-l)]
=d [sgn (wf‘ — czf',_l) —sgn (wt,- - Czt.'-l)] :

By the same argument as above we can find e, < &,_, such that (4.3) holds for
e < egy.

Note that the finite union of exceptional sets, where the equalities (4.3) do
not hold, has measure zero, and that there is no difficulty in modifying z in the
way desired.

The result of the lemma is intuitively obvious in saying that for sufficiently
small ¢ the process 2° has on any finite interval paths that are identical with the
paths of a modification of z. (Note that the number of paths is finite.)

4.2. Lemma.

ti—1
(44) Du [Ft‘. (U))] = V; (ti—l’ We; 152t ,t,‘) / Ug ds
0

where {us | s > 0} has square integrable sample paths.
Proof. By Lemma 4.1, with € < ¢,
czy, . — wg,

Fi(w+ e/us ds) — Fy,(w) = erfc(—t"-‘———ti)

\Ar(t; — t,‘_l)
—erfc( C2t;_y — Wy )
\/47T(t,' — t,'_l)
= V(ti—h w:;_l yRti_1 tc) - V(ti—l’ Wi 2t 1 tt) .

Mean value theorem gives now

ti—1 ti-1
= V;(ti_l,wt‘_l +e®/ Uy ds;zt'._l,t,') -s/ ugds
0 0

where 0 < © < 1. Then it is immediate that

1 ti—1 ti-1
Z(Ft‘ (w +e/0 Usg ds) - Ft..(w)) -V, (ti_],wt.._l;zt‘._l,ti)‘/0 ugds
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almost surely, as asserted.

4.3. Proposition. The functional Fy,(w) induces on [—1,1] a probability
measure that is absolutely continuous with respect to the Lebesgue measure.

Proof. Set

us =V, (s,ws;2;_,,t;) for s €Jtj_,tj], i=0,...,1

Then the sample paths of u = {u, | 0 < s < t;—1} are Lebesgue measurable and
integrable as well as F,-adapted. Also D, (D, [Fy(w)]) exists by an argument
similar to that used in the proof of lemma 4.2.

But then

ti—1
D,F (w) =V, (ti—1, wt‘._l;ztj_l,ti) / ugds >0
0

almost surely, since V](ti—1,w¢;_,;2¢4_,,ti) > 0 for every w as is seen by (3.11).
Hence the probability law of Fy(w) possesses a density by Theorem 5.2 of [12]
(c.f. Proposition 2.3.1 in [16]).
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