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ON HOLDER CONTINUITY OF SOLUTIONS OF
CERTAIN INTEGRO-DIFFERENTIAL EQUATIONS

R. Mikulevi¢ius and H. Pragarauskas

In the paper of N.V. Krylov and M.V. Safonov [6] (see [5], [4] as well) estimates
of Holder norms are obtained for solutions of second-order parabolic and elliptic
partial differential equations in nonvariational form with measurable coefficients.
Although analytical methods are used in [6], an important role is played by the
properties of corresponding diffusion processes, namely by the estimates of Green
measures ([3], [5]).

In the present paper we estimate Holder norms or the modulus of continuity of
solutions of integro-differential equations with measurable coefficients associated
with Ito’s processes. Estimates of the Green measures of Ito’s processes are used

(1, [7D-
In Section 1 of this paper we formulate the main result which is proved in
Section 3. In Section 2 some auxiliary results are presented.

1. Statement of the problem
Let R = (—o0,00), R = {(t,z) : t € R, ¢ = (21,...,74) € R?}. We

denote
d
ol = {3 a2} %, ple,2) = |z — '] + |t = #]'/2,
=1

z=(t,z), z'=(t' z')e R

If Q C R, then we write @ for the closure, 8Q for the boundary and 1¢
for the indicator function of the set Q.

Let B(Q) be the set of all measurable functions u on @ such that ||u||w,qg =
sup,eq |u(z)| < oo. Let LP(Q), p > 1, be the set of measurable functions u
on @ such that ||ull,q = {fQ lu(t, z)|P dtdz}l/p < 00. We denote by W,? the

completion of the set C§°(R%*!) (of all smooth functions on R%*! with compact
support) with respect to the norm

d d
lullwsz = 10eullp,mesr + Y Nz, lprats + D luzillpmess + llull,mess -
i,j=1 i=1
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For a domain @ C R%*! we define W,*(Q) = {u|g : v € W)'?} and the
norm ||u||W;,2(Q) replacing in the above formula R4*! by Q.

Let S be the set of all non-negative symmetric d x d-matrices and let M
be the set of non-negative Radon measures m on E = R%\ {0} such that [ |y|2A
17(dy) < 0.

Fix K > v >0, § € (0,2] and denote by ' = I'(§) = I'(6,v, K) the set of
measurable functions v : R¥! — S§F x R4 x M, 4(:) = (a(-),b(-),7(+)), such
that

|a]+|b|+/Iyl‘S/\lw(-,dy)SK, a>vl,

where I is the unit d xd-matrix. Let G = G(K) be the set of measurable functions
r: R4 5 R such that |r| < K.

For r € G, v = (a,b,7) € ' we introduce the operator L = L(r,7) acting on
u € Co(RM)

d
Lu(t,z) = 0yu(t,z) + »  aij(t, 2)uzz;(t,2)

i,j=1

d
+ Z bi(t, z)ug,(t,x) +r(t, z)u(t,z)

d

+ / [u(t,a: +y)—u(t,z) — Zum(t,z)yillyKl] w(t,z,dy).

=1

The main result of this paper is the following statement.

Theorem 1. Let Q' C @ C R be open subsets, pg = inf{|z — z'| +
It — |12 : (t,2') € Q, (t,2) € 0Q, t' >t} > 0, u € BR™)n W2 (Q),
L=L(r,v), r€G, vyeT(4).

Then for each z,z' € Q'

lu(z") = u(2)] < @5(p(2", 2)) ([ullcoress + [ Lullasr,q) ,

where ®5(R) = NR® for some constants a = a(d,v,6,K) >0, N = N(d,v, K, pp) >
0, if § <2 ; and ®, depends only on d,v,K,py and ®3(R) — 0 as R | 0.

2. Auxiliary results

Let D = D[_oo,oo)(Rd) be the set of R?-valued cadlag functions on [—o0, 00)
with canonical process X, Xy(w) = wy, w € D, D = o{Xy, u € [—00,0)},
D; = o{Xy, u €[s,t]}, D° = (D{y)1>s-
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Let £(6§) = {L(0,7) : v € T(6)}. For L € L(§), (s,z) € R we de-
note by S, (L) the set of probability measures P on (D,D) such that P{X, =
z, for all u < s} = 1 and for each u € C{°(R?*?) the process

¢
u(t,X,)—/ Lu(v,X,) dv

is a (D*, P)-martingale. According to [1], Ss (L) # @ for each (s,z) € R4+,
Le L(6), 6§€(0,2].
For R € (0,1], s € R we define the process

Xf’s = R—l X[R’(u—a)+s]v.s .

Remark 1. If v = (a,b,7), L = L(0,7) € L(§), P € S,(L), then
XRe(P) € S,.(L(0,7)) and L(0,%) € L(6).
_In fact, it is easy to see that ¥ = (g, b, %), where a(t,z) = a(R%,Rz),
b(t,z) = b(R*t,Rz)R, % = (t,z,dy) = R? [ 14y(2/R)n(R?t, Rz,dz).

Put
Sg?z)': U Ss,c(L)-
LEL(2)

In [1] the following statement is proved.

Lemma 1. There is a constant N = N(v, K) such that for each (s,z) €
R, Pe S{3, f e BRMY)

E / e™ (79 f(u, Xu) du < N||flla41,Re+1-

Corollary 1. Let Q be a bounded domain in R+, r = inf{t: (t,X;) ¢ Q},
PeS?), fe B(Q). Then

E / F(u, Xo) du < Net*m Q| £l 141 0.

For T >0, R >0, z € R*! we denote Crgp = (0,T) x {z : |z| < R} C
Rd+1, Kfz=Z+CR2,R-

Corollary 2. Let z = (t;,z;) € R¥*, R € (0,1), Q = K}, (s,2) € Q,
r=inf{t>s:(¢,X,) ¢ Q}, Pe SP, f e LH(Q). Then

E / F(u, Xu) du < NeRY D] flla41,0.
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Proof. In fact, a change of variables u = R?(% — s) + s gives
J=E / f(u,X,)du = R’E / f(R*(u — s) + 5, RX*) du,

where 7' =inf{u > s: (u,XP?*) ¢ (t1,R7'21)+Co1}, v = [R2+(s—t1)]R" % +s.
Thus by Remark 1 and Corollary 1

t1i+v 1/(d+1)
|J| < R%N{] / If(Rz(u——s)+s,R:c)|d+ldsda:}
? lz—R-1z;|<1
< NeRYEHV|f|lat1,q.

If Q is a domain in R%*!, ¢ > 0, we define Q¢ = {(t,y) e R4 : |y —z| <
e (t,z) € Q}.

The paper [2] contains the following statement.

Lemma 2. Let Q be a domain in R%**! ¢ > 0. There is a constant
N = N(d) such that for each u € W;fl(Q‘)

IT¢ulla+1,@ < Nllullwz e,

where

d
Tu(t,z) = ls?g ly|~2|u(t,z +y) — u(t,z) — E ug (¢, 2)yi |-
y|se i=1

Lemma 3. Let Q be a bounded domain in R4, (s,z) € Q, ¢ > 0,
u € BRT) N W(QF), 7 = inf{t : (t,Xe) ¢ Q}, P € S,z(L), L € L(2).
Then the process

tAT
u(t AT, Xinr) — / Lu(r, X,)dr

is a (D*, P)-martingale.

Proof. Let u, € CP(RY), u, — @ in W;fl, Ulge = u|ge. Set U, =
Unlge + ulga+1\ge. By Lemma 3 [7] the statement is true for @,. Since ||, —
ul|oo,ra+1 — 0 as n — oo, the statement for u follows then from Lemma 2 and
Corollary 1.

Lemma 4. Let ¢, § € (0,1), Ry > 0, po > 1, ¢1, c2 > 0, z € R4+,
u € B(Kg,), wr = osc{y; K} = sup{u(y) : y € K} — inf{u(y) : y € K},
R < Ry. Then:

a) if for some p > 1 and each R < Ry/p

(1) wg < Owyr + 1 RS,
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then foreach R< Ry, 0 <a<agAc¢
wg < N(wg, + ¢1)R®

(here N = N(8,p,¢, Ro,a), ap = —log,8),
b) if for some p > py, R < Ro/p

2 wr < 6wyr + c1R® + cop”?,
then for some ro = ro(po,6) and each R < ro

wr < N(wg, + ¢1 + ¢)§V 72V e

where N = N(Ry,0,¢), £ = 2log, /4(Ro/R) — 1.

Proof. a) Let Ry = p~*Ry, k = 0,1,2,.... Iterating the inequality (1) we

see, that
k-1

wr, < 0*wp, +c1 ) 0'Ri_;
=0
k-1 )
— p-—kaowRo + Clep—-kc Zp(e—ao)t .
=0

This implies that for a < ag A€

k-1
wg, < p—ka [p—k(a-—ao)wRo + clR(e)p—k(e—a) Zp(e—ao)i]
1=0
< p~**[wg, + c1R§ zp(“"“)i] < Ny(wg, + c1)RY,

T

with
N, = R; ¢ [1 + R§(1 — p("_"°))_l] .
Fix an arbitrary R < Ry. There is k£ > 1 such that Rgy1 < R < Ri. Hence
- o_BE
wr < wg, < Ni(wg, + ¢1)Rf < Ni(wr, + ¢1)R* =7
k+1

= N1p*(wg, + c1)R”*.
b) Let p> po, R =p %Ry, k=1,2,.... For k > 1 we have by (2)

wg, < Owp,_, + 1R+ cop~?.
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Iterating this inequality we see that

k k
wr, < 0*wp, +c1Y O'Ri_;+cop™? Y 6
=0 =0
k ¢
k (ki) 2
<8 wRo+clR3§0'p ”"+1_0p

By taking p = 07%/2 for k > ko = 2log, /g po, we obtain

wg, < 0"(wRo + + 6163) < 6N,

—
1-6
where N = (wgp, + ¢1+¢c2)(1 — (1= 6)"! +¢3), c3 = R§ Eie“i""iz/z. Thus for

k > ko we have
wR, S N6 V —21081/9(Rk/R0) .

Fix R < Rjg,)41- Then there is k > [ko] + 1 such that Rry; < R < Ry.
Hence

wr < wpg, < NG\/m/R_o) < Ne\/—ﬂogl/,(RRk/RoRHl)
S , < <
< gV BRI ¢ e

and the lemma follows.

3. Proof of Theorem 1

Let A = L(r,v) € L(5), 6 € (0,2], v = (¢,b,7) €T, r € G, Ry = 1 A po,

2 € @', R< Ry/4, R; > 0. We shall estimate the oscillation of the function u

-on K. Let w, =sup{u(z) : 2’ € K7}, u, = inf{u(y) : y € K}}, w, =%, — u,,
p > 0. Introduce the processes

£;= /[ /(Ci“u(s,Xs+y))7r(37Xsady)_'T(Sa-Xa)u(3>X8)]]-K;R(S,Xs)dsa

—o° (sxXa+y)¢K;n+nl
1 =1,2, with ¢1 =Usp4R,, C2 = Uypip, - Set

QY = {(t,z) € Kip: 2u(t,z) < Tg +ug},
Q(}%) = {(t,z) € Kjp:2u(t,z) > Ur +ugr}.
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Two cases are possible:

(3) 2 mes Q(é) > mes Kjp,
(4) 2 mes Qg) > mes Kjp
(here mes stands for the Lebesgue measure on Rd"’l)
Consider the case (3). Let Tgr = u(to, o), (to,z0) € K%, P € Sto,zo(L(O, ),

T =inf{t > to: (¢, X) ¢ KzR}’ ule + U2Rr+R, 1Ra+1\ K2 Kinin,
By Lemma 3 the process

2R+R;

AT
(5) a(t A7, Xear) — u(to, o) — Au(s, X,)ds + Eiar — &3y
to
is a (D%, P)-martingale for 1 = 1.
Let 7, = inf{t >t: (8, X,) € Qg)}, B1 = P(r > 71). Because of (5)

1(Tr+up)+(1-Fi)a +E

1 TAT
5 / A’LL(S X )ds| + E |€7-A‘r; étlol :
to

By subtracting up from both sides of this inequality we easily see that
. . TAT;
©)  wrS (1~ fi/Dwsnen, + Iy, — €| +2B| [ Au(s,X,)ds]
to

for i = 1. By Corollary 2 [7] there is a constant § = §(v, K) > 0 such that §; > ¢.
Thus

TAT;
(7) wr < Bwapip, +2E|€in,, — €|+ 2E / Au(s, X.,) ds|

to

fori=1,0=1-6/2.

Consider now the case (4). Let up = u(to, o), (to,z0) € K&, 7 = inf{t >
to: (t,X) € Q;)}, B2 =P(r > 1), 4= UlKzp, n +-"£2R+R11R"+‘\Km+ . Then

for 1 = 2 the process (5) is a (D%, P)-martingale. It is easy to see that

TAT2
E / Au(s, X,) ds‘
t

o

1, _
up > (1 - P2)upir, + Eﬂz(uR +up)—E|E,, — €] -

and (6), (7) are true for ¢ = 2 as well.
It remains to estimate

I'=E

TAT; . .
[ s X ds| 4 Bl — ], i=12

to
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From Corollary 2 we have

I' < N(v, K)RYD (|| Aull gy, k5, + [6]]oo,rass REFD/EHD

(8) I7C, {lyl > Rid)lloo ratr + 1)
<N K) [Rd/(d+1)”Au”d+1’K;R + |l o, me+1 (1 + RTE A 1)R? .

If 6§ < 2 we obtain from (7)
wr < Gwsr + Ni([[Aufla+1,x5, + [[u]loo,re+1 )RS,
by taking Ry = R; here ¢ = (d/(d + 1)) A(2-6) > 0, N; = Ny(v,K). The
statement of the theorem for 6§ < 2 follows then from the part a) of Lemma 4.
If 6 =2 we obtain from (7), (8) for each p >3, R < Ro/p

wr < Qwpr + NRY (|| Aullg1,kz,, + ||ulloo,re+s p72),

by taking R; = (p — 2)R; here N = N(v,K). The statement of the theorem for
6 = 2 follows then from the part b) of Lemma 4.
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