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A RANDOM FIELD APPROACH TO
BITTERIICH SAMPTING

A. Penttinen

1. Introduction

Bitterlich's angle count method, also called "point sampling", is a widely used

technique for estimating the proportional basal area of a forest stand. Basal area
is the area of the cross section of a tree taken at the height of 1.3 m. Proportional
basal area is the basal area per unit area of forest. This quantity is an importarrt
parameter in practical forestrS e.g., in the estimation of the volume of trees in a
forest staqd.

The idea behind Bitterlidr's angle count method is simple: Take a sa^mple

point, then count the number of trees which the observer, standing in the sample
point, sees in an angle less than 2o, where o is a small angle fixed in advance.

Ässuming that the cross-sections are circular then number of counts x sin2 e is

an unbiased estimator of the basal area per unit area of forest. This procedure is

usually repeated in several sample points. Their locations follow some set of rules

called sampling design, e.g., uniform random sampling or systematic sampling' A
simple piece of equipment called the relascope is used for the measurement and,
therefore, the method is also called relascope sampling.

Since Bitterlich [1] much has been published in the field of the angle count
method. The majority of this work considers practical aspects in field work and
empirical comparisons, see Kuusela [4] for an extensive study. Mathematical and
statistical aspects associated with this method have been considered for example
by Holgate [2], Matdrn [5], [6] and Ord [8]. This theoretical work is mainly con-

centrated on the case where the trees are distributed according to a planar Poisson
process and the diameters of the trees are independent. Sukwong et al. [14] have

carried out a simulation study concerning the relative performance of Bitterlich's
method under various conditions. In the literature the discussion and comparisons
to other sampling methods are based on the variance of the proportional basal area
estimator at a single sample point.

The purpose ofthe present study is to generalize the earlier theoretical results
in two respects. First, we derive an explicit formula for the varia^nce of the angle

count estimator based on a single observation, under the condition that the pattern
formed by trees is a second order stationary point process and the diameters of the
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trees are independent. Second, the spatial covariance function of the observations
is derived under the same condition. This allows us to calculate the asymptotic (in
the sense defined by Matdrn [7] ) error variance under different sampling designs
even when the observations are dependent. We also discuss the possibility of
removing the assumption that the diameters are independent.

Our general approach to these problems is by means of an induced shot-noise
rarrdom field. This is simply the random field {y(0,{ e R'} where y(() is the
number of relascope counts at the sample point {, multiplied by the relascope
factor sin2o. A general discussion of such spatial shot-noise processes can be
found in Schmidt [10]. The covariance function of this random field {y((), € e R'}
provides us with all information needed in relascope sampling problems. Therefore,
in Chapters 2 and 3, we concentrate on the link between the initial marked point
process (describing the forest) and the corresponding shot-noise random field which
we call here "relascope process". In the final Chapter 4 we return to the original
forestry sampling problem.

2. Preliminaries

Forests are described by a planar marked point process V : {[r"; -"]] where
the c's are the locations of the trees ( e R') a,nd the rn's are the tree diameters.
The distribution of ilr is denoted by P. The unmarked point process of tree
locations is denoted by Q : {[c,]] which is assumed to be a locally finite and
motion-invariant (i.e., stationary and isotropic) planar point process with intensity
.\. Throughout this paper ö(B) stands for the number of trees in a Borel set B.
The second reduced moment measure of ö is denoted by K. Interpretations of )
and K are:

) is the expected number of trees in a unit area. We assume that 0 < I < oo.
Especially EO(B) : \rz(B) where B is a Borel set in .R2 and z2 is the
Lebesgue measure on ft2.

- ,\K(B) is the expected number of additional trees in a Borel set B given
there is a tree in the origin.

In the case of an isotropic point process K is usually replaced by the K-function
I((r):K(å(o,r)) where b(o,r) isasphereof radius r (r) 0)andcentredat o,
or by the g-function, called pair-correlation function in statistical physics,

s?):ff1{z*,1, r)0,

if it exists. Other second order characteristics and their interpretations can be
found in Ripley [9] and Stoya^n et al. [13]

The first order characteristics of ilr are the intensity ) and the mark (di*-
eter) distribution M. An interpretation of the mark distribution is as follows: If
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.t is an interval in .R+: {o € Rl, > 0} then M(L) is the probability that the
diameter of a "typical tree" belongs to .0. The support of M is here typically E+
or a finite interval.

In order to give a second order characterization of {r we need the second

reduced moment measure K (or K -function) described above and, in addition,
the two-point mark distribution function M'r,, defined by Stoyan [11]. An in-
terpretation of. Mrrr, is the following: if trr and L2 al.e two Borel sets in R*
ther M,r,"(LuLz) is the probability that the diameters of two trees at o1 and
c2 belong to .t1 and .t2, respectivelS given that there are trees at 11 and 12.
'We assume that M,r,, depends on the distance r = lot -r2l only; hence the
notation M* A special case is that the point process is independently marked.

In that case M,(L1,Lz): M(Lr)M(Lz).

We are interested in the proportional basal a.rea of forests. The basal area of
a tree [r; ml is rmz f4 and, under the stationa,rity assumption, the proportional
mean basal area of a forest is

Ä: ), [* 6*'1+1M(d,m)
Jo

which is assumed to be finite. Although .Ä ir th" main parameter in this forestry
problem we ttma,rktt the trees by tree diameters for convenience.

3. The angle count random ffeld

The relascope angle 2a is assumed to be fixed (o small). Let us suppose
that ( € ä2 is an arbitrary sample point. Then a tree [clrn] e V with diameter
rn will be connted through the relascope if and only if lt - {l < rnf (2sina) or,
equivalently, a e b(o,ml(2sina)) * €. Here B + € stands for the transformed set

{V e nr ly: u *€,u e B}. This construction leads to the following definition:

Deffnition. The angle count random field generated by itr and e is the
planar stoehastic process {y(€),€ € R2} where

vG): sin2 a I 1a(o ,*/(2sin o))fe (c)
[s;mJe llr

Heuristicallg y(()"ir the number of relascope counts at ( multiplied by the
factor sin2 a. The process {y(€),4 e R'} is also called simply "relascope process".

Note that (1) is of the form

v(€): I 0@-€,*)
[r;rn]eV

(1)

(2)
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where 0 : R2 x Bt + .R+ is called the response function. According to (2) the
proce'ss {y(€), € e R'} is a special case of spatial shot-noise processes (shot-noise
random fields). This connection is important because it allows us to apply results,
e.g., moment formulae concerning shot-noise processes.

Theorem 1. (TU" basic theorem of relascope sampling.) Under conditions
lcm and tm2M(dm)<a, Ey(o)=Ä.

Theorem 1 means that the relascope counts multiplied by the factor sin2 a
is an unbiased estimator of the propotional basal area å. This result is due
to Bitterlich [1]. The theorem can be proved by applying a simple geometric
reasoning, see e.g. Ripley [9], or the Ca,mpbell theorem (see Stoyan et al. [13],
p. 99). No assumption on independence in marking is needed in the proof of
Theorem 1.

The performance of relascope sampling under different sampling designs can
be deduced from the second order property of the process {y(€),€ e R'}. There-
fore, we derive an expressionfor Ely(o)y(h)1.

As an application of theorems of Campbell type (see Theorems 2.1 and 2.3 in
Stoyan [11]) we obtain the following general formula:

Elv@)v(h)i- ,9(rr,mt) 8(*2 - h,mz)P(d,rb)
lrr,*rler.h

+
0 (" I t ffi1 )?t (* r, rrl2) P (d,rh)

;:i'{r,te{
h,m)M(d*) dr*

* u ) 'n2) M "(d(* 1, rrr,2) )I((d u) dx

ttJ 
I"r r*rlerh

: .l t s@,*)f(n - h,m)P(d,rb) * |r fu,mle*

-Å lt@,*)8(*-
+ 

^2 | 
o(*,*r)s(* - h

for h € R' ,, where D+ means
of iI, for which t1 * *r.

Let us assume now that
taking the specific form of the

summation over pairs of points l*t;rni, l*r;mzl

if - {l* *; m,l} is independently marked. Then,
response function into account we obtain first

Ely(o)y(h)l:

) sina o 
l 

r rr.,^, 12 sin o))n(å(o,m/(z sin o))+,r)( a)M (itm) d,x

+)2sina o 
lror.,^,/(2sino))n(b(o,m2/(2aina))]n-,1@)K(du)M(d,rn1)M(dm2)dx
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: .\ sin2 o I v {n,m I (2 sn e),m / (2 sin a))M (d,m)+

+ .\2 sina " I I I O,Qr, m1 / (zsin o), m2 f (2 sin a)) d'K (r) M (dm) M (d,m2),

where [J(h,r1,rz):uzlb(o,r1)nå(å,r2)] (theareaoftheintersectionoftwocircles
with radii 11 arrd 12 and having centres at o and ä, respectively), md

0,1h, n1, Rz) : 
Io'" 

uro - (r,o), Rr, Rz) ilo l2tr

((r,0) is a point of J?2 in polar coordinates). For numerical calculations the ex-
pression for IJ(hrrtr12) is as follows: denote B : max(rr ,rz), r : min(r1, 12) and
x: lhllz - (R' - rz)lQlhl). Then

U(h,r,R)
:rr2t o<lhl 1R-r,
: R2 arccos((lhl - x)lR) * r2 arccos("10 - rlhl , R-r < lål < R*r,
:o: lål >'R+r'

As a conclusion we obtain the follovrdng theorem:

Theorem 2. Under the a.ssumption of independence in marking the vaÅance
and covariance function of the induced random field {y({), ( e R2} are

Var{y(o)}:Åsin2a

* )2 rioa " Ir* I"* l"* u(r,m1/(2sina),m2f (2sina))d,K(r)M(d.m)M(d,rn2) - Å2

and for

cv(h) -

* Ä2 sin

_Ä2

Example. If iI/ :
process then

{l*";mr)} is an independently marked planar Poisson

Var{y(o)} - Äsin2 c

(see Holgate t2] ) and

to(h) - Å sinaa

h)0,

Äsina o 
lo* 

U(h,*l(2sin a),mfi2sin o))M(d*)

n o 
fr* Ir* lr* 0,1h,mrlQsina) ,tr'2lQsina)) d,K(r)M(d,mt)M(dmz)-

l,*

@ lr)'

U(h,*lQsin a) ,*l(2 sin a))M(dm), h > 0 
1
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cf. (3.13) in Schmidt [10].

\Me now discuss briefly the previous formulae of Theorem 2. Their use in
sampling situations is considered in Chapter 4.

In the general case where the assumption of independence in marking has
not been made, the derivation of the covariance function of the relascope process

{y(€),€ e R'} presumes knowledge of the K-function (or the g-function), the
mark distributiot M and the two-point mark distribution function M,. Although
one is able to calculate the covariance function, numerically at least, it may be
difficult to construct two-point distribution functions which would be relevant
for practical purposes. This problem will be bypassed if one is able to assume
independence in marking; indeed, the density ,\, the K-function and the mark
distribution firnction M are then sufficient for the application of Theorem 2. The
forestry literature may also be useful here: Some examples of modelling point
patterns and diameter distributions of trees can be found in Tomppo [15] and
Kilkki and Päivinen [3], respectively.

Assume now that the K-function describing the pattern of the location of
trees, the mark distribution and, in addition, the &---function

k**(t) -

introduced by Stoyan [12] , are known. The formula above indicates that this is not
sufficient for determining the covariance function 

"o(h). 
For practical sampling

design purposes one can proceed in two ways in order to determine a (not unique)
solution. First, it is possible to construct a two-point distribution function leading
approximåtely to the given mark correlation function, and then apply the general
formulae derived above. Second, one can try to construct a marked point process
itr, : {[r,;rn,]] having the given K- a,nd å---functions, and then apply simula-
tion in order to obtain a Monte Carlo solution for 

"o(h). 
Here sample points are

located in a regular lattice and the usual covaria.nce function estimators developed
in time series analysis can be applied. It is an open problem which one of the two
approaches is better.

4. Application of the moment formula to forestry sampling

In this chapter we assume tinat W C R2 is a bounded homogeneous forest
area which is large enough for the border effects to be negligible. The forest is
described by the motion-invaria,nt marked point process V : {lr^;*"1} restricted
to the set, W. We denote by

T
*nf

I I ffLnrlzM,(d(*r, mz)),

l, n;

a(w) -
€ip

(n*' l4) tw(*)
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the (realization dependent) basal area and by A(W): a(W)lv2(W) rhe propor-
tional basal area of the forest ?7.

In applying the method of angle counts we do not observe the process {r :
{l*";*"1} but instead the induced random field {y(O, € eW} defined in Chapter
3. The first order characteristic of this random field corresponding to ä(W) is

s(w) :l* yf)d€lrr(w).

Indeed, if we neglect the boundary effects then

o(w) =

:

The small deviance is caused by the "smoothing" property of summation in the
construction of the induced random field where trees outside W have also been
counted. Hence, for large W the integral !(W) apptoximates ä(I;lz) and it is
sufficient to consider the first quantity.

Let (1, €2,...,€n be n sample points in VZ in which the angle counts are
measured. The observations are V(€r),V(€z),...,y(€,). The organization of the
sample points is called sampling design. Examples of spatial sampling designs are
described e.g. by Matdrn [7] a,nd Ripley [9]. In the following we consider two of
them: uniform random sampling where the n points are located independently
and uniformly in W , and systemaiic sampling where, for simplicitg the n points
form a squa,re grid with side length d. In both cases, the unweighted mea^n

lft

an = ! )--s(€r)fl u
1,

serves as an estimator of. fi(W) (and of A(W) in the case when l7 is large).
There are two sources of randomness in this plan: the first one is due to

the marked point process model assumption and the second one due to random
sampling. The expectations in the following are taken with respect to both of
them. Now /o is unbiased if a sufficient guard area around 17 is allowed for,
otherwise only unbiased in the limit when llr grows to R2. Therefore, for large
W it can be considered as an unbiased estimator.

l* o}rrsin2 
a !u1o,,n1(2 sin o))+e (")1 w(r)d'€ luz(w)

D (n*' l4)t,yy@) l"z(w)
lr;ml€rh

ä(w).
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4.L. Comparison of sampling designs

If an estimator like y,. is efficient it should produce small sampling error
t" - E(W) and, in addition, it should not be costly when applied in practice. We
shall consider here only the precision of the estimator.

In the comparison we use the error variance E{lg"-g(W)]2} the size of which
is afiected by the forest process ![r, the relascope angle o, the particular sampling
design applied, and, for small l/, also the size and form of 17. Therefore, following
Mat6rn [7] we consider the error variance per sample point defined by

o3 : #*" v*{t' - {(w")} ,

where {I;7r} is an increasing sequence of forest areas such that n-1u2(W.) is
constant. For large n, nYar{go - g(W")} is nearly constant and adequate for
comparisons.

tr'lor simple random sa,mpling, according to Ripley [9] ,

n Yat{go - g(W)} : 02 - E{co(U,V)}

where U and V arc two independent uniformly distributed points in ?7, c, is
the covariance function of the ra,ndom field {y(€), € € R2 } and oz : Yu{y(o)} .

In the case of systematic sampling, where for simplicity, the sample points
are Located according to a square grid with side length d and, again, l7 is large
compared to the range of cr(r), we obtain

n Var{g - aW)} N n

s t cr(d,lu-ul)
ura

integere

The first sum on the right hand side is over the lattice points (ud,ud) t utu :
0,+1 ,*2,... . Usually cr(r) decreases rapidly to zerol therefore, only few terms
in the summation are non-negligible.

Remark. Note that in earlier work concerning Bitterlich sampling the vari-
ance Var{y(o)} was derived. This is enough under uniform ra^ndom sampling for
large areas, and also sufficient for systematic sampling if the grid formed by the
sample points is sparse compared to the range of the covariance function co. Tn

general, the comparison of the two observation methods under systematic sampling
requires the corrariance function.

4.2. Estimation of the sampling error in systematic sampling
with angle count observations

If the sampling design is uniform random sampling then
-nI s,

,j-,.,I(r(e') -v*)'
1

var{ g - g(w)}

-# l:l:"v(''t)dsdt
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seryes as a,n unbiased estimator for the error rrariance. For systematic sampling, on
the other hand, no precise method for evaluation of the sampling error exists if we
do not have a priori information about the covariance function co. A suggestion
presented in Matdrn [7] is the use of local quadratic forms. As a^n example we
consider the following choice: four adjacent sample points, saX {r , €2, €s *d (n

form a group (see Figure 1 below for notation). The quadratic formula

r, : 
ih/Gr) - y(€r)- y((g) + vGDl2

is used as an estimator for the error variance. Now

E(Tr): ol - co@) +|"r@,fr).

In the case where the sampling distance d is large compared to the range of
cr(r) (so that the adjacent sample points can be considered uncorrelated) 

"t 
it

unbiased for error variance per sample unit. That is not true in general: typically
co(r) is convex and strictly decreasing and in this case fi seems to over-estimate
the error variance per sample point. In practice, several (tuy p) not necessar-
ily non-overlapping groups of adjacent observations and corresponding quadratic
forms fi,T2,...,Tp are calculated (see Figure 1) and (Dif)lMp serves as an
estimator of the error variance per sample point.

+€z
\./\/

.TrTz
{s,z ^\€+ / '\

\/
T3/\

\/
Ta/\

Figure 1. An example of the grouping of the sample points (dots) for local quadratic forms.

The evidence reported in Matdrn [7] shows that this is conservatively biased
if the covariance function co is convex and strictly increasing. This method gives
a rough idea of the precision of yo under systematic sampling. However, in many
forestry applications this is adequate for practical purposes.

The role of the moment formulas in Theorem 2 is the following: The covaria^nce
function cr(r) allows us to calculate the expectation E{fi} and the error variance
V*{t - A(W)} under different model assumptions. This gives further the possi-
bility to calculate the size of the bias.
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