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ON APPROXIMATION CONDITIONS OF THE
DISTRIBUTION OF THE MAXIMUM SUMS
OF INDEPENDENT RANDOM VARIABTES

A.N. Startsev

Let (,n;, i : Lr. . . ,turft ) 1 be an a^rray of row-independent random variables
with E €r; : 4ai å^rrd D €oi : o2.r. We can assume, without any loss of generalitS
that o26 +...+ ozno:1 for every n ) 1.

Define, with an abuse of notation,

to : So - 0, 51 : f €'i, tk:D"?u So : max(,9r,r,...,S").
d:l i=l

We a,re interested in conditions for ^9' - Ao to converge wea,kly to some limit law;
here .4, is some centering sequence.

For identically distributed random variables {o; with oni : n-r ,i : L, . . . ,ft,
such conditions were found by A. Wald [14], who established the following results:

(i) If lim'*oo fldnt: o, 0 S 4 ( €r then for.any r > 0

"5g 
r(s, < o) - w"(,) = #F ""' t"i,r,-'l' 

.*p (- # - u) au,

where, in particular Wo(r): max(0,2O(o) - 1);

(ii) If limo-* n&n!: $oo, then for any c € R

,Ege1S" - ndnt ( o) : iD(t) : (2tr7-r1z [' .*p1-u2 p1au.
J-a

Analogous results in the case of identically distributed random variables, but
in a more general situation, were obtained by A.A. Borovkov [2].

K.L. Chung [3] extended the results of A. Wald to the case of nonidentically
distributed random va,riables having cornmon means and variances. He obtained
in addition the rate of convergence of the order n-r/26 ln n when E l€"; - a'il3 (
C <a forall i:7,...,n and n>.7.
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V.B. Nevzorov [6] obtained more general conditions for the convergence to
the normal law in the scheme €n; : €;f Bn, where B? : D!=rD {;. He proved
that the conditions

(") {€i ' 
; > 1} satisfy the central limit theorem;

(b) Jg516 min(E(1,...,E€o) : *ooi

(") D€r<D<-*, B7>dk, d)0, k:!,2,...,
are sufficient for the weak convergence of the random variables (i : (maxr< *<nex-
EeJB;t tothenormallawl here (*:€r *€z*...*€*,lc:!,2,... .- -

In our notation the conditions (b) and (c) take the following form

lim n min eni
??-+oo lSiln

tp ) Czkn-',

- *oo, o7* I Crfr-r,

0<C;<-cn, i-7r2, Ic-1t...tfrt n>1.

Nevzorov constructed examples which show that it is not possible to take
conditions (b') E(r ) Ck, C ) 0,/c > L and (c') C1k S B7 S C2lc, k) 1, 0 (
Ct < Cz ( oo instead of (b) and (c), respectively.

We shall give only one of these examples since the other one is rather exotic:
random variables satisfy the central limit theorem but not the Lindeberg condition.

Example. Let {7;, i > 1} be independent standa,rd normally distributed
random variables. Define

It is easy to check that the conditions (a) and (b) are satisfied and E Cn:5n -
Blogrn when n =2^rbut

P(C; < 0) * 0l O(0), as n --+ oo.

In spite of this, the convergence to the normal law takes place for n : 2* - 7.
The reason for this phenomenon will be evident later.

In a recent paper V.M. Kruglov [4] obtained necessary and suffi.cient conditions
for the convergence of the distribution of .S, to the limit laws Wo and O in the
general scheme of partial sums, both under moment restrictions and without them,
but the convergence to the normal law under mornent restrictions is considered
only for non-negative means.

In the present paper suffi.cient conditions for the convergence of the distribu-
tion of ^9, to the normal law and to other limit laws are given in a more general
case by the method of approximation of the Wiener process (the invariance prin-
ciple). A similar approach was used by A.V. Nagaev and the author [5], [12] in

€r - {l:;tl\ fi": ,when Tn-r,2,
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an asymptotical analysis of mathematical models of epidemics, exactly as by A.A.
Borovkov [2] in an analysis of this problem in the case of identically distributed
random variables and by Yu. V. Prohorov [9] in an investigation of transition phe-
nomena in the queueing process and then by V.B. Nevzorov [7] in a research of
limit distributions of various order statistics of successive sums of random vari-
ables, but with zero means.

Let us pass to the formulation of the results obtained. It is assumed that
{("i : 1 < i < r} satisfy the Lindeberg condition.

Define ,4.* = E Sk= anr*anz*..'*ank, Ic:1r...rfl, n) t.
Theorem 1. Let anp 2 0, nr 1 k I n. If lim'r-oof', : 1 and if

limrr*-minr<*<rrr(A"- Ax) - {oo, tåen

jgf1S" - An <-o) = O(c) for aJl r € R.

Remark. We want to point out that, if. k: lnal, tl2 < ot < L, then under
the conditions of the previous example one has

An-Ar<-tf",Glz-6(1-o)) + -m, if a ) tlll2'

We claim that P(S" - An < o) + 0, but this follows at once from the fact that
dnn: -tf"/z + -oo. In fact,

P(.t" - An <r)S P(S"-r - Ao-r 1a !a,n): ö(o -,f"12)+o(1): o(1).

It is not difficult to show that the conditions of Theorem 1 will hold for n :2* -7.
Corollary l. Let ank ) 0, k - 1,.,.,D. If there exists n1 < n such that

limo-oof,o, = 1, limo-*(An- Anr): *a, then limr--P(.tr - An < a):
Q(o) for all o € R.

This statement is the same a,s the sufficiency part of Theorem 7 by Kruglov [4].
Now we are going to give results where the limit law is not a normal one.

Theorem 2. II lilrr,n-omaxr<&Sn lÄ* - g(tt)l :0, where g(t) satisfres a
Lipsehitz condition and 9(0) : 0, then for any o € R+

"l!5r(S" 
( c) = P(r?g,(rrltt) + g(t)) < a),

where w(t) stands for the standard Wiener process on [0, 1].

Corollary 2. If limn-oomaxr<*<n lAxl : 0 (i.e., S(t) = 0), then for any
c€R+

"$r1S" 
( a): Wo(') = P(o?ff w(t) < a)'
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This result follows also from Theorem 4 by Kruglov [a] and Theorem L0 by
R6nyi [10], where it is supposed that ani : 0 t i : t, . . . ,n,

Corollary 3. Let an; = Qnt o2n* : n-r, k - 1,...rn, n )- 1. If
limr.--troo = a, lal ( oo, fåen for any a > 0

,1$ P(5" 1 x) : P(w(t) < n - at, 0 <

-!-exp{-r(lol -")} P(xa/z), (u) du,

where pc(u) : ,v@ exp(21/i-u-clu), u ) 0, g ) 0, is the density function
of the Wald distribution.

This statement follows also from Theorem 6 by Kruglov [4], where the exis-
tence of the limits

Qni .. Qni

"%rSå"4: "t*'?,T"4:o
is required but the explicit form of the limit law is given in the case o > 0 only. The
explicit form of this limit law is given by Borovkov [2], bui his result was obtained
in the case of identically distributed random variables under the condition that
the sequence o, tends to zero without cha^nge of the sign.

If. a ) 0, then we obtain the result of Wald [1a]:

f@

"l$r1s" 
( o) : w"(') = lo"pp(,o121' 

(u)du'

Proof of Theorem l. Define

(1) Pn(t): P(5"- An < &) = P(Sl l An- A** x, k =1,...,n),

where Sl : S* - Ax, k: 1,...,rt.
Let s,(t), 0 < t < 1, be the random polygonal line constructed by using the

points (tr, Sl) and 9,(t) the polygon with vertices in the points (tp, An- Ap), k =
0r1r''',n'

Then we can rewrite (1) into the form

r<1)

l,* ''

According to the invariance principle it is possible to construct s"(t) and tu(t)
on the same probability space sucå that ("f. t1])

(2)

(3)

P,(r) : P(t"(t) < tn(t) * ", o < t < 1).

s"(t)-w(t)+e"(t),
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where the random process e'(t) satisfies the following condition

(4) 6n = sup le"(t)l å 0 as n -+ oo.
0srsl

Now it is not difficult to show that (2)-( ) imply the inequality

(5) P"(t) >P(to(t) <g^(t){a+e,0<t <1)+6*,

for a,ny 6 ) 0, where 6": O(P(e' > €)).
On the other hand by virtue of the central limit'theorem

(6) P,(r) < P(sl ( o) - o(s) + o(1).

After defining the following events

A:{w(t)<u*Q)+s-e, 0S t3tn,}, B- {r(t)< g,"(t)+s-e, to, <f <1}

we can rewrite (5) into the form

(7) P*(a) 2 P(B) - e(aÄ) + 6".

Lemma. If h"(t) is a non-iacreasing function for t € ("rr, 1l , limo-- rn : 7

and limrr-oo å'(1) : hs, then

Q"= P(w(t) < h"(t), ro 1t < 1) .* O(åo)' as t? + oo'

Proof of Lernma. lt is easy to see that

(s) Q" < P(w(I) < å"(1)) '-+ o(äo).

Since å,n(t) is a non-increasing function, we have

Q*> P(w(t) < å"(1), ro <t < l)
(9) : P(o.P?t ,,-(') *u(t*) < h"(1)) -'-+ o(hs)'

Here we have us€d the fact that

marc ur(t) å O, ur(r") å ur(t)' as n "r oo'
0St<1-rn

Clearly, (8) and (9) together give then the statement of the lemma.
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We are now returning to the proof of Theorem 1, By the lemma and the
conditions on g"(t) we ca.n obtain

(10) P(B): ö(' - e) + o(r).

Now we will show that P(Ä) : o(1). In fact

P(Ä) > P(w(t). o5i?., s.(t) + a - e, 0.1 < t.,)

Z P( 
o2a+ 

ur(t) . 
o11u<ä ,on(t) 

* x - e)

(11) :t-2P(w(1) > rip?",0^(t)* a -e):1*o(1),

since mine< t<t., gn(t): mino<&<a r(An - Ar) - -.T ? : -.
The statemänt of Theorem 1 follows then from (1), (6), (7), (10) and (11).

Proof of Theorem2. It is easy to see, by using the preceding arguments, that
foranye)0

P(ur(t) < s(t)* t - e-A,, 0 <f < 1) -6" < P(S" < ")
< P(to(t) < sQ) * a * e*Ao, 0 < t < 1) +6,,

where An : maxr< x<,lAp - g(t*)l , 6n: O(P(e" > €)).
The statement of Theorem 2 follows then from the inequality (see [8] or [9])

lp(-(r) < sQ)+ ä, 0 < r < 1) - P(w(t) < c(t), 0 < t < r)l < C h.

In order to prove Corollary 3 we remark that L. Takr{cs [13] has obtained the
following result (see also Borovkov [2])

p(w(t) I r - at, 0 < r < r) : t - * Ir' . (#) r3/2 dt

implying the claimed form of this probability.

Acknowledgement. The author thanks the referee whose remarks have
helped to improve this paper.
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