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FINITELY GENERATED KLEINIAN GROUPS
An Introduction

Lipman Bers

This paper, like the talk on which it is based, is directed not at workers in
the theory of Kleinian groups but at mathematicians who want to find out what
this theory is all about. An introductory talk cannot, of course, cover all aspects
of a rapidly developing field. We stress those chapters of the theory in which
the connections with Riemann surfaces and quasiconformal maps predominate;
these are also the chapters in which the influence of Ahlfors is clearly visible. The
reader will have to look elsewhere for an introductory account on Thurston’s path-
breaking work on hyperbolic three-manifolds. Neither can we report on Maskit’s
monumental classification of geometrically finite function groups.

For more information, and for references to original papers, I refer to the
books and expository papers listed in the selected bibliography.

1. Basic definitions

Every unimodular 2 X 2 matrix with complex entries,

a b
a—(c d)’ ad —bc=1,

defines a biholomorphic automorphism

az+b
cz+d

(1.1) z

of the Riemann sphere (= complex projective line) € = CU {o0}; the same map
is defined by the matrix (—a). The Mobius group M of all such maps can be
identified with the group PSL(2,C).

Every Mobius transformation (1.1) can be extended to act on the hyperbolic
three-space H3. Indeed, H; can be represented as the space of all “special”
quaternions Z = z + iy + jt, with =, y, ¢ real and ¢ > 0. The Mobius transfor-
mation (1.1) takes Z into the special quaternion

(aZ + b)(cZ + d)
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it preserves orientation and the Poincaré metric
ds? = (dz? + dy?® + dt?)/t2.

Similarly, the real M6bius group Mg , which can be identified with PSL(2,R),
is the group of all projective self-mappings of the real projective line R = RU {0},
and also the group of motions of the non-Euclidean plane Hj, represented as the
upper half-plane U in C, with the Poincaré metric ds? = (dz? + dy?)/y?.

Now let G be a discrete subgroup of M. A point z, € C is called a point
of discontinuity (of G) if there is a neighborhood of 2o in which the elements of
G form a normal family. The set of all points of discontinuity is the region of
discontinuity Q(G) of G; its complement A(G) = C\Q(G) is called the limit set.
The set of discontinuity is always open and G'-invariant.

In every G-invariant open set w C Q(G) the group G operates properly
discontinuously; this means that every compact subset of w intersects at most
finitely many of its translates under G. Since every element of G is a conformal
map, one concludes that, for every component A of Q(G), the quotient

SaA = A/ Stabg A

is a Riemann surface and the canonical surjection A — Sa is a holomorphic
covering, which is branched precisely at those points of A which are fixed under a
non-trivial element of Stabg A, the stabilizer of A in G. The quotient Q(G)/G
is the disjoint union

Sa, + Sa, +

where A;, Ag, ... is a complete list of nonconjugate (under G') components of A.
We say that G represents Sa; over A; and Sa, + Sa, + -+ over Q(G).

The group G is called Kleinian (by some authors, Kleinian of the second kind)
if its limit set is not the whole Riemann sphere C. If so, the limit set has either
no more than two points (in which case G is called elementary) or infinitely many
points (in which case the limit set A(G) is nowhere dense and perfect).

By a Fuchsian group we shall mean, in this paper, a Kleinian group G which
lies in Mg . Such a G is called of the ﬁrst kind (or of the second kind) if A(G) =
R = RU {0} (or if R is a nowhere dense subset of R). A Fuchsian group
G of the first kind represents 2 Riemann surfaces between which there exists an
anti-conformal map, induced by the reflection z +— z. A Fuchsian group of the
second kind represents one Riemann surface endowed by a canonical anticonformal
involution, induced by the reflection z — z, Any Kleinian group G acts properly
discontinuously on the non-Euclidean space Hj; this is so even if Q(G) = 0. If G
is torsion free, the quotient H3 /G is a manifold endowed with a smooth hyperbolic
metric, induced by the Poincaré metric in Hz. If G has torsion, the natural map
H; — H3/G has branch points.
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The assumption that G' has no torsion is often made for the sake of simplicity.
This restriction is not too severe, in view of Selberg’s lemma: a finitely generated
matrix group is either torsion free or has a torsion free subgroup of finite index.

2. Examples

A discrete subgroup of M3 for which every point of C is a limit point is the
Picard group consisting of all maps

(2.1) zH:t(é, g), AD - BC=1
where A, B, C, D are Gaussian integers.

The simplest Fuchsian group of the first kind is the elliptic modular group T’
of maps (2.1) where A, B, C, D are rational integers. The principal congruence
subgroup modulo 2 (of T') is defined by the additional requirement that A and
D be odd and B and C even. This group is denoted by I'(2) and is of the first
kind (for instance, because it is of finite index in T').

The group I'(2) is torsion free and represents (over U) a thrice punctured
sphere; the canonical map U — U/T'(2) is a holomorphic universal covering.

The group I represents a once punctured sphere and the canonical map U —
U/T is branched of order 2 over 2 points.

The following construction, going back to Poincaré, yields a Fuchsian group
which represents (over U) a closed Riemann surface of genus p > 1. Let M be a
regular non-Euclidean 4p—gon with all interior angles equal to 7/2p. There is a

nearly standard way of choosing 2p non-Euclidean motions Ay, ..., Ay, (in U)
such that each A; identifies one edge of M with another. The non-Euclidean
motions Ap, ..., Agp satisfy the relation

-1, 4-1 -1 -1 _:
Ajo0Az0Al 0 Ay 0--r0Ay, 0 Ay =id,

and the polygon M, with the identifications by Ay, ..., A, carried out, becomes
a closed Riemann surface S of genus p, with complex structure compatible with
that of U. The group G generated by Ai, ..., Agp is Fuchsian of the first kind
and represents S over U.

Under these circumstances one says that M is a fundamental domain for G
(in U), which means that the set-theoretical boundary O of M has measure 0,
no two distinct points of Int(M) are G-equivalent, and every point of U is G-
equivalent to some point of Cl(M). Since M is also a non-Euclidean polygon we
call it a fundamental polygon.

Extending the method used above one can construct a Fuchsian group of the
first kind G which represents (over U ) a closed Riemann surface S of some genus
p > 0 from which one has removed n > 0 points, and such that the canonical map
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U —-U/G =S is branched over k > 0 points (j, ..., (x of S, of orders vy, ...,
Vi, respectively. The only condition to be satisfied is the inequality

1 1
(2.2) 2p—24+n+(1-=)+-+(1-=)>0.

14} Vi

The sequence
(p$n,k;V1"",Vk)

is called the signature of G, and the pair (p,n) is called the type of G. (This
terminology is not used, or is modified, by some authors.) Every finitely generated
Fuchsian group of the first kind has a signature.

Non-Fuchsian Kleinian groups can be obtained by constructing fundamental
polyhedra in non-Euclidean 3-space; this also goes back to Poincaré, cf. Maskit’s
book for a modern presentation.

3. Combination theorems; Schottky groups

Let G1 and G2 be finitely generated Kleinian groups. Klein’s combination
theorem gives a sufficient condition for the group G generated by G; and G, to
be Kleinian and the free product of G; and G5. The condition reads: Gy and G,
have fundamental domains M; and MMy, each bounded by one or several Jordan
polygons, such that the boundary of My (of M) is contained in My (in My ). Under
this hypothesis the intersection M =; N My is a fundamental domain for G.

One owes to Maskit a far-reaching extension of this result. Maskit’s first
combination theorem deals with two Kleinian groups, G; and G5, which have a
common subgroup Gy, and gives sufficient geometric conditions for (G;,Gs) to
be the free product of G; and G;, amalgamated over G, and Kleinian.

Maskit’s second combination theorem deals with a Kleinian group G and two
subgroups H; and H, of G, which are not conjugate in G but such that there is a
g € M\ G with H, = gH;g™!. The theorem gives sufficient geometric conditions
for (G, g1,92) to be the HNNextension of G by ¢, and Kleinian.

The theory of Kleinian groups may be said to have begun with Schottky’s
work on groups which bear his name.

Let Cy, Cy, Co, ..., C,, be 2p disjoint Jordan curves in C and assume that
C1+ -+ + C}, is the boundary of a domain of connectivity 2p. Assume also that
there are p Mobius transformations Ay, ..., A, such that 4; maps the domain
exterior to C; onto the domain interior to C}. Note that A; certainly exists if
Cj and C; are circles.

The group G generated by A,, ..., A, is free and Kleinian and the domain
exterior to all circles C1, ..., C} is a fundamental domain for G. The proof is
easy if p =1 and proceeds by induction on p for p > 1; the induction argument
uses Klein’s combination theorem.
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A group G obtained in this way is called a Schottky group of genus p. It
is called a geometric Schottky group if it can be constructed choosing as curves

Ci, ..., C, only circles. (In the older literature one says “Schottky group” and
“group of Schottky type” instead of “geometric Schottky group” and “Schottky
group”.)

The existence of non-geometric Schottky groups was proved by Marden.

It is known that the limit set of a Schottky group has area 0. But it has pos-
itive logarithmic capacity (Myrberg). The latter property extends to all Kleinian
groups since every such group must have Schottky subgroups.

Maskit proved that a (finitely generated) Kleinian group is Schottky if and
only if it is free and has no parabolic elements.

The young Schottky thought that every closed Riemann surface of genus p
can be represented by a Schottky group of this genus. He did not publish or
pursue this guess, following the advice of Weierstrass. The so-called retrosection
theorem which asserts that he was right (as long as one does not restrict oneself to
geometric Schottky groups) was established much later by Koebe and by Courant;
we shall return to this in Section 6.

4. The finiteness theorem; area inequalities

From now on we assume that G, with or without subscripts, denotes a non-
elementary finitely generated Kleinian group. A central result in the theory is the
Ahlfors finiteness theorem which asserts that (G) has at most finitely many non-
conjugate components Ay, ..., A,, that each Riemann surface S; = A;/ Stabg A;
is a closed (compact) surface with at most finitely many points removed, and that
the natural map A; — S; is branched at at most finitely many points.

There are today several proofs of the finiteness theorem; they differ not in the
conceptual framework but in the “hard analysis” tool used to overcome a technical
difficulty. In Ahlfors’ original proof this tool is a delicate “mollifier”, in Sullivan’s
proof the tool is the theory of prime ends, and in the author’s proof the tool is a
lemma about quasiconformal mappings.

The author’s area inequalities are quantitative refinements of the finiteness
theorem. Recall that for every component S; of Q(G)/G there is a branched
covering map A; — S;. This map together with the Poincaré metric on A;
induces a metric, called again Poincaré metric, on S;, and in this metric S; has
an area A;. The following statement is classical: if S; is obtained from a closed
surface of genus p; by removing n; points, and if the map A; — S; is branched
over m; points, of orders v;;, ..., Vim,, respectively, then

(4.1) Ai=27(2pi — 24+ n;+m; — b;)
where b; is the sum of the reciprocal branch numbers,

bi=(1/vi) + -+ (1/Vim;).
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The area of Q(G)/G is the sum A; +---+ A,.
The first area inequality asserts that if G is generated by N elements, then

Area (UG)/G) < 4r(N —1).

This is sharp; equality is achieved for Schottky groups.

A sharp estimate of r, the number of components of Q(G)/G, in terms of
N, is not known.

Since no A; can be less than m/21 (cf. (4.1) and (2.2)), the area inequality
yields the trivial estimate r < 84(N —1). Ahlfors improved this to r < 18(N —1).

Assume now that A is an invariant component of Q(G), so that g(A;) = A4
for all ¢ € G. The second area inequality asserts that in this case

Area ((G)/G) < 2Area(A,/G).
Corollary: If G has two invariant components, A; and Aj, then
QG) =AU A,

In this case both A; and A, are simply connected. We will give a more
precise description of groups with two invariant components later, see Section 8.

5. The measure of the limit set

In his paper on the finiteness theorem Ahlfors asked whether the area (=
2-dimensional Lebesgue measure) of the limit set A(G) of a finitely generated
Kleinian group is zero. Later he proved that this is so if G, considered as a group
of 3-dimensional non-Euclidean motions, has a fundamental (finitely many sided)
non-Euclidean polyhedron.

Kleinian groups which have a fundamental polyhedron are now called geomet-
rically finite; the difference between geometrically finite and geometrically infinite
groups turns out to be very important.

A Kleinian group G is called a function group if it has an invariant component,
ie., if (G) has a component A such that g(A) = A for all ¢ € G. Maskit gave
a topological description of all geometrically finite function groups.

Of course, geometric finiteness is not a necessary condition for a group G to
have a limit set of vanishing area. There are several known sufficient conditions,
for instance, Bonahan proved that mes A(G) = 0 if G is not a free product. Yet
we do not know whether there is a finitely generated G with mes A(G) > 0.

Occasionally the question can be bypassed using a result of Sullivan which we
proceed to describe.

A bounded measurable function p(z) defined on C is called compatible with
respect to a Kleinian group G if

(5.1) w(9(2)7@/g'(2) = u(z)  ae. forgeG.
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Sullivan proved that (5.1) implies that
(5.2) uw(z)=0 ae. onA(G).

Of course, this result is not vacuous only for a group G with mes A(G) > 0.

(We remark, though this is of no importance for the present paper, that
Sullivan’s result remains valid for non-Kleinian groups, i.e., for the case when G
is a discrete group of Mébius transformations with A(G) = C.)

6. Beltrami equations

Let D be a domain in C. An element p of the Banach space L (D) is
(or, more precisely, is defined by) a bounded measurable complex valued function
w(z), z € D; the norm

el o = ||#||L°°(D)

is the smallest number k such that |u(z)| < k ae. in D. If |pull, <1, pis
called a Beltrami coefficient in D.

A Beltrami coefficient in D defines a (not necessarily smooth) Riemannian
metric on D,

(6.1) ds® = o%|dz 4 pdz|?

where o is a positive function: every Riemannian metric can be so represented.
A p-conformal map w of D onto a subdomain D' C C is a homeomorphic

bijection w: D — D' such that the distributional derivatives

Wy — W wg + 1w

We — 1Wy wy = Lot Wy

6.2 , = , =
(6:2) v 2 2
are locally square-integrable measurable functions satisfying a.e. the Beltrami

equation
(6.3) Wz = pw,.

The geometric meaning of this equation is that w is a conformal map with respect
to the Riemannian metric (6.1).

The existence of local homeomorphic solutions of (6.3), and the main proper-
ties of these solutions, for the case when u is merely bounded measurable, rather
than Holder continuous, have been proved by Morrey in 1938. (Later Bojarski
showed that w, and w; are locally L,, for some p > 2 depending on ||y .)

Morrey’s result, together with Koebe’s general uniformization principle, imply
that for D = C and for any Beltrami coefficient p in C there exist a unique u-
conformal automorphism z — w*(z) of C onto itself which fixes the points 0,1

(and o0).
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A direct proof of this generalized Riemann mapping theorem, as well as the
main local properties of quasiconformal maps, are contained in the 1960 paper by
Ahlfors and Bers, together with the technically important additional result that,
for every z € C, the number of w*(z) depends holomorphically on p € Loo(C).

An analogue, and a corollary of the generalized Riemann mapping theorem
is the statement®: if u is a Beltrami coefficient defined in the upper half-plane
U, then there exists a unique p-conformal homeomorphism z — w,(z) of U =
U URU {0} onto itself, which fixes the real axis R, and the points 0, 1, oo.
For every fixed z =z +1y, y > 0, w,(w) depends real analytically on p.

A Beltrami differential m on Riemann surface S is a rule which assigns to
every local parameter (, defined on a plane domain D C S, a Beltrami coeffi-
cient p(¢) such that the (—1,1) differential p d(/d( is invariant under parameter
changes. It is also required that the absolute value |m| = |p|, which is a globally
defined scalar measurable function on S, that is, an element of L (S), satisfy
a.e. the inequality ||u[l;_ < 1. In these circumstances we say that m = pu d¢/dc,
locally.

Let F be a bijective homeomorphism of a Riemann surface S onto a Riemann
surface S;. We say that a Beltrami differential m defined on S is the Beltrami
differential of F if, for every point P on S, for every local parameter { defined
near and vanishing at P, and for every local parameter w defined near and van-
ishing at F(P), we have that near 0 the map woFo( ™! has a Beltrami coefficient
u(¢), and m = p(¢) d¢/d¢ locally, near 0.

A map which has a Beltrami differential is called quasiconformal.

7. Quasiconformal deformations of Kleinian groups

Let G be as before a Kleinian group and g a Beltrami coefficient on ¢
compatible with G, i.e., satisfying relation (5.1) for every ¢ € G. Sullivan’s
theorem stated in Section 5 implies that it suffices to require that (5.1) hold a.e.
in QG).

A direct calculation shows that, for every ¢ in G, the mapping w*og satisfies
(a.e.) the same Beltrami equation as w*. But two p-conformal maps differ only
by a conformal one, so that

wh o g = g"owh

where g* is a holomorphic function. But
g* =w*ogo(w*)?!

is clearly a topological self-map of € and thus an element of M.
One sees at once that the group

G* = w*G(w*)™!
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is a Kleinian group, that w*(Q(G)) = Q(G*) and w*(A(G)) = A(G*). The
isomorphism
gr—)'u)”ogo(’w”)—l =g*

is called a quasiconformal deformation of G onto G*, induced by .

This construction can be reversed, and this suggests a method for proving
uniformization theorems, called variation of conformal structure or, less formally,
the p-trick.

As an example we prove the classical retrosection theorem: every closed Rie-
mann surface S of genus p > 1 can be uniformized by a Schottky group, that is,
there is a Schottky group G with Q(G)/G conformal to S.

Repeating the construction of a Schottky group in Section 3, we choose 2p
disjoint compact circular discs on C, call them Dg;, Dgy, ..., Dop, Dj, and

p Mobius transformations Agy, ..., Agp such that (i) the complement in C of
Doy + Dg; +- -+ Dy, is a plane domain of connectivity 2p, and (ii) Ao; maps the
interior of Dy; onto the exterior of Dg;, j =1,...,p. The group G generated by
Ao1, ..., Agp is a Schottky group. It is not difficult to construct a smooth (say of
class C?) quasiconformal map of Sy = ©(Go)/Go onto the given Riemann surface
S. This map has a Beltrami differential p defined first over some fundamental
domain for Gy and then extended over all of Q(Gy) by the condition

#(9(2))g'(2) = n(2)g'(2)
for z € Q(Gy) and g € Gy. Since p is compatible with the group Gy, the group
G = w*Gyo (w*)™?!

is a Kleinian group, more precisely a Schottky group, and Q(G)/G is conformally
equivalent to the given Riemann surface S'.

We do not discuss the additional conditions which must be imposed in order
to make the uniformizing Schottky group G unique.

8. Quasi-Fuchsian groups

A quasi-Fuchsian group (of the first kind) G is a Kleinian group whose limit
set A(G) is a Jordan curve on C. We shall consider only finitely generated quasi-
Fuchsian groups G, and shall assume, for the sake of simplicity, that G has no
elliptic or parabolic elements.

It is often convenient to orient the Jordan curve A(G) and to assume that
it passes through the points 0, 1, co (in this order). The two simply connected
components of C\ A(G) will be denoted by U(G) and L(G), U(G) being to the
left of A(G). A Fuchsian group is also quasi-Fuchsian, with A(G) = RU {co} and
U(G)=U. A quasi-Fuchsian group G represents two closed Riemann surfaces,

S =0(G)/G and S, =L(G)/G.
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The theorem on simultaneous uniformization (or, rather a special case of this
theorem) asserts that S; and S, may be prescribed arbitrarily, except that they
must have the same genus p > 1.

The only proof I know involves the p-trick (whereas all uniformization theo-
rems mentioned before have also “classical” proofs which do not depend on qua-
siconformal mappings).

Sketch of proof. Let Gy be a Fuchsian group such that U/Gy is (conformal
to) the given surface S; (the existence of Gy can be proved by the method in
Section 6). Let L denote the lower half-plane. Then L/G, is conformal to the
mirror image S; of S;. (The points and open sets of S; are those of S;, the
local parameters on S; are the complex conjugates of the local parameters on
S1.) Considered as a quasi-Fuchsian group Go has the components U and L.
The quotient U/Gy is already what we want it to be, the complex structure of
L/G, is to be changed into that of Sy by the p-trick.

There is a quasiconformal homeomorphism f of S; = L/G onto S,. It can
be lifted to a homeomorphism f of S; onto the universal covering surface of Ss.
Let m be the Beltrami differential of the map which coincides with the identity
on U and with the map f on L. This m is compatible with Go. One verifies, as
in Section 6, that

G = w*Go(w*)™?

is a quasi-Fuchsian group with U(G)/G conformally equivalent to S; and L(@)/G
to 52 .

Remark 1. We can now answer a question hinted at at the end of Sec-
tion 4. A finitely generated Kleinian group with two invariant components is
quasi-Fuchsian.

Remark 2. Bowen proved that the Hausdorff dimension of the limit set of
a quasi-Fuchsian not Fuchsian group is strictly between 1 and 2.

9. Teichmuiller spaces

The Teichmiiller space T(G) of a Fuchsian group G is the space of normalized
quasiconformal deformations of G. For the sake of simplicity we assume, as before,
that G is finitely generated, purely hyperbolic and of the first kind; then $ = U/G
is a closed Riemann surface of some genus p > 1.

We denote by @ the group of all quasiconformal self-mappings of the closed
upper half-plane U = U UR U {oo}, by @, the subgroup which fixes the points
0, 1, oo, and by Qo the normal subgroup which fixes every z € R = RU {o0}.
We say that v € Q(G) if u € Q and uGu™! is again a Fuchsian group. Every
element u of Q(G) induces a quasiconformal deformation

Gogruogou™ =§€uGu;
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this deformation is called normalized if u € Q,. Two deformations induced by
two elements u; and u, are identical if and only if u; and u; coincide on R.
The deformation induced by u will be denoted by [u]; thus [u] determines and is
determined by u | R. The space T(G) is the space of all [u], u € Qn(G).
Every u € Q(Q) induces an allowable bijection of T(ugu™") onto T(G) which
takes
[w] € T(ugu™)

onto
[aowou™!] € T(G),

where « is a real Mdbius transformation chosen so that cocwowu™! fixes 0, 1 and
0o. The allowable self-mappings of T(G) form the modular group Mod (G) of G
and

X(G) = T(G)/Mod (G)

is the set of PSL(2R) conjugacy classes of quasiconformal images of G.

There is a canonical way of representing T(G) as a bounded domain in a
complex vector space, namely the space Bz(L,G) of bounded automorphic forms
of weight (—4) for the group G, acting on the lower half-plane. The elements of
this vector space are holomorphic functions ¢(z), z € L, satisfying the functional
equation

(9.1) 0(9(2))d'(2)* =w(2), (9€G, z€L).

Thus ¢(z)dz? is a holomorphic quadratic differential on the Riemann surface
L/G. The Riemann-Roch theorem implies that

dim By(L,G) = 3p — 3.
One defines in this space the norm

el = sup|ye(z + iy)|

where —o0 < 7 < 400, —00 < y < 0. (Note that ly2cp(z)| is G-invariant.)

We now proceed to define a mapping of T(G) into B3(L,G). Let 7 be an
element of T(G). There is a Beltrami coefficient yu for G, defined in U, and
compatible with G, such that 7 = w, |R = [w,]. We continue p over all of C
by setting

_[u(z) forzeU,
Ho(2) {0 for z € L.

The Beltrami coefficient pg is also G-compatible, and one can verify that for
any two Beltrami coefficients p and v, defined in U and compatible with G the
following statements are equivalent.
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(1) [wu] = [w,],

(ii) wke |L=w™|L,

(i) wh |R =w"|R.

Now w#? | L is a schlicht holomorphic function in L, so that it is natural (at
least for a complex analyst) to form the Schwarzian derivative of w*° |L which
we denote by ¢#; thus

(9-2) o = {w,z} = (w"/w') — F(w"/w')?,

where w = wh° | L.

One can verify that ¢#(z) satisfies relation (9.1) and thus belongs to
By(L, G). Also, since ¢* is the Schwarzian derivative of a schlicht function in L,
we conclude from the Kraus—Nehari inequality that

loll < 3
‘p —_ 2'
It can be shown that the map
(9.3) T(G) — By(L,G)

which takes w, |R into ¢* is a bijection of T(G) onto a subdomain of the ball
el < 3/2 in By(L,G), and there is a unique natural way of defining a complex
structure in T(G) such that (9.3) becomes a holomorphic homeomorphism. The
same is then true of every element of the modular group and of every allowable
mapping.

It is usually convenient to identify T(G) with its image under the mapping
(9.3). The image contains the open ball ||¢|| < 1/2 in By(L,G). This statement
is a corollary of the elegant Ahlfors—Weil lemma which can be restated as follows.

Let 9(z) be a holomorphic quadratic differential in L, for the group @, and
assume that ||| < 1/2, i.e., that 2|¢(2)| <y~2 for 2 € L. Set

w(z) = —2y2(z) forz € L,
w(z)=0 forz e U.

Then p(z) is a Beltrami coefficient compatible with G in C, and the Schwarzian
derivative of w#|L is 3 = p*.

We conclude this section by noting that T(G) is a cell (this follows, for in-
stance from Teichmiiller’s mapping theorem) and that T(G) is holomorphically
convex (there are, by now, several proofs of this fact).

Remark 1. Practically all results of this and the preceding section remain
valid when the Fuchsian group G is not finitely generated, or when it contains
elliptic or parabolic elements, or when it is of the second kind. This may re-
quire some modifications of definitions (for instance, the finite dimensional space
By(L,G) may have to be replaced by an infinitely dimensional Banach space).
Also, some proofs may become significantly harder.
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Remark 2. We did not yet mention Teichmiiller spaces of Riemann surfaces.
Assuming their definition known, and assuming G to be torsion free and of the
first kind, we can state a basic theorem.

There exists a canonical isomorphism between the Teichmiiller space T(G)
and the Teichmiiller space of the Riemann surface U/G.

A modified isomorphism theorem can be proved if G is of the second kind
and/or has torsion.

10. Boundary groups

Let G, B2(L,G), T(G) have the same meaning as in the preceding section,
and let ¥ denote the bijection (9.3). We identify T(G) with its image under
¥ and denote by Cl(T(G)) the closure of T(G) = ¥(T(G)) in By(L,G); then
OT(G) = CI(T(@)) \ T(G) is the set theoretical boundary of T(G) in By(L,G).
We will associate a Kleinian group to every point of 8(T(G)).

If ¥ € By(L,G) is given, we denote by n;(z), j = 1,2, the two solutions of
the ordinary differential equation

2n"(2) + n(2)9(2) = 0,
subject to the initial conditions
m=ny=1, np=mn2=0, at z = —i.

These two functions are holomorphic in L, and depend continuously on ¢ €
B,(L,G). The quotient
V'p(z) = ni(2)/n2(2)

is a locally single-valued meromorphic solution of the Schwarzian differential equa-
tion

{V¢(z), z} = 9(z2).

Comparing this with (9.2) we conclude that there exists a Mobius transfor-
mation ay (dependent on %) such that

wh =ay o0 VY.

This is valid for ¢ € T(G) or, more precisely, for ¥(¢) € T(G). Indeed wH® was
defined assuming that [w,] € T(G). Also, if 1 converges to a point % on dT(G),
there is no reason to assume that ay converges.

On the other hand, V¥ is defined for all ¢ in By(G) and it makes sense to

study the group
GY =VYG(V¥), ¢ € 0T(G).
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Such groups are called boundary groups (of G). The facts are as follows.

The group G¥ is Kleinian and has a single simply connected invariant com-
ponent. (Groups with the latter property are called b-groups. It is not known
whether every b-group is a boundary group.)

In general (in the sense of measure or in the sense of dimension) G¥ has no
other components. Such groups are called (totally) degenerated. Totally degener-
ated groups are geometrically infinite (cf. Section 5). As a matter of fact, this is
how geometrically infinite groups were discovered.

A function group which is not totally degenerated has non-invariant compo-
nents. Assume that Di, ..., D, is a complete list of non-conjugate non-invariant
components, and let I'; be the stabilizer of D;. Also set S; = D;/T';. Then each
S; has at least one puncture, and if the non-Euclidean area of S; is A;, we have
that

(10.1) A+ +4, <A

where A is the area of L/G. (This is simply the second area inequality, cf.
Section 4.) The group GY is called partially degenerate (or regular) according to
whether (10.1) is valid with the strict inequality sign (or with the equality sign).

The terms “regular”, “partially degenerated” and “totally degenerated” make
sense for any b-group. Abikoff proved that regular b-groups are boundary groups.
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