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FINITELY GENERATED KLEINIAN GROUPS
An Introduction

Lipman Bers

This paper, like the talk on which it is based, is directed not at workers in
the theory of Kleinian groups but at mathematicians who want to find out what
this theory is all about. An introductory talk cannot, of course, cover all aspects

of a rapidly developing field. We stress those chapters of the theory in which
the connections with Riemarur surfaces and quasiconformal maps predominate;

these are also the chapters in which the influence of Ahlfors is clearly visible. The
reader will have to look elsewhere for an introductory account on Thurston's path-
breaking work on hyperbolic three-manifolds. Neither can we report on Maskit's
monumental classification of geometrically finite function groups.

For more information, and for references to original papers' I refer to the
books and expository papers listed in the selected bibliography.

1. Basic deffnitions

Every unimodular 2 x 2 matrix with complex entries,

":(Z 2), ad,-bc:1,

defines a biholomorphic automorphism

( 1.1)
az+bzå cz+d

of the Riemann sphere (: complex projective line) Ö : C U {m}; the sarne map
is defined by the matrix (-*). The Möbiusgroup M of all such maps can be
identified with the group PSL(2, C).

Every Möbius transformation (1.1) can be extended to act on the hyperbolic
three-space fI3. Indeed, fI3 can be represented as the space of all "special"
quaternions Z : s * iV *jt, with fr , U, t real and t > 0. The Möbius transfor-
mation (1.1) takes Z ir;lto the special quaternion

("2 + äX cZ + d)-';

Mika
Typewritten text
doi:10.5186/aasfm.1988.1324



374 Lipman Bers

it preserves orientation and the Poincard metric

ds2 : (d*" + dy' + dt2)/t2.

Similarly, the real Möbius group M11, which can be identified with PSL(2, R),
is the group of all projective self-mappings of the real projectr\e line fr : RU {oo} ,
and also the group of motions of the non-Euclidean plane fI2, represented as the
upper half-plane U in C, with the Poincard metric d,sz - (du2 * dV,)|y,.

Now let G be a discrete subgroup of M. A point zo e Ö is called a point
of discontinuity (of G) if there is a neighborhood of zs in which the elernents of
G form a normal family. The set of all points of discontinuity is the region of
discontinuity O(G) of G; its complement 

^(C) 
: Ö \ O(G) is called the fimjf set.

The set of discontinuity is always open and G-invariant.
In every G-invariant open set @ C O(G) the group G operates properly

discontinuously; this means that every compact subset of ar intersects at most
finitely many of its translates under G. Since every element of G is a conformal
map, one concludes that, for every component A of O(G), the quotient

Sa, : L/Stabc A

is a Riemann surface and the canonical surjection O --+ Sa is a holomorphic
covering, which is branched precisely at those points of A which are fixed under a
non-trivial element of Stab6A, the stabilizer of A in G. The quotient A(qlG
is the disjoint union

Sa,*Sa,*"'
where At, Ar, ... is a complete list of nonconjugate (under G) components of A.
We say that G represenfs ,54, over A; and Sa, * Sa, *... over O(G).

The group'G is called Kleinian (by some authors, Kleinian of the second kind)
if its limit set is not the whole Riemann sphere Ö. ff ro, the limit set has either
no more than two points (in which case G is called elementary) or infinitely many
points (in which case the limit set Ä(G) is nowhere dense a^nd perfect).

By a Fbcåsian group we shall mean, in this paper, a Kleinian group G which
lies in Mp. Such a G is called of the first kind (or of the second kind) if 

^(G) 
:

R : R u {-} (or if R is a nowhere d.ense subset of R). A Fuchsian group
G of the first kind represents 2 Riemann surfaces between whidr there exists an
anti-conformal map, induced by the reflection z ++ 2. A Fuchsian group of the
second kirfd represents one Riemann surface endowed by a canonical anticonformal
involution, induced by the reflection z t+ Z. Any Kleinian group G acts properly
discontinuously on the non-Euclidean space If3; this is so even if O(G) : 0. If. G
is torsion free, the quotient l:Is/G is a manifold endowed with a smooth hyperbolic
metric, induced by the Poincar6 metric in H3. If G has torsion, the natural map
fls --+ HslG has bra,nch points.
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The assumption that G has no torsion is often made for the sake of simplicity.
This restriction is not too severe, in view of Selberg's lemma; a finitely generated

matrix group is either torsion free or has a torsion free subgroup of finite index.

2. Examples

A discrete subgroup of Mg for which every point of Ö is a limit point is the
Picard group consisting of all maps

(2.r) z å* (t ""), AD-BC_1

where A, B, C, D are Gaussian integers.
The simplest Fuchsian group of the first kind is the elliptic modular group I

of maps (2.1) where A, B, C,, D are rational integers. The principal congruence
subgroup modulo 2 (of l) is defined by the additional requirement that .Ä and
D be odd and B and C even. This group is denoted by l(2) and is of the first
kind (for instance, because it is of ffnite index in l).

The group l(2) is torsion free and represents (over U) a thrice punctured
spherel the canonical map U --+ U ll(2) is a holomorphic universal covering.

The group I represents a once punctured sphere and the canonical map [/ --+

U/l is branched oforder 2 ovet 2 points.
The following construction, going back to Poincard, yields a F\rchsian group

which represents (over t/) a closed Riemann surface of genus p> L. Let l'l be a
regular non-Euclidean 4p-gon with all interior angles equal to rf2p. Thereis a

nearly standard way of choosing 2p non-Euclidean motions At,, , . ,, Azp (in U)
such that each Ai identifies one edge of l-'l with another. The non-Euclidean
motions At, ..., Azp satisfy the relation

A1 o A2 o Alt o Art o "' o A2or-r o A;| : i6,

and the polygon l-1 , with the identifications by Ar, . . ., Aro carried. out, becomes

a closed Riemann surface ,9 of genus p, with complex structure compatible with
that of U. The group G generated by Är , ..., Azp is F\rchsian of the first kind
and represents ,S over U.

Under these circumstances one says that ll is a fundamental domain for G
(in U), which means that the set-theoretical boundary ön of Fl has measure 0,
no two distinct points of Int(n) are G-equivalent, and every point of U is G-
equivalent to some point of Cl(n). Since l-l is also a non-Euclidea^n polygon we

call it a fundamental polygon.
Extending the method used above one can construct a F\rchsian group of the

first kind G which represents (over U) a closed Riemann surface ,9 of some genus

p ) 0 from which one has removed n ) 0 points, and such that the canonical map
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U ---+U/G:,9 is branched over ,t ) 0 points (r, ..., (r of ,5, of orders L'tt ...t
/å, respectively. The only condition to be satisfied is the inequality

(2.2) 2p - 2 + n +(r - |rl+ . . . + (r - |l > o.

The sequence

(p,nrlriurr. , . ,u*)

is called the signature of G, a^nd the p.ir (p,n) is called the type of G. (This
terminology is not used, or is modified, by some authors.) Every finiiely generated
F\rchsian group of the ffrst kind has a signature.

Non-F\rchsian Kleinian groups can be obtained by constructing fundamental
polyhedra in non-Euclidean 3-space; this also goes back to Poincard, cf. Maskit's
book for a modern presentation.

3. Combination theorems; Schottky groups

Let Gt and Gz be finitely generated Kleinian groups. Kftein's combination
theorem gives a suffi.cient condition for the group G generated by G1 and G2 to
be Kleinian and the free product of G1 and G2. The condition reads: G1 and G2
have fundamental domains 111 and 112, each bounded by one or several Jordan
polygons, such that the boundary of l'11 (of F12 ) is contained in t-lz (in [11 ). Under
this hypothesis the intersection fl : flr fl I'12 is a fundamental domain for G.

One owes to Maskit a far-reaching extension of this result. Maskit's first
combination theorcm deals with two Kleinian groups, Gr and G2, which have a
common subgroup Ge, and gives sufficient geometric conditions for (G1rG2l to
be the free product of. G1 and G2 , arnalga,mated over Gs, and Kleinian.

Maskit's second combination theorem deals with a Kleinian group G and two
subgroups ä1 and H2 of. G, which are not conjugate in G but such that there is a
9 € M \ G with H2: gVg-l. The theorem gives sufficient geometric conditions
for (G, gbgz) to be the HNNextension of. G by g, and Kleinian.

The theory of Kleinian groups may be said to have begun with Schottky,s
work on groups which bear his narne.

Let C1, Cl, Cr, . .., C'o be 2p disjoint Jordan curyes in Ö a,nd assume that
Cr t ... + Ct, is the boundary of a domain of connectivity 2p. Assume also that
there are p Möbius transformations Ä1 ,, . . ., Ap such that 24,; maps the domain
e_xterior to Ci onto the domain interior to Cl. Note that ä; certainly exists if
Ci and G'i axe circles.

The group G generated by ,4.r , . . ., Ap is free and Kleinian and the domain
exterior to all circlee Ct, ..., C'e is a fundamental domain for G. The proof is
easy if p: 1 and proceeds by induction on p for p ) 1; the induction argurnent
uses Klein's combination theorem.
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A group G obtained in this way is called a Schottky group of genus p. It
is called a" geometfic Sehottky group if it can be constructed choosing as curves
Ct, ..., C'o only circles. (In the older literature one says'lSchottky group" and
"group of Schottky type" instead of "geometric Schottky group" and "Schottky
group".)

The existence of, non-geometric Schottky groups was proved by Marden.
It is known that the limit set of a Schottky group has area 0. But it has pos-

itive logarithmic capacity (Myrberg). The latter property extends to all Kleinian
groups since every such group must have Schottky subgroups.

Maskit proved that a (finitely generated) Kleinian group is Schottky if and
only if it is free and has no panbolic elements.

The young Schottky thought lhat every closed Riemann surface of genus p
can be represented by a Schottky group of this genus. He did not publish or
pursue this guess, following the advice of Weierstrass. The so-called retrosection
theorem which asserts that he was right (as long as one does not restrict oneself to
geometric Schottky groups) was established much later by Koebe and by Courant;
we shall return to this in Section 6.

4. The ffniteness theoreml area inequalities

From now on we assume that G, with or without subscripts, denotes a non-
elementary finitely generated Kleinian group. A central result in the theory is the
Ahlfors finiteness theorem which asserts that O(G) has at most finitely many non-
conjugate componånts Ar, . . ., A' that each Riemann surface S; : A;/ Stab6 A;
is a closed (compact) surface with at most finitely many points removed, and that
the natural map A; --+ ,5; is branched at at most ffnitely many points.

There are today several proofs of the finiteness theorem; they differ not in the
conceptual framework but in the "hard analysis" tool used to overcome a technical
difficulty. In Ahlfors' original proof this tool is a delicate "molliffer", in Sullivan's
proof the tool is the theory of prime ends, and in the author's proof the tool is a
lemma about quasiconformal mappings.

The author's area inequalities are quantitative refinements of the finiteness
theorem. Recall that for every component .9; of. A(G)/G there is a branched
covering map A; -* ,S;. This map together with the Poincard metric on A;
induces a metric, called again Poincar6 metric, on 5;, and in this metric ,5; has
an area ,4.;. The following statement is classical: if ^9; is obtained from a closed
surface of genus p; by removing n; points, and if the map Ä; r ,S; is branched
over rmi points, of orders ui! t . . . s t/imi, respectively then

(4.1) At-2r(2p; 2*nt*m;-bt)
where b; is the sum of the reciprocal branch numbers,

bt : 0luit)+ . . . + (llr;*,).
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The area of A@)lG is the sum Ar * ... + A,.
The first area inequaliiy asserts that if G is generated by N elements, then

Rrea (o(G) lG) < azr(If - 1).

This is sharp; equality is achieved for Schottky groups.
A sharp estimate of r, the number of components of AG)IG, in terms of

N, is not known.
Since no A; can be less than rl2L (cf. (a.1) and (2.2)), the area inequality

yields the trivial estimate r < 84(N - 1). Ahlfors improved this to r < 18(I[ - 1).
Assume now that A1 is an invaÅant component of O(G), so that 9(Ar) : Ar

for all S e G. The second area inequality asserts that in this case

Rrea (o(G) lG) S2Lrea(A1/G).

Corollary: If G has two invariant components, A1 and 42, then

O(G):ArUAz'

In this case both A1 and'A2 are simply connected. We will give a more
precise description of groups with two invariant components later, see Section 8.

5. The measure of the limit set

In his paper on the finiteness theorem Ahlfors asked whether the area (-
2-dimensional Lebesgue measure) of the limit set Ä(G) of a finitely generated
Kleinian group is zero. Later he proved that this is so if G, considered as a group
of 3-dimensional non-Euclidean motions, has a fundamental (finitely many sided)
non-Euclidean polyhedron.

Kleinian groups which have a fundamental polyhedron are now called geomet-
rically finite; the difierence between geometrically finite and geometrically infinite
groups turns out to be very important.

A Kleinian group G is called afunction group if it has an invariant component,
i.e., if O(G) has a component A such that 9(A) : A for atl g € G. Maskit gave

a topological description of all geometrically finite function groups.
Of course, geometric finiteness is not a necessary condition for a group G to

have a limit set of va,nishing area. There are several known sufficient conditions,
for instance, Bonahan proved that mes A(G) : 0 if G is not a free product. Yet
we do not know whether there is a finitely generated G with mes A(G) > 0.

Occasionally the question can be bypassed using a result of Sullivan which we
proceed to describe.

A bounded measurable function p(z) defrned on C is called compatible with
respect to a Kleinian group G if

(5.1) p(g('\1ffi I g'(') - p(t) a.e. for s e G.
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Sullivan proved that (5.1) implies that

(5.2) p(z) - 0 a.e. on A( G).

319

Of course, this result is not vacuous only for a group G with mesÅ(G) > 0.
(We remark, though this is of no importance for the present paper, that

Sullivan's result remains valid for non-Kleinian groups, i.e., for the case when G
is a discrete group of Möbius transformations with A(G) : Ö.)

6. Beltrami equations

Let D be a domain in C. An element p of the Ba^nach space ,Do"(D) is
(or, more precisel5 is defined by) a bounded measurable complex valued function
p(z), z € D; the norm

llpll-: llpll^c*rot

is the smallest number å such ttrat lf(z)l ( b a.e. in D. If llpll"" < 1, pr is
called a Beltrami coeffi.cient in D.

A Beltrami coefficient in D defines a (not necessarily smooth) Rjemannian
metric on D,

(6.1) dsz:ozldz*pdzlz

,,t,- us' * iwo
. lll,-2

where o is a positive function: every Riemannian metric ca^n be so represented.
A, p,-conformal map u; of D onto a subdomain n' C ö is a homeömorphic

bijection w: D + D' such that the distributional derivatives

wa - cwy
(6.2) wr:

are locally square-integrable measurable functions satisfying a.e. the Beltrami
equation

(6.3) u2 : p,r! 7.

The geometric meaning of this equation is that tr is a conformal map with respecf
to the Riemannian metric (6.1).

The existence of local homeomorphic solutions of (6.3), and the main proper-
ties of these solutions, for the case when pl is merely bounded measurable, rather
than Hölder continuous, have been proved by Morrey in 1938. (Later Bojarski
showed that w" and u2 are locally Lo, for some p ) 2 depending on llpll-.)

Morrey's result, together with Koebe's general uniformization principle, imply
that for D : C and for any Beltrami coefficient p in C there exist a unique p-
conformal automorphism z --+ .P(") of C onto itself which fixes the points 0,1
(and m).
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A direct proof of this generalized Riemann mapping theorem, as well as the
main local properties of quasiconformal maps, are contained in the 1960 paper by
Ahlfors and Bers, together with the technically important additional result that,
for every z € C, the nu:nber of. -p(z) depends holomorphically on p' e L*(C).

An analogue, and a corollary of the generalized Riemann mapping theorem
is the statementiD: if. pr is a Beltrami coefficient defined in the upper half-plane
U, then there exists a unique pl-conformal homeomorphism z - uuQ) of U :
t/ U RU {*} onto itself, which fixes the real a:cis R, and the points 0, L, oo.

For every frxed z: a *iy, y ) 0, wu(w) depends real analytically on p'.

A, Beltrami öfferential m on Riemann sur{ace ,5 is a rule which assigns to
every local parameter (, defined on a plane domain D c S, a Beltra,rni coeffi-
cient p(O such that.the (-1,1) differential pd(ldC is invariant under parameter
changes. It is also required that the absolute value Inzl : lpl, which is a globally
defined scalar measurable function on ,S, that is, an element of .D-(.9), satisfy
a.e. the inequality llpllz- ( 1. In these circumstances we say that rn : p'd'(/d'(,
Iocally.

Let F be a bijective homeomorphism of a Riemann surface ,5 onto a Riemann
surface å. We say that a Beltrami difrerential rn defined on 5 is the Beltrami
ditrerential of F if, for every point P on 5, for every local parameter ( defined
near and vanishing al P , and for every local parameter c.r defined near and van-
ishing at .F(P), we have that near 0 the map aroFo(-l has a Beltrami coefficient
p((), und m: p(C)deld.(,locall5 near 0.

A map which has a Beltrami differential is called quasiconformal.

7. Quasiconformal deformations of Kleinian groups

Let G be as before a Kleinian group and p a Beltrami coefficient ott Ö
compatible with G, i.e., satisfying relation (5.1) for every g € G. Sullivan's
theorem stated in Section 5 implies that it suffices to require that (5.1) hold a.e.

in o(G).
A direct calculation shows that, for every g in G, the mapping art'og satisfies

(a.e.) the same Beltra.rni equation as ur&. But two ;r-conformal maps differ only
by a conformal one, so that

wPog-gPowP

where gp is a holomorphic function. But

gF:wPogo(wt)-r

is clearly a topological self-map of Ö and thus an element of M.
One sees at once that the group

Gp : lVtrc(*r)-t
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is a Kleinian Broup, that u,'(O(G)) : O(Gt'; and urt'(A(G)) : Å(Gt';. The
isomorphism

gåupogo(wu)-t-nu
is called a quasiconformal ddormation of G onto Gp, induced by p.

This construction can be reversed, and this suggests a method for proving
uniformization theorems, called variation of conformal structure or, less formallg
the y,-tfick.

As an example we prove the classical retrosection theorem: every closed Rie-
mann surface ,9 of genus p ) L can be uniformized by a Schottky group, that is,
there is a Se.hottky group G with AG)/G conformal to 

^9.
Repeating the construction of a Schottky group in Section 3, we choose 2p

disjoint compact circular discs on C, call them D61 , D'ot, .,., Dop, D[o and

p Möbius transformations As1 , ..., Aop such that (i) the complement in Ö of
Dot-lDLr*...*DLp is a plane domain of connectivity 2p, and (ii) ,4si maps the
interior of. Dsi onto the exterior of. D[i, j : Lr, .. tP. The group Ge generated by
Aot, . . ., Aop is a Schottky group. It is not difficult to construct a smooth (say of
class C2) quasiconformal map of ,9s : A(Go)lGo onto the given Riemann surface

^9. This map has a Beltrami difrerential pr defined first over some fundamental
domain for G6 and then extended over all of O(Ge) by the condition

p(g(4)M: pQ)d(z)

for z € O(Go) and g € Go. Since p is compatible with the group Gs, the group

G:w\Goo(urr)-t

is a Kleinian group, more precisely a Schottky group, and O(G)/G is conformally
equivalent to the given Riemann surface ^9.

We do not discuss the additional conditions which must be imposed in order
to make the uniformizing Schottky group G unique.

8. Quasi-Fuchsian groups

A quasi-Fbchsian group (of the first kind) G is a Kleinian group whose limit
set A(G) is a Jordan curye on Ö. W" shall consider only finitely generated quasi-
F\rchsian groups G, and shall assume, for the sake of simplicity, that G has no
elliptic or parabolic elements.

It is often convenient to orient the Jordan curve Å(G) and to assume that
it passes through the points 0, 1, oo (in this order). The two simply connected

components of Ö \ A(G) wilt be denoted ay 0(Q ana i1C) , uG) being to the
lgft of A(G). A F\rchsia^n group is also quasi-F\rchsian, with 

^(G) 
: RU {m} and

U(G): {/. A quasi-F\rchsian group G represents two closed Riemann surfaces,

^9r - 0(qlc and sz - L(G) lG.
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The fåeorem on simultanaus uniformization (or, rather a special case of this
theorem) asserts that ,5r and ,92 may be prescribed arbitrarily except that they
must have the same genus p ) 1.

The only proof I know involves the pr-trick (whereas all uniformization theo-
rems mentioned before have also "classical" proofs which do not depend on qua-
siconformal mappings).

Sketch of proof. Let Go be a Fuchsian group such that UlGo is (conformal
to) the given surface ,S1 (the existence of Go can be proved by the method in
Section 6). Let .t denote the lower half-plane. Then L/Gs is conformal to the
mirror image ,91 of ,91 . (The points a,nd open sets of 51 are those of ,91 , the
local parameters on 5r *" the complex conjugates of the local pa,rameters on

^9r.) Considered as a quasi-F\rchsian group Go has the components U and .t.
The quotient UlGs is already what we want it to be, the complex structure of
LlGs is to be changed into that of Sz by the p-trick.

There is a quasiconformal homeomorphism / of ^91 
: Lf G onto,S2. It can

be lifted to a homeomorphism i of & onto the universal covering surface of ,92.
Let m be the Beltrami differential of the map which coincides with the identity
on U and with the map "f on L. This rn is compatible with Go. One verifies, as
in Section 6, that

G : w\Go(rr)-t

is a quasi-F\rchsian group with tG)lG conformally equivalent to ,91 and L1C11e
to 52.

Remark 1. We ca-n now answer a question hinted at at the end of Sec-
tion 4. A finitely generated Kleinian group with two invariant components is
quasi-F\rchsian.

Rernark 2. Bowen proved that the Hausdorff dimension of the limit set of
a quasi-Fuchsian not F\rchsian group is strictly between 1 and 2.

9. Teichmiiller spaces

The Teidtmiller space T(G) of a tr\rchsian group G is the space of normalized
quasiconformal deformations of G. For the sake of simplicity we assume, as before,
that G is finitely generated, purely hyperbolic and of the first kind; then ,S : U /G
is a closed Riemann surface of some genus p ) 1.

We denote by Q the group of all quasiconformal self-mappings of the closed
upper half-pla,ne U : U U R U {-}, by Q" lhe subgroup which fixes the points
0, 1., oo, and by Qs the normal subgroup which fixes every o g R: RU {oo}.
We say that u €. Q(C) if. u € Q and, uGu-l is again a Fhchsian group. Every
element u of. Q(G) induces a quasiconformal deformation

G)gåuogou-r -0e uGu-';
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this deformation is called normaJizedif u € Qo. Two deformations induced by
two elements u1 and u2 ale identical if a.nd only if u1 arrd u2 coincide on R.
The deformation induced by u will be denoted bV ["]; thus [u] determines and is

determined by u I R. tt 
" 

space ?(G) is the space of all [u] , u e Qtu(G).
Every u e Q(G) induces an aJlowable bijection of T(ugu-|) onto 

"(G) 
which

takes

lwl e T(ugu-t)

onto

laowou-11 eT(G),

where a is a real Möbius transformation chosen so that aou)ou-l fixes 0, 1 and

m. The allowable self-mappings of 
"(G) 

form the modular group Mod(G) of G
and

x(G): 
"(G)/Mod(G)

is the set of PSL(2R) conjugacy classes of quasiconformal images of G.
There is a canonical way of representing 

"(G) 
as a bounded domain in a

complex vector space, namely the space Bz(LrG) of bounded automorphic forms
of weight (*a) for the group G, acting on the lower half-plane. The elements of
this vector space a,re holomorphic functions p(z), z € Z, satisfying the firnctional
equation

(9.1) p(g(r)) g'(')' : eQ), (geG, z €tr).

differential on the Riemann surface
that

Thus p(z) dr' is a holomorphic quadratic
L lG. The Riemann-Roch theorem implies

dimB2(.[, G) = 3P - g.

One defines in this space the norm

llell : suPlY2e(c +;v)l

where -oo ( o ( *oo, -oo < y < 0. (Note that lvzvQ;l it C-i""uriunt.;
We now proceed to define a mapping of. f@) into B2(L,G). Let z be an

element of T(G). There is a Beltrami coefficient pr for G, defined in U, and

compatible with G, such that r:tlplR: [tor1. We continue p over all of C
by setting

po(z) :

The Beltrami coefficient pe is also G-compatible, and one can verify that for
any two Beltrami coefficients /, urrd z, defined in U and compatible with G the
following st at ements a,re equivalent.

{ p(r) for z € U,
t0 forz € L.
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(i) l* rl - l*,7,
(ii) u)t'olL:u'olL,

Lipman Bers

(iii) u)t'o iL - u)'o I R.
Now *r'o I L is a schlicht holomorphic function in .t, so that it

least for a complex analyst) to form the Schwarzian derivative of
we denote by gP; thus

gF : {*, ,} -- (*" l*)' - +(*" l-')' ,

where p-pt'olL.
One can verify that pu(r) satisfies relation (g.1) and thus belongs to

Bz(L,G). Also, since gP is the Schwarzian derivative of a schlicht function in .t,
we conclude from the Kraus-Neå a,ri inequality that

ilril s f'
It ca^n be shown that the map

fG) + Bz(L,G)

which takes tou lR into gF is a bijection of 
"(G) 

onto a subdomain of the ball
lltpll < 3/2 in Bz(L,G), and there is a unique natural way of deffning a complex
structure in 

"(G) 
such that (9.3) becomes a holomorphic homeomorphism. The

same is then true of every element of the modular group and of every allowable
mapping.

It is usually convenient to identify 
"(G) 

with its image under the mapping
(9.3). The image contains the open ball ll,pll < L/2 in B2(L,G). This statement
is a corolla"ry of the elegant Ahlforc-Weil lemma which can be restated as follows.

Let r!(z) be a holomorphic quadratic differential in .0, for the group G, and
ä,ssume that llr/ll <7/2, i.e., that 2lrl,@l <y-2 fot z e.D. Set

Then p'(z) is a Beltrami coefficient compatible with G in C, and the Schwarzian
derivative of wP I L is tlt : gt' .

We conclude this section by noting that 
"(G) 

is a cell (this follows, for in-
stance from Teichmiiller's mapping theorem) and that 

"(G) 
is holomorphically

convex (there are, by now, several proofs of this fact).
Remark 1. Practically all results of this and the preceding section remain

valid when the F\rchsian group G is not finitely generated, or when it contains
elliptic or parabolic elements, or when it is of the second kind. This may re-
quire some modifications of definitions (for instance, the finite dimensional space
Bz(L,G) may have to be replaced by un infinitely dimensional Banach space).
Also, some proofs may become significantly harder.

is natural (at
wpo I L which

(9.2)

(9.3)

I p(r) - -2y'rh|) for z e L,
lP(t):o for ze fJ.
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Remark 2. We did not yet mention Teichmiiller spaces of Riemann surfaces.
Assuming their definition knourn, and assuming G to be torsion free a,nd of the
first kind, we can state a basic theorem.

There exists a canonical isomorphism between the Teichmiiller space ?(G)
and the Teichmiiller space of the Riema,nnsurface Uf G.

A modified isomorphism theorem can be proved if G is of the second kind
and/or has torsion.

10. Boundary groups

Let G , Bz(L,G), T(G) have the sarne meaning as in the preceding section,
and let V denote the bijection (9.3). We identify 

"(G) 
with its image under

ilr arrd denote by cl("(c)) the closure of. T(G): v("(G)) in B2(L,G); then
ArG): Cl("(G)) \ 

"(C) 
is the set theoretical boundary of 

"(G) 
in B2(L,,G).

We will associate a Kleinian group to every point of A(TGD.
If ,1, e Bz(L,,G) is given, we denote by ,liQ), j :t,2, the two solutions of

the ordinary difierential equation

2q,,(r)*q(z)g(z):s,

subject to the initiat conditions

et : q,2 : L, nl: nz :0, at z : -i.

These two functions a,re holomorphic in L, a.nd depend continuously on ry' €
Bz(L,G). The quotient

V*(") = q{z)ln2(z)

is a locally single-valued meromorphic solution of the Schwa,rzian differential equa-
tion

{v{(t), z} = ,1t127.

Comparing this with (9.2) we conclude that there exists a Möbius transfor-
mation a9 (dependent on r/ ) such that

TDF' : a4: oV{,

This is valid for rb e f1C1 or, more preciselg for V(r/) e f(q. Indeed urro was

defined assuming that [tor] e T(G). Also, if ry' converges to a point $ on 7T(G),
there is no reason to assume lhat a4, converges.

On the other hand, V{ is defined for all $ in B2(G) and it makes sense to
study the group

G'l' :v*G(v'\-t, l, e ur(G).
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Such groups are called boundary groups (of G). The facts are as follows.
The group G'l' is Kleinian and has a single simply connected invaÅant com-

ponent. (Groups with the latter property are called b-groups. It is not known
whether every å-group is a boundary group.)

In general (in the sense of measure or in the sense of dimension) Gf has no
other components. Such groups are called (totally) degenerated. Totally degener-
ated groups are geometrically infinite (cf. Section 5). As a matter of fact, this is
how geometrically infinite groups were discovered.

A function group which is not totally degenerated has non-invariant compo'
nents. Assume that D1, . . ., Dn is a complete list of non-conjugate non-invariant
components, and let li be the stabilizer of. Di. Also set ,5i : Dilti. Then each
,5; has at least one puncture. and if the non-Euclidean area of Si is Ai, we have
that

(10.1) At*"'+4, 1A

where A is the arca of LfG. (This is simply the second area inequality, cf.
Section a.) The group G{ is called pa,rtially degenerate (or regular) according to
whether (10.1) is valid with the strict inequality sign (or with the equality sign).

The terms "regular", "partially degenerated" and "totally degenerated" make
sense for any ö-group. Abikoff proved that regular ö-groups are bounda,ry groups.
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