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THE IMPACT OF LARS AHLFORS’S WORK
IN VALUE-DISTRIBUTION THEORY

David Drasin

Introduction

The major emphasis of Lars Ahlfors’s research before the Second World War
was connected with value-distribution theory, although with hindsight we can also
see hints of later directions. Function theory already had a long tradition in
Finland [11, p. 4], [32] and Ahlfors began his career just after the first waves from
the theory developed by his teacher, Rolf Nevanlinna, had crested. In an age with
no photocopying, limited telephone and transportation, fundamental contributions
by Collingwood and Littlewood (in England), Bloch, Valiron and Cartan (France),
and Shimizu (Japan) and others had quickly followed Nevanlinna’s publication [58];
in [58, p. 91] we find special mention of the significant role of Collingwood and
Littlewood in the very formulation of the second fundamental theorem. The main
direction of Ahlfors’s work was to return to the foundations of the subject, and
view it from a more geometric (and differential geometric) point of view. This has
provided the basis of almost all subsequent generalizations. We also find here the
genesis of later work in quasiconformal mappings, conformal metrics and extremal
length.

There may have been a less dramatic influence on the classical situation of
meromorphic functions in the plane, where much research has been concentrated
on problems already posed by Nevanlinna himself. For the most part, these were
more refined questions whose very formulation would involve the order p of the
function; in Ahlfors’s work in value distribution, p rarely appears. However, his
very first achievement was in a different direction, one in which p plays an essential
role.

1. Denjoy’s conjecture—A hlfors’s theorem

Ahlfors accompanied Nevanlinna to Ziirich in 1928-29, where he became in-
terested in Denjoy’s conjecture: if f is entire and (M(r) is the maximum modulus
function) log M(r) = O(r?) as r — oo, then f can have at most 2p distinct finite
asymptotic values. Many years later, Nevanlinna told me of his concern when his
student disappeared for several weeks. Finally he appeared with the solution [2]
in hand; Nevanlinna had by then been apprehensive for the young man’s safety.
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This may appear as a specialized question, but “its general significance de-
pends on the influence it has exerted on developing new methods” [62, p. 14].
Today, this work is probably viewed as belonging to harmonic measure—extremal
length, so outside the scope of this article. It does display an elegant use of the
length—area method, a technique which Ahlfors applied in many settings through
his career. A full discussion of Ahlfors’s work [2] and its enormous impact appears
in Baernstein’s article in this collection.

2. Nevanlinna’s theory

This subject is well developed in the texts [41], [44], [60], [64]. We recall
some basic notions. Let f(z) be meromorphic in B(R) = {|z|] < R}, where
0 < R< 0. Let N(r,a) = [ n(t,a)t~!dt be the integrated counting function of
the a-values including multiplicity; similarly we define N(r,a) in terms of 7(r, a),
where multiplicity is ignored (these formulas must be modified when f(0) = a).
The compensating term is

21)  m(r,a)=m (r, ﬁ) - % /02"10g+ U”(Ti)—cdda (a # o)

(m(r,00) = m(r, f) = (27)7! 02” 10g+|f(rei9)|d9). Nevanlinna defines the in-
creasing function T(r) = T(r, f) = m(r,00) + N(r,0)(0 < r < R) and obtains
his first fundamental theorem by rewriting Jensen’s formula:

(2.2) T, f) =T (725 ) +00) (2 Nna) +0(1)

1
f—a
where the bounded term O(1) depends on a.

We call f admissible if R = oo and f is nonconstant, or if R < oo and
limsup,_, T(r)[log{1/(R — r)}] = co. The second fundamental theorem is con-
sidered to be far deeper than (2.2), and requires that f be admissible. The
counting-function of the branch set is

Ni(r) = 2N (r, 00, f) — N(r,00, f') + N (o fi) ,

and the branching density is

= limin Na(r)
@(f) - lr—»oof T(T‘) )

The defect and index of multiplicity are defined by

N(r,a) — N(r,a)
I(r) ’

m(r, a)

I(r)

(23) (0 <) 8(a) = limin , (0) 8(a) = liminf
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so that 0 < é(a)+ 6(a) < 1.
The second fundamental theorem asserts that (C* is the Riemann sphere)

(2.4) 3" {6(a) +6(a)} <> 6(a) +O(f) <2,

a€C*

in particular that

(2.5) > b(a) < 2.

Inequality (2.5) is Nevanlinna’s generalization of Picard’s theorem on omitted
values, while the more precise (2.4) can be seen as a transcendental form of the
Riemann-Hurwitz theorem. The hypothesis that f be admissible is essential for
(2.4) and (2.5). For example, given ¢ > 2, and complex numbers {a;}{, there
exists a holomorphic universal cover map f : B(1) — C\ {a;}] with [60, p. 149]

1 1 1
(2.6) T(r,f) = q_zlogl_r+0(loglog1_r).

Nevanlinna’s proof of (2.4) and (2.5) was based on his analysis of the logarith-
mic derivative (f'/f)(z). The key to his approach is the lemma of the logarithmic
derivative (LLD)

(2.7) m (r, l}) = O(logrT(r)) |

where, following H. Weyl, || indicates that the inequality may fail on a small r-set
as 7 — 0o. (Examples to show the exact size of the exceptional set in (2.7) have
been given by A. Fernandez [34].) The role of the LLD is that it allows all the
proximity terms m(r,a)(a € C) to be bounded in terms of m(r,0, f').

That the sums in (2.4) and (2.5) have such simple upper bounds is also a
consequence of the fact that definitions (2.3) involve liminf, so the exceptional
r-set in (2.7) can be avoided.

Ahlfors’s approach was based on more geometric considerations, and avoided
the LLD. While it has allowed this theory to be extended to more general settings,
the approach based on (2.7) also retains its value.

It has been essential, for example, in a significant deepening of (2.5) for ad-
missible functions in the plane, although the complete analogue to (2.4) remains
unachieved at present. That is, the deficiency relation (2.5) remains valid when the
sum is taken over all small functions a(z), those for which T'(r, a(z)) = o(T(r, )
(r — o). This was shown some years ago for entire functions by C.T. Chuang
[26]; a very long proof for meromorphic functions was obtained by Ch. Osgood
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[66], and finally the full result was placed into a most elegant setting by N. Stein-
metz [81]. Steinmetz’s proof parallels Nevanlinna’s original arguments. Given
small functions a;(z), ..., a4(2), Steinmetz constructs a differential polynomial
P[f] such that P[f] # 0, but P[f — aj(z)] = P[f]; the manner by which P is
obtained is especially compelling. Nevanlinna’s original proof follows when we
choose P[f] = f'(2).

More recently, W. Stoll [85] has made a partial extension to maps f: C —
CP".

3. Refinements of (2.2)

The distinction between the first and second fundamental theorems is not
always clear. The general principle is that (2.2) is a relation which is valid for
each value of r when f is nonconstant, while (2.4) and (2.5) apply when R < oo
only for rapidly growing functions and use estimates such as (2.7) which fail for
some values of r. The results discussed in this section only require that T'(r) — co
asr — R.

Ahlfors’s first work after [2] was based on the recent thesis of H. Cartan [17].
Cartan’s starting point was to prove what now is known as the Boutroux—Cartan
lemma: given h > 0,

(3.1) |P(2)| = H |z —ai| >h™ (2 ¢ E),

where E can be included in balls B(zj,r;) with ©r; < 2eh; perhaps the fac-
tor e is not needed. (Inequality (3.1) had been asserted without proof by A.
Bloch.) Cartan recognized that this conclusion could be greatly generalized (cf.
[64, p. 146]), and even made some applications to Nevanlinna’s theory.

Ahlfors pushed this much further, and in particular, put some tentative results
of J. Littlewood and G. Valiron in precise form.

The principle of [3] is to apply the Cartan theory to each circle {|z| = r},
0 <r < R. Thus if h is increasing, h(0) =0, h(c0) =1 and

(3.2) /Oh(t)t‘l dt < oo,

then if 0 < r < R, one of Ahlfors’s generalizations of (3.1) is that for each r,

h=1
(3.3) m(r,a) < / log*(1/t)dh(t)  (a & E)

where E can be covered by balls B(zy,7,) having $h(r,) < 6. If for a fixed
€ > 0 we replace h(t) by e ~1h(t), then the right side of (3.3) remains finite. Hence
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(3.3) may be applied on a relatively thick sequence r, — R, and the bounds for
m(r,a) with r = r,,7,4; will hold universally as r — R.

Inequality (3.3) is applied with specific choices of h, and shows that, for most
a and r, m(r,a) is small; thus no liminf’s are needed as in (2.3). For example,
given n > 0, let F, be the a-set such that

) log m(r, a) 1
3.4 1 .
¢4 TUR TogT() T Ty

Ahlfors proved that if » > 1, then F; has zero measure with respect to the
Hausdorff function (log(1/t))™". Also, if 0 < 8 < 2 and Ej is the set of a with

 m(ra)
(3:5) im S 1 og T(r)

then Eg has $-dimensional measure zero (h(t) = t#). (Littlewood [53] had settled
the case f=2.)
Another application was to the set V of Valiron defects. Let

m(r,a)
(3.6) A(a) = llrrn_?:p ()

and
(3.7) V =V(f) = {a;A(a) > 0}.

Definition (3.6) was introduced by G. Valiron [88] who proved that if f has finite
order then V is a planar null set. Ahlfors improved this: V has h-measure zero
for any h-measure such that (3.2) holds (with no hypothesis on order). Finally,
he showed that if R < oo, T(R) = oo and

(3.8) V= {a; lim N(r,a) < oo} ,

then V* must also have h-measure zero whenever h satisfies (3.2).

Soon after, Frostman [37] developed his theory of logarithmic capacity, and
instead of Hausdorff measures used the equilibrium measure in these questions.
In this way he showed that in Ahlfors’s situation V* must have capacity zero.
Nevanlinna then returned to the sets F, of (3.4) and proved that F, has zero
capacity when 0 < n < 1. Sets of capacity zero just include those of zero h-
measure with k as in (3.2).

These results are all essentially sharp. For the exceptional sets in (3.4) and
(3.5), see W. K. Hayman [46] (for meromorphic functions) and J. Ferndndez [35]
(for holomorphic functions). Both constructions, however, only yield functions
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defined in B(1), rather than the full plane. It is not hard to see that capacity
zero is the proper exceptional set corresponding to (3.7) and (3.8), for if E is any
compact set of capacity zero with at least two points, then the universal cover map
f:B(l) > C\FE has T(1) =c0,and V=V*=E.

There is one construction when R = oo which warrants special mention. By
an ingenious sewing of universal covering mappings, Hayman [45] showed that
Nevanlinna’s estimate for V is essentially best possible for functions in the plane:
V' can be any F,-set of capacity zero. Thus, the sets F, in (3.4) are essentially
independent of n when n < 1. However, when f has finite order in the plane,
then V is substantially smaller than capacity zero, as shown by Hyllengren [50];
Hyllengren’s analysis exploits the absence of exceptional set in (2.7); conversely,
its presence is the key to Hayman’s example.

Much of this has been extended to higher dimensions. See, for example, [15]
and the survey in [73]. Application to a different situation is in [1].

4. The second fundamental theorem and conformal metrics

Here we discuss [5] (and to a lesser extent [8]) and its influence on some of
the generalizations of Nevanlinna theory. We consider equidimensional mappings
in Section 5 and meromorphic curves in Section 6. That these papers have proved
so influential seems due to the transparency of methods in [5] and the connections
with geometry in [8].

The paper [5] gives an efficient, self-contained and rather complete account of
the author’s version of classical Nevanlinna theory, one that is often used in the
standard texts (cf. [49], [87]). Ahlfors defines his proximity function in terms of
the spherical metric [a,b] on C*:27m(r,a) = Oznlog(l/[f(z),a]) db, (z = re').
Then if S(t) is the spherical area of f(B(t)), we set

(4.1) T(r) = /Ort'IS(t) dt.

This definition of T'(r) differs from that in Section 2 by a bounded factor. Priority
for definition (4.1) is due to T. Shimizu [78], although it is Ahlfors’s analysis that
is used today.

Ahlfors’s proof of (2.2) using (4.1) is a direct consequence of the argument
principle. Of more lasting significance is his approach to (2.4). Given a non-
negative L! function p(w) on C* with

(4.2) [ ptw)datw) = 1,

(dw = spherical measure) Ahlfors makes an elementary but profound analysis of

o |w']? 9
4.3 A(r) = ———p(w)df w= f(z), z=re"’).
(4.3) 0= et (@=76) )
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By the arithmetic-geometric means inequality

27 12 2w
(4.4) / log —lﬂ——z dé + / log p(w) dé < 2w log A(r) + const.
0 (1+w[?) 0

The terms on the left side of (4.4) reflect different considerations, ones which
carry through in other contexts: the differential geometry of the target space C*
and imposing a suitable metric on it. Also, it is not hard to see that the right side
of (4.4) is negligible:

(4.5) log M\(r) = O(log rT(r)). |

Indeed, we may average A(r) so that

H(r)= /0 "1t /0 t A(s)sds = /C N(r,a)p(a) du(a),

so according to (2.2), H(r) < T(r) + O(1). The bound in (4.5) follows, since
calculus ([43, p. 43], [64, p. 253]) asserts that since H is increasing, H"(r) <
rKH1%%(r) for most large r, where K < co and § > 0 are fixed. Thus (4.5)
follows on taking logarithms.

An appeal to (2.2) readily yields that the first integral in (4.4) is exactly
Ny(r) — 2T(r)+ const. (this will yield the branching term in (2.4)) and is one
explanation for the “2” in Picard’s theorem. Thus all depends on the choice of
p(w) and a computation of

(4.6) Alr) = /0 ”log p(w) do (w = f(z), z=re").

Ahlfors chooses, for a fixed a > 1,
g

(4.7) log p(w) =2 Zlog(l/[w,a,,]) — alog (Zlog(l/[w, a,,])) +C
1

(C to guarantee (4.2)), and computes directly that A(r) in (4.6) differs from
2rEm(r,a,) by O(logT(r)). Hence (2.4) and so (2.5) follow at once from these
estimates.

That elementary metrics such as (4.7) can achieve (2.4) made generalizations
tempting and perhaps inevitable. Ahlfors comments that his motivation for (4.7)
was F. Nevanlinna’s proof of (2.4) based on the hyperbolic metric on C, = C'\
{a;}{ ([57); cf. [64, IX.4]). This metric is the pull-back to C, of the Poincaré
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metric of constant negative curvature on B(1), that is, a metric 7(w)|dw|? on C,
with

(4.8) AlogT = —72,

Nevanlinna’s use of this metric is in fact most appropriate for these questions:
Picard’s original proof of his theorem used in an essential way that B(1) is the
universal cover of C,. Although Nevanlinna’s metric 7 is highly nonexplicit, he
carefully analyzed the behavior of 7(w) as w approaches the a,-points (this is
reproduced in [64]), and this was enough for his analysis, which is parallel to that
of (4.6), to succeed.

Ahlfors’s insight was to write an explicit elementary metric p as in (4.7)
such that |log(p/7)| is bounded near the a,, and then observe that the precise
definition of p on compact portions of C, plays no significant role, so long as p
is strictly positive and smooth.

Paper [5] never discusses differential geometry, as (4.6) subject to (4.7) is
computed directly. Later, Ahlfors [8] viewed these problems from a differential-
geometric point of view, basing his approach on curvature and the Gauss-Bonnet
theorem. Curvature as in (4.8) arises when computing expressions such as A(r)
in (4.6) since according to Green’s identities, rA'(r) = ffB(r)Alogpdx dy. F.
Nevanlinna’s analysis explored this connection directly.

Paper [8] (and its abstracted form [7]) was the basis of Chern’s interest twenty
years later [24]. Chern’s work in [24] was confined to Riemann surfaces, but began
a new period of activity which achieved fundamental higher dimensional gener-
alizations. An account of [24], in a presentation for classical function theorists,
occupies the final chapter of [38]. The research monograph of Sario—Noshiro [70]
reflects a similar orientation.

Chern’s next contribution, [25] (submitted only a few months after [24]),
started a new direction. It is phrased in the language of complex manifold
theory and initiated a new theory of equidimensional holomorphic mappings
f: C™ — CP™ (projective space). [In the early 1950’s, W. Stoll also consid-
ered this problem, but Stoll’s approach was based on [10], and so is deferred to
Section 6.] Chern only obtains an (integrated) first main theorem, but that is
sufficient to give a theorem of Casorati—Weierstrass type.

Appendix. Ahlfors’s success with elementary, if singular metrics led to his
short note [9], which must be among his most cited papers. If one is interested
in results less refined than the Nevanlinna theorems (2.4) and (2.5), it is possible
to go far with surprisingly elementary methods in the spirit of [9]. One useful
account of this is in Minda-Schober [56].
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5. The Carlson—Griffiths theory

The path suggested by [25] was pursued in the 1970’s, by Ph. Griffiths and
his co-authors, especially J. Carlson and J. King. A spirited guided tour is in Grif-
fiths’s lectures [43], and there now is a beautifully written expository monograph
by B. Shabat [73].

We consider an entire holomorphic map
(5.1) fiC" > M

where M is a compact complex manifold, dimc M = m. When the Jacobian
determinant of f is not identically zero, f is called non-degenerate. The most
ambitious program would be to study how often f covers objects D in M of
various dimensions, but this seems out of reach. A particularly infuriating fact,
for example, is that (Fatou-Bieberbach) f can miss an open set when M = CP™
with m > 2.

The viewpoint developed by Ahlfors, and, in particular the use of concrete
metrics such as (4.7), can make a significant penetration of this problem, and it
is possible to recognize Ahlfors’s analysis of (4.3) beneath a great deal of sophis-
ticated machinery.

The work [16] shows that, despite Fatou-Bieberbach, the theory does extend
satisfactorily to analyse the value-distribution on C™ of certain divisors D =
E?___l D; on M. Recall that divisors are locally the zeros of holomorphic functions;
in the classical theory they may be identified with points w = a. Here the D; are
smooth irreducible divisors which are required to meet transversally (have normal
crossings). Thus in some neighborhood U of any point p of M through which
exactly k divisors pass, we may choose holomorphic coordinates wy, ..., W, so
that DNU = {w; Hf wg = 0}. In the classical situation, the hypothesis that D
have normal crossings asserts that the points a, are distinct.

The theory of [16], and especially the hypothesis on normal crossings, allows
the classical machinery be adapted to the situation (5.1) when two conditions are
met, one a condition on M to get matters started, and another which ensures that
D is large (the analogue of Picard’s hypothesis that the omitted set have ¢ > 3
points).

First, M is required to have a positive holomorphic line bundle L. This allows
definition (4.1) to be transferred immediately, where now S(t) is the integral on
||z|| <t of the pull-back of the Chern form (curvature) of any holomorphic section
s of L. The requirement that L be positive guarantees, for example, that S is
the integral of a positive quantity. (That M possess such an L is a hypothesis of
independent significance, as shown by K. Kodaira; cf. [93, Chapter VI].) It is then
not difficult to obtain a first fundamental theorem and define deficiencies §¢(D),
67(D;) with 0 < 6¢(D;) < 1, ¢85(D) = Eé4(Dj) and §¢(D;) = 1 if f(C™)

misses D;.
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The Carlson—Griffiths theory views second fundamental theorems as conse-
quences of the existence on M \ D of metrics of negative—or nearly negative—
curvature [28, p. 94], and it is this requirement that forces D to be large. Thus,
we let Wps(w) be the metric on M which arises from the canonical bundle; i.e.
the bundle on M whose transition functions are the Jacobians of the coordinate
changes in the intersections U,g of domains in a covering of M. This reduces to
the chordal metric when M = C*. Next, in terms of the components D; of D, we
may define sections s;(w) locally on M such that in any coordinate patch U, the
divisor of s; restricted to U is DjNU. This leads to a globally defined Hermitian
modulus ||s;|| [73, p. 78] which vanishes precisely on D;. Then things proceed in
a manner parallel to [5] if we pull back to C™, using f, the singular volume form
on M

(5.2) ¥e(D) = Ya(w)

IT lls5112 (tog(ells;112))°

where c is some fixed and small positive constant. When we study log ¢ (D) on
C™, we find exact analogues of each of the terms on the left side of (4.4). The
Ahlfors—Nevanlinna conditions on curvature become phrased in terms of the Ricci
form if ¥p(D) and apply when ¢ is sufficiently large so that the Ricci form of
U p(D) is essentially positive [43, p. 49]. (The negative of the Ricci form is a
generalization of curvature.)

Here are some applications of the Carlson—Griffiths theory. Suppose first that
M = CP™ and the D; arise from hyperplanes H; in general position. The
correspondence is D; & H; ~ {w = (o, ..., Wm; ) QjrWk = 0}; see Section 6.
The deficiency relation is ) §(H;) < m + 1, a result established already in 1953
by Stoll [82] with a slightly more restrictive definition of nondegeneracy. Later
[83], Stoll showed how to improve his degeneracy hypotheses.

A striking advantage of the Carlson—Griffiths theory is that it applies to
nonlinear divisors. Thus if D is a nonsingular divisor on P™ of degree ¢, and
f: C™ — CP™ is nondegenerate then

(5.3) > 6(Dj) < (m+1)/q.

When D does not have normal crossings, or is of codimension greater than
one, the situation is not fully settled; cf. [73, II.6], [76], [27]. Thus while M. Green
[42] has shown that if f: C™ — CP™ omits (m + 2) distinct hyperplanes [not
necessarily in general position] then f must be degenerate, B. Shiffman [75] has
shown that ) 6(H) = oo is possible if we sum over distinct (as opposed to general
position) hyperplanes.

Y.T. Siu [79] has initiated a new study of non-equidimensional mappings
which makes deeper connections with differential geometry. Siu also only considers
value-distribution of divisors on M.
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6. Meromorphic curves

The study of maps which decrease dimension can be reduced to that of equidi-
mensional maps; cf. [73, p. 209]. Here we consider the other extreme of meromor-
phic curves f = (fo,...,fm): C — C™*1 so that each f; is an entire function.
Outside f~(0,...,0), f induces fiCc o CP"‘ using homogeneous coordinates,
and unless f =0, f may be extended to all of C. Thus f and f are essent1ally
equivalent. This is the most fully worked-out multidimensional theory, where im-
portant advances continue to be made even in recent times.

The history of the subject was unclear for some years, but today two distinct
lines emerge (cf. [51, Chapter VII]). The first, due to H. Cartan (announced in
1929 [21], published in [22]) is based on Nevanlinna’s LLD, and studies how often
the image of f meets hyperplanes in CP™, i.e. the image in CP™ of planes
H: 3 ajw;=0in cmtl,

Suppose that f(C) is not contained in any hyperplane of CP™. Then Cartan
defines T'(r, f) = (1/27) fo max;{log |fJ(re'9)|} df, n(r,H) the number of zeros
of Y a;fi(z) (|2| <r)and N(r,H) = [ t"~!n(t,H)dt. (This elegant definition
of T(r), which agrees with Nevanlinna’s definition when m = 1, was suggested by
A. Bloch; cf. [18].) The first fundamental theorem follows from Jensen’s formula.
Finally, if W is the Wronskian determinant of f, W # 0, then Cartan obtains
his analogue of (2.4) for hyperplanes Hy, ..., Hy in general position:

(6.1) (¢-=m-1T(r) < Y N Hj) = N(r,W)+o(T(r)) |,

so that in particular

(6.2) > 6(Hj, f)<m+1.

Cartan’s elegant proof in [22] is reproduced in [51] and [77].

As one direct application of (6.2), we obtain E. Borel’s generalization of Pi-
card’s theorem: if fy, ..., fm are non-vanishing linearly-independent entire func-
tions, then no non-trivial linear combination f = ) «,f; can be zero free. (In-
deed, were this true, m + 2 hyperplanes (1,0,0,...), (0,1,0,...), (0,0,...,1),
(ag,-+*,m) would have maximal deficiency one.)

Paper [22] was soon forgotten, and the next major work in the subject is
due to H. and J. Weyl [94]. The Weyls had as goal to adapt Ahlfors’s theory in
[5] to meromorphic curves, and attempted to absorb the study of the associated
curves in their theory. That is, if f: C — C™*! is a representation of f, then for
0 <k < m the curve

FK _ Fa A 7R M = (Bt
f AN C—HCY, M (k+1)
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projects to the kth associated curve f[¥: C — G(k;m) (the Grassmanian of
linear k-spacesin CP™) = CPM~!. They also defined each T(4)(r), and studied
the zero-distribution of the inner product fI¥ . H®)  where H® is the image in
CPM~1 of an m — k-dimensional linear subspace of CM .

While the Weyls raised the basic questions and proved the analogues of (2.2),
they were unable to achieve (2.4), except when k = 0. Meanwhile, Ahlfors had
returned to Finland, and during the bleak and isolated period of the early 1940’s
resolved to complete their work.

Paper [10] confirms Ahlfors’s success. This is a difficult paper and the way in
which the computations and averaging through the various dimensions (especially
in Section 6) are performed will humble most readers. This “constitutes, in my
opinion, one of the most brilliant chapters in the annals of mathematics” [97,
p. 180] ... “I can hardly believe where I got the patience to write it” [11, p. 364].
In particular, the deficiency sums (6.2) hold with M in place of m + 1, and f[*
in place of f. The full relations [10, p. 27] give very sharp lower bounds for all
sums ) 7_; Nk (r,Hf) where £ and k are arbitrary € {1,...,n}.

Ahlfors’s work has been extended in several ways since 1941. Already in 1953
[82], W. Stoll had developed a general theory for f: C®* — CP™ which was based
on [10] and [95]. In subsequent work, Stoll has developed a very general theory
of mappings, for which we refer to the survey [84], and Professor Stoll’s several
well-known monographs.

It is now possible to base a proof of (6.1) and (6.2) for f: C®* — CP™ on the
LLD, thus putting these results in the framework of [22] (where m = 1). This has
been shown by A. Vitter [90]. Vitter’s proof was based on the Carlson-Griffiths
theory as further developed by Griffiths.

We also cite the paper [28], in which the authors extend the Carlson—-Griffiths
theory to meromorphic curves. In order to recover Ahlfors’s theory for the as-
sociated curves, they introduce a family of metrics w; for the various dimension
encounted. Each w; has a form in the spirit of (4.7), but now the full collection is
to be “negatively curved” [28, p. 107].

The role of non-degeneracy in these questions is not settled. For example in
1933, Cartan conjectured in that (6.2) should be replaced by

(6.3) D 8(Hj) <(2m—k+1)

if f: C — CP™ is k-non-degenerate: f(C) is contained in a k-dimensional sub-
space of CP™, but none of lower dimension. (Note that (6.3) does not follow from
(6.2) restricted to a CP*, since the hyperplanes H; N CP* need not be in general
position.) Cartan’s conjecture has recently been proved by E.I. Nochka [65]; an
extension to the associated curves has now been achieved by Wanxi Chen [23].

Open problems and other related results are given in [77] and [73]. Ahlfors’s
hope [10, p. 1] to extend the methods of [10] to value-distribution of arbitrary
algebraic manifolds also remains unfulfilled.
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7. The inverse problem

For the rest of this report, the main emphasis will be on meromorphic func-
tions, where more refined issues can be raised.

The function e” shows that the bound “2” in (2.5) is sharp. The inverse
problem asks for more: given data §; > 0,0; > 0,0 < é; + 6; < 1, such that
(2.3) holds, and a sequence of complex numbers a;, find a function f(z) which
is meromorphic in the plane with §(a;, f) = éi, 8(a;, f) = 6i, and é(a, f) =
6(a, f) = 0 otherwise. R. Nevanlinna proposed this as far back as [60]. W.H.J.
Fuchs and W.K. Hayman [40] (cf. [44, Chapter 4]) solved it (with no reference
to the 6;) for entire functions, and the whole matter was finally settled in 1977
by this author [30]. Since ) 6 (ai)l/ % < 00 if f has finite order [92], the solution
must in general have infinite order.

The first general, albeit partial, result in this problem was obtained by Nevan-
linna himself in 1932, in which he introduced his class F, of Riemann surfaces
with finitely many logarithmic branch points and no algebraic branch points, and
proved that the restricted inverse problems Y ., 8; = 2, where n < co and each
§; is rational, has a solution in this class. That is, if we choose F' € F;; to have
branch points appropriately over the a;, then F is parabolic, and the uniformizer
f: C — F will be the solution. If N is the l.c.d. of the §;, the solution f(z)
will have order N/2, mean type, and N branch points will be needed (not neces-
sarily distinct). Nevanlinna’s method depended on an analysis of P(z) = {f, 2},
the Schwarzian derivative of f, and used the theory of differential equations at a
singular point (z = c0) to compute the order and value-distribution of f. Since
f has no algebraic branch points, it is easy to check that in this situation P is a
polynomial, which allows the differential equation to be solved asymptotically, and
for many years [63], Nevanlinna hoped that a refinement of this approach would
solve the general problem. An abbreviated account of this method is in Chapter
XI of [64].

However, once f has algebraic branch points (in particular [31] if f has
order p which is not an integral multiple of 1/2) it seems hopeless to recover f
concretely from its Schwarzian. Very precise information is needed to compute
the deficiencies which arise when the plane is mapped to a given surface F'; recall
that in general the deficiencies will even depend on the choice of origin.

In (8], Ahlfors gave an alternate approach to Nevanlinna’s solution; this paper
appears directly after Nevanlinna’s in the Acta Mathematica. With hindsight, it
is clear that Ahlfors’s method was in the direction in which the full solution was to
be found. Ahlfors uses the same surfaces F' as does Nevanlinna, but his method
of uniformization goes back to the length—area principle that had been so valuable
in [2]. He divides F into a finite number of pieces F; (one corresponding to each
logarithmic branch point). Then since the universal cover of C\{a;}{ is the upper
half-plane H, he uses the universal cover map ¢; to map each properly-slit Fj
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onto a subdomain G; of H. .

For sufficiently large p, he then considers the curve I'), = G; N {|¢| = p}, and
shows that the various F{; form a closed curve I'y on F'. Then if p is large and
w = f(z) is the uniformizer of F', T, will correspond to a closed Jordan curve in
the z-plane which surrounds z = 0. By the length—area method, Ahlfors shows
that

(7.1). p~ 2PN

Thus, the separate analytic mappings ¢; ~1(¢) almost fit together to form a rigid
correspondence between z and ( near oo. From this, it is not hard to show that
our function f has order N/2, and the desired deﬁcxent values.

The lines by which Ahlfors proved (7.1) received an encore several years later
in Teichmiiller’s theorem [86] that a quasiconformal mapping w = ¢(z) of the
plane whose dilatation |p;/¢,| suitably tends to zero at co satisfies

(7.2) |w| ~ Alz| (z > 00, 0< A< ).

The parallel is especially striking in Wittich’s proof [96]; cf. [41, Chapter VIL3].
From this perspective, we could have replaced the ad hoc analysis in [4] by qua-
siconformally welding the various G together, and then obtain (7.1) directly by
Teichmiiller’s theorem. Estimates (7.1) and (7.2) coincide when each half-plane
H is replaced by a suitable sector.

All this anticipates [30], in which the solution is obtained by fitting together
by quasiconformal mappings portions of certain surfaces F', and applying a gener-
alization of Teichmiiller’s theorem due to P. Belinskii. Because of advances in the
subject (with Ahlfors one of the key contributors) no explicit mention of Riemann
surfaces is needed in [30].

The inverse problem is not settled in most of the more general theories. Dai
Chong-jyi and Fuchs [39] have a partial solution to (2.5), when the data given are
small functions a(z). Quasiconformal mappings seem inappropriate for this more
general problem.

8. The theory of covering surfaces

Key references: [6], [44], [87] and [64, Chapter XIII]. In his collected papers,
Ahlfors well describes the setting for this work. It was an effort to produce a
value—distribution theory which was more geometric, and more stable under small
pertubations. For example, if f omits the values w = a then the pullback of each
ball B(a,e) = {|lw — a| < ¢} cannot be compact in the z plane for any ¢ > 0.
Hence Picard’s theorem suggests that if f is meromorphic and nonconstant in
the plane (more generally, admissible as in Section 2), then there cannot exist
three disjoint w-balls B; whose preimages are all non-compact. However, such
hypotheses are not natural in Nevanlinna’s setting, but very appropriate here.
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When Ahlfors first published this work, it created a sensation and was one
of the key evidences for his being awarded one of the first Fields medals (Oslo,
1936) [14].

Nevanlinna’s original approach to his theory was purely potential-theoretic,
but Nevanlinna quickly observed [61] that (2.4) could be viewed as a transcendental
form of the classical Riemann—Hurwitz relation. This is described very carefully
in Chapter 12 of Nevanlinna’s monograph [64] and provides an elegant if formal
way of seeing the upper bound “2” in (2.4). Indeed, if r(z) effects a rational map
of degree n on the sphere (n is the “number of sheets”), the mean ramification of
r is equal to

(8.1) V=n"1) bp),

where the sum is over all branch points p of r, and b is the order of branching,.
The Riemann-Hurwitz formula asserts that V = 2 — 2n™!; the main term 2 is
the (negative of the) Euler characteristic of C*.

Nevanlinna motivates his second fundamental theorem (2.4) in the following
way. Let f be meromorphic in the plane, and suppose there exists a sequence
rm(2) of rational functions of degree n,, — oo which tend appropriately to f.
Consider the Riemann-Hurwitz relation for each r,, where in the sum (8.1) (with
n = n,, ) we group points p such that rn(p) = a for each w-value a. Then
perhaps one could obtain (2.4) in the limit: for each a, the terms 6(a) would
correspond to the density of branch points “of infinite order” lying over a of f(z),
and 6(a) the density of algebraic branch points “over” w = a. Clearly 2 is the
limit of the corresponding quantities Vi, .

Nevanlinna was fond of this idea, and returned frequently to it. It applies
most elegantly to the special class of functions whose Schwarzian derivative is a
polynomial, (see Section 7), but as far as I am aware this connection has been of
no value in obtaining general results.

Ahlfors transformed this from a metaphor into a powerful analytical tool. A
key insight was to replace the target surface C* by the sphere with ¢ > 3 small
discs A; removed; this surface generally is called Fy, whose Euler characteristic
now is ¢—2 > 0. Then for each r > 0, Ahlfors studies how Fj is covered by B(r)
under f(z).

Since we now have a bordered covering, estimates must be made, and these
depend on a fixed metric I on Fy, which lifts to a metric on the covering of
Fy induced by f. This metric may be quite general; the key property is that a
weak isoperimetric property hold locally. Then for each r > 0, one can compute
S = S(r) (the mean covering number over Fo [I(f(B(r))/I(Fo)]) and L(r) (the
length of f(8B(r)) N Fy); also, if D and + are nice subdomains or curves in Fp,
we may define S(D) and S(y) in an analogous manner. Elementary arguments
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yield that
(8.2) |S — S(D)| < h(D)L(r)
(8.3) IS = S| < h(7)L(r),

where in general h(-) depends on - and Fy. Inequalities (8.2) and (8.3) are
(unintegrated forms of) the first fundamental theorem.
For an unbranched covering of Fy, the Riemann-Hurwitz formula (see (8.1))is

(8.4) p=Np(F)+ Y b(p),

where N is the degree of the map, p is the characteristic of f~1(F,)N B(r), and
the summation is over branch points. By an elementary but impressively powerful
analysis, Ahlfors proved that one half of (8.4) always persists

o+ = max(p,0) > 5(r)p (Fo) — KL(r)
(8.5) = (¢ —2)S(r) — kL(r),

where k is a positive constant which depends only on Fy. The significance of (8.5)
is that since p (Fy) > 0, a large S(r) will tend to force p to be large: the pull-back
of Fy to B(r) will be very multiply connected. Thus, there will be many compact
components (islands) D; in B(r) “over” the A;.

If f is nonconstant and meromorphic in the plane, then S(r) is essentially
the Ahlfors—Shimizu form of (the differentiated) Nevanlinna characteristic (as in
(4.1)), and it is also easy to see (length-area!) that

L)
S(r)

(8.6) 0 (r—oo0) |

(the covering surface is regularly exhaustible) if f is meromorphic and nonconstant
in the plane; when f is meromorphic in B(R), then (8.6) (as r — R) will follow
if limsup,_,z S(r)(1 —r) = co. As in Section 2, we observe that when S(r) =
O ((1=r)71), (8.6) (and its consequence (8.7) below) may fail (universal cover
maps).

Consider now the islands D; in {|z| < r} which lie over the various A;.
Let n(r,D;) be the multiplicity and n;(r, D;) the total ramification of D;. Then
Ahlfors deduces from (8.5) and (8.6) that

S on(rDi) = 3 (Di) 2 (g - 2)S(r) - L(r)

(8.7) > (¢g—2+01)S(r) |,
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which is a differentiated form of Nevanlinna’s second fundamental theorem. In fact,
since in (8.7) we only count a;-values which are attained in islands D; over the
A;, we have information that is impossible to imagine coming from Nevanlinna’s
own theory. This proved useful, for example, in [31].

Impact of the theory. This theory has played a decisive role in many areas
of geometric function theory, and is certain to be of future use. However, it is
technically quite formidable even today.

A. One generalization to several dimensions was made many years ago by
Mme M.H. Schwartz [71], [72], but this work seems not to have been pursued. In
more recent times, the viewpoint has been important in the extensions of S. Rick-
man and his school to value-distribution of quasiregular maps in R™. Rickman
proves [68] that if f: R® — R" is K-quasiregular and nonconstant then f can
omit only ¢(n,K) points. In [69], he shows that ¢(3,K) — oo as K — oo, so
that Picard’s theorem is of a different qualitative form in space than in the plane.
It is striking that when M. Pesonen specializes the arguments of [68] to the plane
[67], the resulting theory is slightly weaker than that of [6].

B. On pp. 193-194 of [6], Ahlfors asks if Nevanlinna’s second fundamental
theorem can be obtained from (8.7), and suggests that the presence of an excep-
tional r-set in (8.7) might preclude this.

However, J. Miles [54] showed that (2.5) and a slightly weaker form of (2.4)
in fact do follow from (8.7). Miles in [55] and [47] (the latter with Hayman)
also has used Ahlfors’s covering lemmas to obtain two notable results concerning
meromorphic functions in the plane. First, we have that a bound independent
of ¢,

(8.8) Eq: (%‘f)ﬁl - 1) <K

=l

with K an absolute constant, holds as » — 0o on a set of strictly positive loga-
rithmic density. (Inequality (8.8) complements (8.7), but the best value of K or
its geometric significance if any is unknown).

Using (8.8) and delicate comparisons involving S(r) and the variation of
arg (f (re'?)), Miles and Hayman [47] proved that

.o T(r, f)
—_— <
llﬂlolgf T(r, f@) = 3e,

a striking bound which is independent of the growth of f or the choice of derivative.
The complementary inequality

) T(r, f) 1
lim <
el T(r,f@) ~ g+1
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is an immediate consequence of Nevanlinna’s second fundamental theorem.

C. Bloch-type theorems. Almost immediately after the first announcements of
R. Nevanlinna’s theory appeared, A. Bloch [13] (cf. also G. Valiron [89]) suggested
that coverings of domains might provide a more uniform way of looking at these
matters and lead to a theory less sensitive to small perturbations. It is Bloch [13,
p. 94] who suggested a study of what we all call S(r, f), and on p. 87 we find
tantalizing hints of what was to become Ahlfors’s five island theorem. The first
positive theorems on coverings of domains are due to Cartan [19], [20], who was
very influenced by Bloch.

Ahlfors published several primitive forms of his theory, but the definitive
account is in [6]. Thus, he obtains directly from (8.7) that if each compact cover
of A; has multiplicity > p; with

(8.9) S -t >2,

then the covering surface is not regularly exhaustible. As a corollary, we have that
if F is regularly exhaustible, and there are three disjoint A; (if f is entire) or
five A; (if f is meromorphic), then there must be a simple island (= “schlicht
disk”) over at least one A;. For example, if f is entire and there were no simple
islands over the three A;, we should take A4 disjoint from A;, As, Az, and
choose py = pa = p3 =2, pug = 0o, and contradict (8.9).

The character of the pull-back of disks has many significant consequences in
function theory. A particularly compelling application of the existence of schlicht
disks is in the Theorem at the end of this section. However, we mention here that
a purely geometric characterization of certain standard classes of functions defined
in B(1), including the Bloch functions B (and their separable subclass By ) as well
as the bounded mean oscillation functions BMOA can be made in terms of the
pull-backs of {w;|f(z) — f(a)| < r} as a and r vary [80].

We now discuss some other consequences of Ahlfors’s theory.

Corollary 1. If f is meromorphic in the disc B(1), and

(8.10) 17O/ +]|fO)) >C

for a sufficiently large C', and (8.9) holds, then the covering surface generated by
f over Fy is not regularly exhaustible.
Corollary 2. Theorems of Schottky, Landau, Bloch ([6], [44, Ch. 6]).

Corollary 3. (Normal families.) Let F be a family of functions meromorphic
in B(1), and T be the Ahlfors-Shimizu characteristic. Then F is normal in a
neighborhood of the origin if and only if there is an M such that for some rq > 0

(8.11) T(r,f)<M, feF, 0<r<r.
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This is somewhat of a surprise, since the standard condition is that F is
normal if and only if the spherical derivatives f*, f € F, are uniformly bounded
on compacta. Thus (8.11) is clearly necessary, since T(r, f) is an average of f¥(2),
but there seems at first glance no reason why the converse should hold. However
it is an elementary consequence of the ideas behind Corollary 1.

Condition (8.11) is the analogue to meromorphic families of the necessary
condition log M(r, f) < (r)(0 < r < 1,f € F) for holomorphic families to
be normal, but (8.11) is both necessary and sufficient. Note that (8.11) with T
Nevanlinna’s characteristic, need not imply normality.

D. Growth and omitted values. Suppose f is meromorphicin B(1) and omits
g > 3 values. Then (cf. [87, p. 215))

(8.12) T(r, f) < {qi—z + 0(1)} log - = - (0<r<)

which is essentially best possible, by (2.6). (In fact, D.F. Shea and L.R. Sons [74]
have used [5] to show that (2.6) must hold in this case.) If we consider (8.12) for
¢ = 3 and formally differentiate, we would have that

(8.13) Sry=0(1-r)7")

a conclusion which in fact follows from the theory of [6] (the implicit constant is
an absolute one also; cf. [44, Chapter 6]). With this evidence, W.K. Hayman
conjectured that perhaps (8.12) could be differentiated in general, at least so that

(8.14) Str)y=o(1-r)™") (r—1)

whenever f omits infinitely many values. Compelling evidence for this was ob-
tained by Hayman, Patterson and Pommerenke [48] in 1977; (8.4) is true if f is
a universal cover map of C\ A with A an infinite set. Hence, it was a surprise
when J. Ferndndez [36] showed that if A is any set of zero logarithmic capacity,
and f: B(1) — C\ A, then no more than (8.13) need hold universally as r — 1.
Ferndndez’s theorem thus provides a bizarre characterization of sets of capacity
zero, for if A has positive capacity then limsup,_; T(r)log ((1—r)~!) = 0, so
that trivially S(r) = o((1 —r)~!). It also shows that bounds such as (8.14) are
not inherited from those of the (superordinate) universal cover mappings.

E. Some surprising hints for the future. It appears that the term quasi-
conformal saw its birth on [6, p. 185], although the concept goes back several
years to H. Grotzsch. Grotzsch proved that Picard’s theorem holds for what are
now called two-dimensional quasiregular mappings. Since length—area adapts well
to this setting, Ahlfors observes in [6] that his full covering surface theory applies
almost at once, giving another proof of Picard’s theorem in this generality and
much more.



348 David Drasin

Ahlfors also introduced [6, p. 160] a class of curves v (now called Ahlfors-
regular): there is to exist a constant C' independent of zy and r > 0 such that
|y N B(z9,7)| < Cr, uniformly, where | | is arc-length. It is to these curves that
(8.3) applies. Rather recently, G. David [29] has shown that Ahlfors-regular curves
are significant in a completely different context: it is precisely these curves v for
which the Cauchy integral defines a bounded operator on L?(y).

F. Iteration theory. The classical theory of iteration of (non-linear) rational
maps goes back to P. Fatou and G. Julia, and in [33], Fatou initiated the study
of iteration of (non-linear) entire functions. This subject has in recent years been
among the most active on one-variable function theory. Recall that this is the
study of the family F = {f,} of n-fold iterations of f. The Fatou set F = F(f)
consists of points at which F fails to be normal. A fixpoint a of order n satisfies
fn(a) = «, and is repulsive if |f)(a)] > 1. Repulsive fix points are obviously
in F, and Fatou and Julia proved before 1920 that such points are dense in F
when f is rational. In [33], Fatou asked if this were also true in the entire case.
L.N. Baker [12] used [6] in essential way to prove the

Theorem. Let f be entire and F = {f,}. Then repulsive fixpoints are
dense in F.

Remark. Before [12], it had been open whether such fixpoints had to exist.
The proof here readily adapts to the rational function context. The theory of
iteration often uses the “inverse function”, a concept made for Ahlfors’s theory.

Proof. Let zo C F and N a disc about 2. It is elementary that F is perfect,
so we may choose three disjoint discs B (a;,e) C N with a; € F. (We also want
any Fatou exceptional point to be disjoint from these B'’s; this is always possible
since there are most two such points). Since F is not normal in any B (a;,$), it
is easy to see that given C' < oo there is a point b; = b;(n) in each B(a;,¢/3)
such that the spherical derivative f}(b;(n)) > Ce™! if n > ng. This places us
exactly in the situation (8.10), and so we are guaranteed that if n is sufficiently
large, f, restricted to B (ai,&/3) will have a simple island over some B (aj,¢).
By iterating this argument at most three times, we see that a high iterate of f,
say fm, will have a simple island over B (a;,€) in B (a;,€/).

By Schwarz’s lemma, f,;}, restricted to B (a;,€) has a strictly attractive fixed
point, so that f,, has a repulsive fixed point, as asserted.

9. Conclusion

In the past several years, renewed interest in the subject has come from its
formal analogies to Roth’s theorem in number theory [51], [66], [91]. Vojta has
even compiled a “dictionary” between the two disciplines.

This survey has omitted a great deal of relevant material. But the evidence
presented here compels the conclusion that these ideas will continue to inspire our
science for many years to come.
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I thank B. Shiffman and W. Stoll for several helpful conversations.
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