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Seppo Rickman

1. Introduction

This paper is an attempt to survey some features of the theory of quasiconfor-
mal mappings as it stands today. The modern development of the theory started
in the fifties and since then the interest in the field has grown enormously. Much of
this is due to the many applications and connections of quasiconformal mappings
to other fields of mathematics. It is clear that in this short presentation I am able
to consider only a part of the story and therefore I will limit myself to a few topics.
The works by Ahlfors on the subject have had a great impact on the development
of the theory and I have chosen the topics partly to emphasize this. However, I
have left out one area where Ahlfors' influence has been important, namely the
role of Teidrmiiller spaces. The reason for this is that this topic will be discussed
in other papers in this volume.

There a,re many equivalent definitions for quasiconformal mappings. I will
choose here the one that is conceptually the easiest, the so called metric defrnition.
Let D and D' be domains in the Euclidean n-space R" with n ) 2 and let
f : D --+ D' beahomeomorphism. For r € D and r ) 0 such that the closed ball
E(u,r) is in D we write

L(r,r): , mar l/(y) - f @)1, l,(x,r): ,_nfll_ lt@l - /(')1,
ls-yl:r lx-gl:r '

r'(x'r)H(x,r): -ffi
H(u): ttTjlo H(r,r).

We say that / is quasiconformal if the linear dilatation ä(c) is uniformly bounded
in D. In connection with this definition it is convenient (alihough it is not common
terminology) to define / to be K-quasiconforntal with 1 < K < oo if / is
quasiconformal. and

H(r)<K a.e.

The given definition for the Euclidean space generalizes to metric spaces, in
particular to Riemannian n-manifolds. An important special case here is the

Mika
Typewritten text
doi:10.5186/aasfm.1988.1328



372 Seppo Rickman

one point compactification E" : RoL) {oo} of l?" provided with the spherical
metric. The concept of a quasiconformal mapping is clearly well defined also on
n-manifolds with conformal structure without a,ny a priori given metric, e. g. on
Riemann surfaces. If not otherwise stated, we mean in the following the Euclidean
case.

It is ea.sy to give examples of large classes of quasiconformal mappings. If / :

D -+ D' is a diffeomorphism, its restriction to any relatively compact subdomain
is clearly quasiconformal. If / is .D-bilipschitz, it is Z2-quasiconformal. The
converse is not true whidr is seen from the example a v+ lalo-ra where e ) L.

For n :2 a homeomorphism / : D + D' is L-guasiconformal if and only if
/ is conformal or anticonformal. lf. n ) 3, a 1-quasiconformal mapping is always
a restriction of a Möbius transformation. The last result is Liouville's theorem in
a generalized form due to Gehring [G2] and Reshetnyak [R2].

It was Grötzsch who in the late 1920's was the ffrst to consider quasiconformal
mappings for n : 2 and his main contribution [G12] consists of a study of ex-
tremal mappings between simple plane domains. The ffrst appearance of the term
quasiconformal is in 1935 in the famous paper on covering surfaces by Ahlfors [A1].

A crucial step forward was the discovery made by Teichmiiller in the late
1930's [T1] that extremal quasiconformal mappings on closed Riemann surfaces
lead to a connection with holomorphic quadratic differentials on the surfaces. The
ideas of the theory of Teichmtiller spaces were also given in [T1].

In the early articles certain smoothness properties were required for quasi-
conformal mappings. One of the main drawbacks in such definitions is the lack of
compactness of families of K-quasiconformal mappings. In 1954 Ahlfors started in
[A2] a systematic study of the class that we now call quasiconformal mappings and
he cleared up paf,t of Teichmiiller's work. Already in 1938 Morrey [M2] had proved
the important measurable Riemann mapping theorem (see Section 4), but people
working in quasiconformal mappings had not paid attention to it. In the course
of years Ahlfors, Bers, and their students have given a great contribution to the
studies of Teichmiiller spaces and other connections of quasiconformal mappings
to complex analysis.

For dimensions n ) 3 quasiconformal mappings were first treated in 1938
by Lavrent'ev [L1], but the systematic study began much later by Gehring and
Väisälä in the early 1960's [G1], [G2], [V1]. Their study was preceded by an
important article by Löwner [L ] on conformal capacity.

Recent development of quasiconformal theory has grown from the contribution
of a large number of people in addition to the narnes listed above. To pick up two
names, I want to mention T\rkia and Sullivan. Sullivan, for example, has iound
many interesting applications and connections to other fields of mathematics. For
some details, I refer to Section 5. I shall also include (Section 6) a discussion of
the noninjective case, the theory of quasiregular mappings. These mappings have
turned out to form an interesting generalization of the complex a^nalytic functions
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to real n-dimensional space.

Good references for the 2-dimensional theory of quasiconformal mappings are
the books by Ahlfors [45] and Lehto and Virtanen [L2]. For general ra I recommend
the book [VZ] by Väisåilä. Also the survey by Ahlfors [A6] and that by Gehring

[G7] give an excellent picture of the subject.

2. Local and global properties

I shall start by describing how one passes from the uniform bounded.ness of
the local notion, the linear dilatation H(*), to global geometric properties. This
involves integration in some sense which in turn requires certain regularity of the
mapping.

2.L. Differentiability properties. Let now / : D + D' be a, K-
quasiconformal mapping. One first shows that / is AC L, that is, absolutely
continuous on almost all lines parallel to the coordinate anes. The essential
point in the proof is Lebesgue's theorem that an additive set function has a fi-
nite derivative a.e. It follows that / has partial derivatives a.e., in fact, / is
even differentiable a.e. To prove this, first observe that for r € D we have
L(u,r)"fr" l cl(a,r)"/r" 1c'm(fBn(u,r))/r" for some constants c all.d ct
when r is small. Here rn is the Lebesgue measure. Lebesgue's theorem gives
therefore

L(u) :limsup r(g-' t) . * a.e.
r+0 T

Differentiability a.e. results then from the theorem of Rademacher-Stepanov.
A homeomorphism which is differentiable a.e. has a locally integrable Jacobian

determinant J1.lf / is difrerentiable at c and H(r) < K,we h""" l,f'(r)1" S
N"-llty@)1. ttere l,f'(c)l is ttre operator norm of the derivative map fi(r).
It follows that l/'(o)l is locally in L which together with ACL means that /
belongs to the class denoted,by ACL". We obtain the following statement.

(A) If f : D --+ D' is K-quasiconformal, then
(1) / is differentiable a.e. ,

(2) f is ACL",
(B) lf'(*)|" S K"-rlt/*)l 

".".
2.2. Modulus of a path family. Let I be a family of nonconstant paths

in .R' and let .F'(f) be the set of Borel functions p i R + [0, m] for which the
line integral satisfies

I oo'
'l
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for all locally rectifiable 7 € f . The central global notion in quasiconformal theory
is the modulus

Mff\: in: t
rerfr1 J o" d*

RI

of l. The murrber M(l)t/(r-") i" the extremal Iengtå of 1..
The conditions (1)-(3) in (A) give enough regularity to prove the following

result.

(B) If f : D --+ D' is a homeomorphism that satisfies (1)-(3) in (A), then

(i) M(f) < K"-tMUt)
whenever I is a family of paths in D.

We can use (i) alone to show that both / and /-1 are quasiconformal and
hence close the circle of reasoning:

(C) If f : D ---+ D' is a homeomorphism that satisfies (i) in (B), then / and /-1
arc C(n,.I()-quasiconformal where C(nrK) depends only on n and, K.

Ishallglveaproof of thestatement for /. Let a € D andlet r > 0 be
small. Write !.: l(x,r), L: L(x,r), and let I be the family of paths in D
which join the preimage of the sphere S"-1(f (r),/) to the preimage of the sphere
s"-r(f(o),L). since /-r,s"-t(f (x),1) and .;t-tgn-t(/(r),.r) both touch rhe
sphere S"-t(r,r), we have an estimate of the form M(l) ) an ) 0 where o,,
depends only on n. On the other hand, M(fT) l uo-t(log (L/l))l-' where
ar,.-1 is the (n - L)-measure of the unit sphere. These give with (i) an inequality
of the form ä(o, r) < C(n,K), and (C) for / is proved.

If f : D -- D' is .K-quasiconformal, .f preserves zero sets, Jr@) * 0 a.e.,
and

*(f E) -
for measurable .E C D. It follows then from (A)-(C) that /-t is also K-
quasiconformal. If g : Dt --+ D" is.K'-quasiconformal, then g o f is K'K-
quasiconformal.

2.A. Equivalent deffnitions. Let f , D + Dt be a homeomorphism.
According to (A)-(C) / is quasiconformal if and only if / satisfies (1)-(3) in 2.1
for some .[(. This is often called the anaJytic defrnition The conditions (1)-(3)
are not independent for homeomorphisms. In fact, conditions (2) and (3) atone
imply quasiconformality (it ft(r) is defined by means of the partial derivatives).

lf f : D + D' is K-quasiconformal, it not only satisfies (i) in (C), but also
the double inequality

llrvld'm
E

(ii) Kt-" M(T) S M(fr) < Kn-r M(T).
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Conversely (ii) implies quasiconformality of /. The condition (ii) for a homeomor-
phism / is called lhe geometric d{nition of quasiconformality. It also shows that
the modulus of a path family is a conforrnal invariant. The geometric definition
was given by Ahlfors for n :2 in [A2].

The double inequality (ii) is the most effective tool for quasiconformal map
pings that applies in all dimensions. For example, by straightforward application
of (ii) it is easy to prove Hölder continuity and the fact that a quasiconformal
mapping of. R into R" is onto.

trbr more details of the equivalence of the various definitions and historical
remarks I refer to [L2] for n:2 and to p2] for general n.

3. Extension

One central question in the theory of quasiconformal mappings is the extension
qf a given mapping, for example to the boundary of the domain or as a mapping
of higher dimension n. It is convenient here to use the fact that the inclusion
R 'a E" i, a conformal mapping when E has the spherical metric. We can
therefore freely pass to E' whenever this is appropriate. Topological operations
are here taften with respect to E" . I shall first consider the case of a nice boundary.

3.1. Mappings of a half space. Let H" be the upper half space {c € .E" :

o, > 0) and let f , H" + Ho be K-quasiconformal. Then it follows easily from
(ii) in Z.g thrt f extends as a homeomorpåism E" -. 8". Fot suppose there

exist sequences (o;) *d (yl) in H" that converge to a point z € E'-1 and the

sequences (/(rr)) ""d (/(u;)) converge to points u and , io E"-1 with u f u.
We may assume z),.tr,,.) € a"-r ana l/(c;) *"1, lffu;)-rl S lu-alla: r for
all i. Write U - 7-rg"(u,r), V : f-rB"(r,r), and let I be thefamily of paths
in Hn that join U and V. Since U and V areconnectedand z eTnV,wehave
M(t): oo. But M(fl) < oo which contradicts (ii). This implies that / extends
as a continuous mapping E" - 8". Ar 

"f 
-1 is also quasiconformal the extension

is a homeomorphism. We may now assume that m is fixed on the boundary.
Furthermore, f extend.s as a K-quasiconformal mapping f* ,8" - E" by

reflection. In the proof it is cgnvenient to use the analytic definition and the only
point that needs a little checking is the ACL property across R"-1.

Let us next pay attention to the restriction g : f * | .R'-t . It satisfies now
an inequality

(") H(*,r)<C:C(n,K)

for all a e Rn-r and r ) 0 (see the proof of the first part of (C) in 2.2). Conse-
quentlg

(b)
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and g is C-quasiconformal if n > 3.

A.2. The case n -- 2. The inequality (a) expresses the fact that <p

C-quasisymmeiric. While (b) is rather useless for n : 2, lhe inequality (a)
important a,nd we write it in the form

a

ts

is

(") g-rY r 
p(x)- p(x -r) 

-j v'

The famous result by Beurling a^nd Ahlfors [B1] says that (c) is a necessar7r

and sufficient condition for a homeomorphism g , R' - Rr to be a boundary
correspondence of a quasiconformal mapping of H2 onto itself. The necessity was
indicated above. The sufficiency in their paper is given by the following explicit
formula for the mapping f , H' -* H2 in terms of g:

f(*) -

The extension / is K(C)-quasiconformal, it is C1, and it is bilipschitz in the
hyperbolic metric. Moreover, K(C) + 1 as C -r 1.

Let f : H2 + ä2 again be any quasiconformal mapping that fixes oo. The
boundary mapping g : Rr - .B1 need not be absolutely continuous. This was
shown also in [B1]. However, for n ) 3 the boundary mapping is absolutely
continuous with respect to the Lebesgue (n - l)-measure because then it is qua-
siconformal.

If G is a Möbius group acting on If2, and g r Et -, Et i. u C-quasisymmetric
mapping compatible with G, i.". g o g o g-1 is a Möbius transformation for all
g e G, then there exists a quasiconformal extension f , H2 - H2 which is also
compatible with G. This was first proved by T\rkia [T4]. Douady and Earle [D1]
gave another proof and their extension "f, is conformally natural in the sense that
go feoh: fcoco;, for all Möbius transformations g,å acting on H2.

For n > 3 it is true that a quasiconformal mapping g i P'-r + R'-1 has a
quasiconformal extension / : Hn -+ ä". This was for n : 3 proved by Ahlfors
[A4], for n : 4 by Carleson [C1], and finally for general n by T\rkia and Väsåilä
[T7]. In [T7] an importa^nt role is played by the paper [S1] by Sulliva,n.

3.3. Quasicircles. Let us now consider extension problems for more general
domains. The case n :2 is well understood. Let D C R2 be a Jordan domain and
/ a quasiconformal mapping of D onto the unit dirl. B'. By the same argument
asbefore / extends asahomeomorphism D + B'. Tf. t has aquasiconformal

-t -,extension f* ; R' - R', then 0D is called a quasicircle. A surprisingly simple

(*[r'x'l*,)+ p(n'l- t)) at, * | frf., + r) - p(xt
0

_,)) 
")
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characterization of quasicircles was given by Ahlfors [A3]: A Jordan atrve 1 in
R2 is a quasicircle if and only if there exists a constant c such that

,Srt *" (zi) < clx - vl

for all arU €1 where T and ^lz are the components of f \ tt,y). There exists
a number of other characterizations of quasicircles, and quasicircles have marry
connections to other branches of mathematics, see [G5]. Quasicircles can have any
Hausdorff dimension in the interval [1,2[. A typical example of a quasicircle with
Hausdorff dimension greater than 1 is the Koch curve, which is constructed as

follows. Start with an equilateral tria^ngle, replace the middle third of each side by
two line segments so that they together with the middle third form an equilateral
triangle whose interior does not meet the interior of the original triangle, and
continue similarly.

3.4. Domains quasiconformally equivalent to balls. Let us now turn
to the case n ) 3. The situation there is in many respects different and many
open problems remain. Let again D C R" be a Jordan domain and "f : D "-+ Bn
a quasiconformal mapping. We say then that D is quasiconformally equivaJent lo
8". By changing partly the earlier argument one can still show that / extends
to a homeomorphism D -- 8". It was proved quite recently by Kuusato [K1]
that a quasiconformal mapping D onto another Jordan domain need not have
a homeomorphic extension to the closure for n ) 3 although such a mapping
extends homeomorphically in the case n:2.

A result concerning the extension of / : D --'+ B' quasiconformally to E'
is the following lG3], [Va]: f , D ---+ Bn has an extension to a quasiconformal
mapping f* ,-Rn --r-R" it u;r,a only if E" \D is quasiconformally equivalent to
B'. This result is not true for n:2 since all Jordan domains are for n:2 even
conformally equivalent to the disk 82.

In this connection there are two important open problems for n 2 3. First,
to characterize the Jordan domains that are quasiconformally equivalent to B',
and second, to characterize quasispheres, that is, images of the unit sphere ,9'-r
under a quasiconformal mapping of E" onto itself. The paper [G9] by Gehring
and Väisälä is the basic source for the study of the first question. From [G9] are

for example the following facts. If we deform a ball by adding to it a.n outward
pointing spire with zero angle, we obtain a domain like an onion (for n : 3).
Such a domain is quasiconformally equivalent to 8". If we delete such a spire
which points inward, we obtain a domain which is not quasiconformally equivalent
to 8". The role of outwa.rd and inward changes if we operate with a wedge of
zero angle. Recently Väisälä has given interesting characterizations for cylindrical
domains to be quasiconformally equivalent to 83 [V5]. No general necessary and
sufficient metric condition is known for either problem.
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An interesting topological 2-sphere which is not a quasisphere is obtained by
first applying the operations in the construction of the Koch curve to El to obtain
a quasicircle 76 in E'. Th"o we ta^ke the product (Zo \ t*)) x ,Rl which is a
surface in .R3 and add m to obtain our topological sphere Y in 83. Tukia [TB]
used this Y and its higher dimensional analogue to show that a quasiconformal
group acting or E", i.e. a group of K-quasiconformal mappings for some y'f , need.
not for n ) 3 be a conjugation of a Möbius group by a quasiconformal (in fact
not even a topological) mapping. For n : 2 such a group is always a conjugation
of a Möbius group by a quasiconformal mapping. This was shown by Sullivan [S2]
and Tukia [T2].

4. Measurable Riemann mapping theorern

In this section n :2 and we consider only sense-preserving quasiconformal
mappings, i.e. with Jacobia,n determinant positive a.e. Let f , D --+ Dt be lK-
quasiconformal. With the complex notation z : a*iy we have the complex deriva-
tives /' : (f , - if)12, f z: (f , + ify)/z defined a.e. The -K-quasiconformality
mea,ns then that the complex dilatation

is defined a.e. as a measurable function with llpyll_ I k : (K -I)/(K * 1). Now
the remarkable thing is that the complex dilatation can be given as an arbitrary
measurable function with .D--norm ( 1. This is the measurable Riemann map-
ping theorem: Let p: C --+ C be a measurable function with llpll." < 1. Then
there exists a quasiconformal mapping ,f : C -r C witla p1 - p a.e. Moreover, if
/ is fixed at two points in C, it is unique and it depends holomorphically on trr.

In this form the theorem is proved by Ahlfors and Bers in [A7]. The theorem
except for the holomorphic dependence on p was proved first by Morrey [M2].
Bojarski [82] gave a proof where he applied the Calderon-Zygmund theory of
singular integrals. This theory was also used in [47]. In his proof arrangement
Bojarski also gets in a natural way the result that the derivative of a quasiconformal
mapping belongs locally not only to L2 bul to LP for some p > 2. For a long time
it was arl open question whether such a result is true for quasiconformal mappings
in the case n ) 3. This question was answered in the a^ffirmative by Gehring
[G ]. Gehring's ideas became quickly an important tool in the theory of partial
differential equations.

There are a number of applications of the measurable Riemann mapping the-
orem. The main application is in the study of Teichmiiller spaces. Sullivan has
succesfully applied it to the studies of iteration, see e.g. [S3], [S4]. It is also used
in the proof of the result mentioned in the preceding section that a quasiconformal

$_
JZ

I.If :T
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group rt-2 is
mapplng.

The theorem
mappitrg f can be

always a conjugation of a Möbius group by a quasiconformal

can also be applied to show that a given /( -quasiconformal
written as

f:gro...og*
where each gi is Krl*-quasiconformal. In dimensions n > 3 it is an open prob-
lem whether a given quasiconformal mapping can be written as a composition
of mappings with smaller dilatation. The counterpart for the Beltnmi equation

fz : Ff " is for n ) 3 an overdetermined system and therefore such a powerful
tool as the mea,surable Riemann mapping theorem is missing.

5. Further applications and comments

In addition to those mentioned in earlier sections quasiconformal mappings
have a large variety of important applications and connections to other fields of
mathematics.

First, quasiconformal mappings can be characterized as the class that preserve
the BMO functions [RU, [A8]. For n: 2 the extension of BMO-functions is tied
to quasiconformal theory: If D is a simply connected hyperbolic domain in .R2,

then each BMO function in D has a BMO extension to R2 if and only if äD is
a quasicircle [J1].

Also bilipschitz extensions a,re closely connected to quasiconformality. Let
n l4 and f : E --+ E' be bilipschitz where E,E' C 8". Then / has a bilipschitz
extension to .R' if and only if / has a quasiconformal extension to 8' [T8]. In
the plane a bilipschitz mapping of a Jordan curve C has a bilipschitz extension
to R2 if and only if C is a quasicircle [G6].

Quasiconformal mappings have played an important role also in some prob-
lems in differential geometry. For n : 2 we have the Teichmiiller theory where
one studies hyperbolic metrics on surfaces. Flor n ) 3 a famous application is
lVlostow's proof of his rigidity theorem [M3] which for compact manifolds can be
formulated as follows: If M and M' are compact diffeomorphic hyperbolic n-
marrifolds, n ) 3, lhen M ard M' are isometric. This result shows that there is
no Teichmiiller theory for compact manifolds (without boundary) for n ) 3. In
the proof two facts are needed from quasiconformal theory. First, that a quasicon-
formal self mapping of. H" extends as a quasiconformal mapping to the boundary
(ef. 2,L), and second, that a quasiconformal mapping is differentiable a.e. The
theorem has later been generalized in various directions for example by Agard,
Mostow, Sullivan, and Thkia.

In the proof of the coniecture of Lichnerowi cz lL}l, which states that the group
of conformal self mappings of a compact Riemannian n-manifold M, n ) 2,
is compact provided M is not conformally equivalent to the standard sphere,
quasiconformal theory was also used.
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A result of Sullivan [S1] says that for , * 4 every topological manifold has
a quasiconformal structure, i.e. overlap transformations can be chosen quasicon-
formal, and this structure is unique up to homeomorphisms arbitrary close to
identity. Sullivan shows the same for Lipschitz structures. See also [T6]. Recently
Donaldson and Sullivan (see [S ]) have studied the case n : 4 and found that the
situation for quasiconformal siructures is much like the smooth case where Donald-
son and Fbeedma^n recently established their sensational results: Many topological
4-manifolds do not have quasifonformal structures and many pairs of homeomor-
phic 4-manifolds exist with quasiconformal structures essentially different.

In 3.4I mentioned Tukia's result [T3] that for n ) 3 there are quasiconformal
groups acting oo E' that are not quasiconformally conjugate to a Möbius group
(although for n : 2 this is the case). Consequently this has increased the interest
in the study of quasiconformal groups, see [G8], [T5], [F1]. In particular, it is
important in the case r, ) 3 to give conditions for a quasiconformal conjugacy to
a Möbius group. Results in this direction are e.g. in the papers by Gromov [G10,
p. 209], T\rkia [T5, p. 340], and Sullivan [S4, Part IV].

6. Noniqiective mappings

If we let f : D + .R'" be a continuous mapping that satisfies for some K' €
[1, *[
(") f is ACL",
(b) lf'@)|" l KtJ1(r) a.e.,

we call f qua"sireguJar. We see that this definition is obtained from the analytic
definition of quasiconformal mappings (see 2.1 and 2.3) by replacing the word
homeomorphism by continuous a,nd by requiring Jf@) >_ 0 a.e. Like quasiconfor-
mal mappings quasiregular mappings are well defined also on oriented Riemannian
n-manifolds. Quasiregular mappings form a particularly interesting class, and it
has turned out that these mappings give the right generalization of the geometric
part of the theory of complex analytic functions in the plane to real n-dimensional
space.

Quasiregular mappings were first introduced and studied by Reshetnya^k in
a series of papers in the late 1960's and his contributions are presented in the
book [R3]. Some years later Martio, Rickman, and Väisälä started a study with
a somewhat more geometric point of view on the subject, see [M1], [V3]. See also
Vuorinen [V6].

The situation for n : 2 is in the Euclidean case the following. The 1-
quasiregular mappings are exactly the analytic functions. lf f is quasiregular,
then it is of the form / - g o h where /r. is quasiconformal and g a^nalytic [L2,
Chapter VI]. Because of this decomposition, the quasiregular mappings for n:2
have relatively little independent interest.

For n ) 3 the situation is different. First, the l-quasiregular mappings are
also now restrictions of Möbius transformations. One of Reshetnyak's main results
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is that a. nonconstant quasiregular mapping f is discrete (i.e. /-1(y) consists of
isolated points) and open, a.rld "f shares thus these topological properties with
the planar analytic functions. The simplest exarnples are finite to one branched
covers.

In 1.967 ZoÅch [21] proved that a locally homeomorphic qua^siregular mapping
of Rn into itself is aJways a homeomorphism if n ) 3. This phenomenon was
anticipated already by Lavrent'ev in 1938 [L1]. It shows a certain rigidity for
n ) 3 and therefore interesting quasiregular mappings for n ) 3 have in general
bra,nching. In his paper Zonch also posed the question of the validity of a Picard's
theorem on omitted values and this problem was for a long time one of the main
open questions in the theory of quasiregular mappings. In [R ] a Picard type
theorem was proved in the following form: There exist an integer q : q(n,K)
suchthat every K-quasiregularmapping f , R --+ Rn \{ot,...,ac} is constant.
This is known to be qualitatively sharp for n : 3 [R6]: For every positive integer
there exists a quasiregular mapping f , R" - Rs omitting p points in .R3. The
case p : L is easy and the construction was given in [21]. The sha,rpness for n ) 4
is an open question.

Value distribution for quasiregular mappings in the spirit of Ahlfors' paper

[A1] on covering surfaces is also understood to a certain extent. A recent result [R7]
says that a sharp analogue for a pointwise defect relation is true for quasiregular
mappings. To state this let f : R" - E" be a nonconstant K-quasiretular
mapping, let n(r,y) be the cardinality of the set /-r(y)nE"(r) with multiplicitS
and let .4(r) be the average of n(r,y) when y runs over the points in E'. Then
there exists a set E C [1,m[ of finite logarithmic measure, i... Iedrlr < oo, such
that

(1) rimsgpå(t- W) . 
<c(n,K)

,eE i:t
whenever dtt..,)aq are distinct points in 8". In Ahlfors'theory the bound is 2
for n:2. A weafter theorem was proved i" [R5]. The result (1) is qualitatively
sharp for n : 3 in the sense that arbitrarily given defect numbers 6i can be
asymptotically realized with proper constraints [R7]. More precisely given points

that 0
: R3 * E3 such that

j-1)2)"')

yf{ot)a2,...}r

where K depends only on P . Ct. Drasin's corresponding result in [D2] for mero.
morphic functions. The sharpness for n ) 4 is open.

eLrcl2r . . . e E and numbers 6r, 6z r . o . such

then there exists a K -quasiregular mapping f

m('-W):6i'
J*('-W)-o ir
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Reshetnyak's work on the subject is centered around nonlinear potential the-
ory and he gives counterparts for harmonic functions to quasiregular theory. His
studies have been extended recently by Martio and his students. However, like
for quasiconformal mappings, the most effective tool for the study of quasiregu-
Iar mappings has turned out to be the method of moduli of path families. Of
the quasiinvariance 2.3(ii) only the right hand inequality, known as Poletskii's in-
equalitg is tr-ue for quasiregular mappings. The heart of the matter is to combine
estimates for the modulus properly with covering properties of the mapping.

One interesting area of research is to describe Riemannian n-manifolds M
and lf for which there exists a nonconstant quasiregular mapping of M into -lf .

The Picard type theorem mentioned above belongs to this area. If If : 5', the
mapping always exists. To limit the genera,l question let us discuss somewhat the
case M - Rn r.lf compact.

Gromov [G11, Chapter VI] and Pansu [P1] have used the connection of isoperi-
metric inequalities and conformal capacity for this mapping problem. The idea
goes back to Ahlfors [A1, p. 188]. For example, let G be the Ileisenberg group,
i.e. the Lie group of upper triangular 3 x 3 matrices with ones on the diagonal
and real entries, let ff be the subgroup of integer entries, and let us fix a left
invariant Riemannian metric on G. Then G satisfies an isoperimetric inequality
which is stronger than the one for .R3. It follows that there exists no nonconstant
quasiregular mapping of .83 into N : G /H .

Another type of example is the connected sum TaffSz x 52 where ?a is
the 4torus. After some preparations where both the nontriviality of zr1(?4) and
Hr(S' x .9') are used, one can apply the ideas from the proof of the Picard
type theorem to show that there is no nonconstant quasiregular mapping Ra -*
7nS$2 x 52 . On the other hand, such a mapping exists of Ra into ,92 x ,92,
namelg there exists a two to one branched cover T2 +,S2 and then we get the
mapping as .Ra - T4 : T2 x T2 -* 52 x,52. An open problem is whether there
exists such a mapping of .Ba into 52 x 52#52 x 52.
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