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CUT-AND-PASTE DEFORMATIONS
OF RIEMANN SURFACES

Scott A. Wolpert*

Cut-and-paste provides a simple procedure for constructing compact Riemann
surfaces. The method also can be used to construct holomorphic families. We
shall examine three such constructions: the Schiffer variation, pinching a collar,
and plumbing a node.

There is a simple procedure for computing the infinitesimal variation of a
cut-and-paste family. The method comes from the Kodaira—Spencer approach to
deformation theory. The key point is to record the relative sliding of the open sets,
which are overlapped to form the surface. In Section 1 we sketch the procedure
for compact Riemann surfaces. The succeeding sections are devoted to analyzing
the three specific constructions.

The standard construction for opening a node is plumbing, giving a 1-pa-
rameter family. Our main result is a formula (Lemma and Corollary, Section 4)
comparing two plumbings of a given node. A simple consequence is the observation
that the general 1-parameter deformation for opening nodes is not given by a
plumbing. In fact if R is a Riemann surface with a single node, then there is a three
dimensional subspace S of the space of infinitesimal (stable curve) deformations
of R, such that the initial tangent of a plumbing lies in S.

The author would like to thank David Eisenbud, Joe Harris and Daniel
Swearingen for their advice and suggestions. The author would also like to thank
the Institute for Advanced Study for its support and hospitality.

1. Preliminaries

We start with a sketch of the Kodaira-Spencer approach for deformations of
a Riemann surface. References are Morrow-Kodaira, [MwK, Chapters 1 and 2]
and Gunning, Lectures on Riemann surfaces, [G, Chapters 1 through 7].

Let R be a compact Riemann surface with finite atlas (U,, 2,), i.e. each z, is
a biholomorphism from U, C R into C. We are interested in various line bundles
over R. A section ¢ of the R-canonical bundle & is a collection of C-functions
{¢a}, ¢a defined on U,, such that ¢,(dzs/dzy) = ¢ on U, N Uy. Alternately ¢

is a differential 1-form of type dz. A second example of a line bundle on R is a
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point-bundle. Let f be a holomorphic function defined on a neighborhood U of a
point p € R, and vanishing only at p to order 1. For simplicity of notation assume
that U = Up is an element of the atlas for R. A section of the point bundle ¢,
is a pair of C-functions: 79 with domain Uy and 7; with domain R — p, such
that 71f = 70 on Ug N (R — p). More generally a section ¥ of the line bundle
A =k?IQ®FK" ®(; over R is a collection of functions {¥,}, ¥, defined on U,,

such that: o —r
‘I’a (dza) (dza) fs — \II() on U() N Ua

E dZo

and for a, b#0

q freem— T
Ty (jj”) ((‘Z") =¥, on U,NUs

The sections of A over R form a C-vector space I'(R,A). And of course we
may also consider the sections I'(V, A) over an open subset V' C R. In fact the
collection of groups I'(U,\), U C R, U open, determine a sheaf, the sheaf of
germs of sections of A. Two important subsheaves are £(\) the sheaf of germs
of smooth sections (the local representatives ¥, are smooth) and O(x?®(;) the
sheaf of germs of holomorphic sections (the local representatives are holomorphic).
Of particular importance for deformations of Riemann surfaces are sections of the
line bundles k™! (vector fields), k®2 (quadratic differentials), and ™' ® £ (an
L°° section is a Beltrami differential).

Fix a particular line bundle A and let & be the associated sheaf of germs of
sections. A k-cochain o with values in § is an assignment: to each (k+ 1)-tuple
Up, ..., Uk of sets of the cover {U,} with UgN...N Uy # 0 is assigned a section
oo..k of T(UpN...N Uk, A). The set of k-cochains Ck({Ua},S) is a C-vector
space with a natural coboundary operator 6: C*({U,},S) — C**1({U,},S). We
will only consider the simplest case §: C® — C'. A 0-cochain o is an assignment
U, — 0, € I'(U,,8); its coboundary is the 1-cochain U, NUp +— o3 — 04 € T(UaN
Us,S). The k-cochains o € C* with o = 0 form a subgroup, the k-cocycles; the
image 6: C¥~! C C* also forms a subgroup, the k-coboundaries. The quotient k-
cocycles/ k-coboundaries is the k** Cech cohomology group H*({l’,},S) relative
to the cover {U,}. If we require that all nonempty intersections UpN...NUp, be
topological discs then the Cech groups are actually independent of the choice of
cover. In any case a k-cocycle determines a class in H¥(R,S).

A second cohomology theory is for the & operator. As a sample case we start
with a holomorphic line bundle ¢ with transition functions &, (€,5 is nonvanishing
holomorphic, defined on U, N Up with €ap€be = €ac on Uo NUp N U, ). A smooth
section I'(R,£(¢)) is an assignment of smooth functions ¢, on U, such that
da = Eqpdp on U, NU,. The collection of functions {(Ua, (6¢a/6§a))} transform
by the rule
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note that this is simply the transformation law for sections of £ ® &. Thus & maps
sections of £ to sections of £ ® k. We will only need the Dolbeault group

L(R,£(£ ® 7))
HY! =

o (B8O) = Zr g, ()
((Ua,(8¢4/0%,)) is an example section of { @ &). For £ = k71, I'(R,E(E ®K))
is the space of smooth Beltrami differentials and I'(R,£(¢)) the smooth vector
fields. The Dolbeault isomorphism provides that

H'(R,0(¢)) = Hy'' (R, £(8)).

We would like to recall how to evaluate the isomorphism. It will be enough to
consider an open cover of R by two sets: U, V such that UNV is an annulus A.
Assume that a cohomology class (o) € H?! is represented by the assignment U N
Vieoe F(U NV,0(€)). Let v be a simple closed curve, representing the core of
A; v separates A into annuli Ay adjoining U, and Ay adjoining V. Let x be
a smooth function on R (an approximate characteristic function of V') such that
x is identically 1 on V — Ay and 0 on U — A.

Definition. A formal potential F for o is the 0-cochain with values in £(¢)

given by
_Jxo onU,
F—{O onV — Ayp.

The Cech coboundary 6§F (restricted to Ay) is given by the assignment
UN(V—A4y) - o|la, €T(Ay,0(£)) (the reader may check that the 1-cocycles
UN(V—A4y) = ola, €T(Av,0(€)) and UNV > 0 € T(UNV, O(€)) represent
the same class in H 1(R,0(¢)) ). Now for the Dolbeault coboundary of F': OF
is a smooth section of ¢ ® & over U UV (the ambiguity in the definition of F
on Ay is holomorphic, thus annihilated by ). Indeed OF € I'(R,€(¢ ® &))
and its class Hg’l (R,£(¢)) is the image by the Dolbeault isomorphism of the
original (o) € H'(R,O(€)). In brief: the image by the Dolbeault isomorphism
of (o) € H'(R,0(¢)) is the class of OF in Hy' (R, £(¢)) for F a formal potential
for o.

There is an obvious question: when does (o) € H!(R,O(£)) represent the
trivial class? By a direct approach this would be a tricky combinatorial matter:
does there exist a 0-cochain with coboundary o ? A simpler approach is to consider
the linear functional given by (o), acting on the dual space H°(R,O(k ® £71)).
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From the Dolbeault isomorphism and the specific form of Serre duality the pairing
of (o) and ¢ € H*(R,O(k ® £71)) is simply

((0)’¢) = /RéFﬁb

where F' is a formal potential for (o). Recalling the definition of F we note
OF == 0 on R— A and thus

Juore=fore= ) Fe=

the last equality follows since F' = xyo vanishes on the outer boundary of Ay and
is 1 on the inner boundary 4. In brief: the pairing of (¢) € H! (R,0(¢)) and
¢ € H°(R,O(k ® £71)) is the period f7 od.

We wish to consider deformations of a compact surface R with a finite number
of distinguished points p;, ..., pn. The space of infinitesimal deformations is
HY (R,O((kCp, *++Cpn)™Y)) and its dual is HO(R, O(k®2¢p, -++(pn)). We review
the actual calculation of the 1-cocycle representing a deformation. Suppose that
R, is a family of surfaces given by a cut-and-paste construction with a parameter ¢.
It will be enough to consider a simple case, two Riemann surfaces glued by a single
map. Let U and V be Riemann surfaces and f a biholomorphism of an open
set in U to an open set in V. Form the identification space of U and V by the
map f, UUV/ ~¢,i.efor u € U, v € V thenu ~5 v provided u € Domain(f) and
f(u) =v. The quotient space UUV/ ~ is a Riemann surface. In fact if f depends
holomorphically on a parameter ¢ then Ry = U U V/ ~; gives a holomorphic
family. The family is constructed as follows: let D be the domain for ¢, define an
equivalence relation ~y on (U U V) x D generated by (u,t) ~¢ (v,t'), provided
that v € Domain(f), f(u,t) = v and t =t'; (UUV) x D/ =~ is fibered over
D with fibre R;. To compute the infinitesimal variation dR:/dt, let zy be a
generic coordinate on U and 2; a generic coordinate on V. Then f is given
as z1 = f(zo,t). A geometric description is immediate: for z, fixed, as t varies
f(zo,1) traces out the points in the z;-region V, that z, will be identified to. And
thus the t-derivative of f gives the infinitesimal variation of the identification.
Specifically the 1-cocycle

of o

9(V,U):53—z1

on UNVCR,=UUV/ 4

with values in (’)(fc_l) represents the infinitesimal deformation.
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2. The Schiffer variation

An excellent example of a family obtained by varying a cut-and-paste con-
struction is found in the work of Schiffer. We paraphrase the description from
Section 7.8 of [ScS]. Let 4 be an analytic Jordan curve in a surface R. Suppose
for simplicity that 4 lies in the domain of a local coordinate z;. Let r(z1) be
a function which is analytic in a neighborhood of «. For ¢ sufficiently small the
function f(z1,t) = 21 + tr(z;) will trace a neighboring Jordan curve ¢, as z;
traces . Let V with coordinate z; be the region interior to v; and U the re-
gion exterior to 7; the coordinate z; restricts to a neighborhood of the exterior
of 7; call the restriction z9. A deformed surface R, is defined by identifying the
boundary of U and the boundary of V;: p € ¥ = OU is identified with the point
g € v¢ = OV provided z1(¢q) = f(20(p),t) and R, =U UV/ ~.

As given the identification is by sewing two regions along their boundaries. We
would rather have an identification by overlapping open sets. Consider the image
of U in R; with coordinate zy near v and the image of V in R; with coordinate
21; zo has an analytic continuation to a neighborhood of ¥y = OU C R; and 2z
an analytic continuation to a neighborhood of v = 8V C R;. Since 21 = f(20,1)
on v (a uniqueness set) it follows that the analytic continuations satisfy the same
equation on a neighborhood of 7. In brief: we would obtain the same surface R,
if U and V were enlarged (same notation) by including neighborhoods of their
boundaries and the identification was by overlapping.

Now to give the 1-cocycle for the infinitesimal deformation. The context is
just as in the previous section; the 1-cocycle for the Schiffer variation is

_Of(z0st) 0 _ O __r(z) O
a(t) - 6t azl - r(20)621 - 1 + tT’(ZQ) 020

on UNYV giving a class in H!(R;,O(k~!)). Can the deformation be trivial?
Recall that the pairing of (8) with ¢ € H°(R,O(k®%(p, -+ (p,)) is simply the

integral

/ r(20)
y~ou 1 +1r'(20)

(the integral is calculated in the variable zo). We point out a few of the interesting
cases. Let t =0 and r be meromorphic in the interior of 4. The residue theorem
can be applied; the integral is given by the sum of the residues of r¢ interior to +.
We consider two specific cases. The first is for r having a single simple pole, say
at ¢, interior to 4. By Riemann—-Roch R has a holomorphic quadratic differential
¢o which is nonzero at gq. The residue of r¢y is nonzero and thus r gives a
nontrivial infinitesimal deformation. The second is for one of the distinguished
points of R, say p;, lying interior to . By Riemann-Roch R has a meromorphic
quadratic differential with its only pole simple and at p;. Now if r is holomorphic
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on the interior of 4 and nonvanishing at p; then the infinitesimal deformation
is nontrivial. Of course this last deformation is simply sliding a point over a
fixed surface. We would like to emphasize a particular choice of r for the sliding
deformation.

Definition. Let 6z9(p;) denote the infinitesimal Schiffer variation given by
r(z9) = 1.

3. Pinching a collar

Consider an annulus A in a surface R, situated such that a core curve v of
A represents a nontrivial free homotopy class in R. Let h be a biholomorphism
mapping A to the circular annulus A = {r < |zo| < 1} in the zg-plane. We recall
how the twist-stretch deformation of A defines a deformation of R. To this end
consider zo = h(p) and z; = 1/h(p) as coordinates on A. Choose U and V open
in R, such that U UV is a neighborhood of A and UNV = A. Let {U,} be an
atlas for R such that each U, is either U, V or disjoint from A. We can define
a deformation of R by simply redefining the overlap from U to V. Specifically
given t near 1, the new identification of U to V is given by defining for u € U,
v eV, un~¢vif zo(u)z1(v) = t. Denote the deformed surface by R;. From
Section 1 the 1-cocycle (the map is 21 = f(zo,t) = t/2) for the deformation is

= =__ on the overlap of U and V.

And for a quadratic differential ¢, holomorphic in A, the pairing ((6), ¢) is the

period
2
- 21¢.
tJy

The literature for the pinching deformation is extensive. We only cite a few
open questions. Evidently it is not known (without some hypothesis on k) if
the infinitesimal deformation is in general nontrivial. One can also consider the
following: choose 3g — 3, g the genus of R, disjoint annuli A4, ..., Azg_3 in R
and charts hj: Aj — C such that each component of R — Uj A; is topologically
S% — {3 points}. Does the family R(si,...,839-3) = Ry, .5, 5 for t; = e%
formed by pinching the collars, map injectively to the Teichmiiller space of R?
And similarly given an infinitesimal deformation of R and the free homotopy
class of a simple closed curve, does there exist an annulus A, representing the free
homotopy class, and chart h: A — C, such that the infinitesimal pinching is the
specified deformation? We expect the answer to be yes; in the next section we
shall examine the analogous question for opening a node.
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4. Plumbing a node

The family for pinching a collar can be extended by allowing the parameter
to tend to zero. The result is a family of Riemann surfaces over the punctured
disc. We shall consider the effect of completing the family by including a special
fibre, a Riemann surface with nodes.

We start with an example. Consider the germ V = {zw =1t | |2|,|w], |t| < 1}
C C3 of a variety. The defining function is zw—t with differential z dw+w dz— dt;
as a consequence V is smooth with global coordinate (z,w). The projection
[I(z,w) = zw = t maps V to the t unit-disc D = {|¢{| < 1}. The differential
dIl = z dw+w dz vanishes only at the origin; II is almost a fibration. What are the
fibres? For t # 0 the fibre is the annulus {|¢| < |z| <1, w = ¢/z} and the 0-fibre
is the intersection of the unit ball in C? with the union of the coordinate axes.
Removing the special point, the origin, (a node) the union becomes {0 < |z| < 1}
U{0 < |w| < 1}. In fact II: V — D is the fundamental example of a family of
Riemann surfaces with nodes; note that V and D are smooth C-manifolds, II is
holomorphic, and a node is the germ of the coordinate axes in C2.

A Riemann surface with nodes R is a connected complex space, such that
each point has a neighborhood isomorphic to either the unit disc in C or the germ
of the coordinate axes in C2. We will tacitly assume that R is compact, and
that each component of Ry = R — {nodes} has a negative Euler characteristic.
Such an R is a stable curve in the sense of Mumford, [DMu, Mu]. A degenerating
family II: M — B of compact Riemann surfaces is a proper holomorphic map II
of smooth complex manifolds with generic fibre a compact Riemann surface. A
special fibre may have a finite number of nodes, points where the local model for
the fibration is the above example. On removing a node n € R we obtain a pair
of punctures a and b of R — {n}; we will refer to a and b as being paired to
form n. A degenerating family II: M — B defines a holomorphic map of the base
B to M,, the Deligne-Mumford compactification of the classical moduli space
My of Riemann surfaces, [DMu, Mu]. We shall use the description of M, given
in the work of Bers [Be], Earle-Marden [EMr], Fay [F], and Masur [Ms]. A further
exposition of their description is given in [W]. In all cases the local geometry of
M_g is analyzed by giving constructions of specific families.

The standard construction to include a noded surface in a degenerating family
is plumbing. Suppose for simplicity that R has a single node n. Ry = R— {n} is
a smooth noncompact surface with punctures a and b. Choose a coordinate u for
a neighborhood U of a with u(a) = 0 and a coordinate v for a neighborhood V
of b with v(b) = 0. Given ¢ > 0 consider the open surface R« = Ry — {|u| < c}
U{lv| < ¢}, the germ V = {zw = ¢ | 12],lw| < ¢, |¢| < ¢*} and the disc D =
{It| < c?}. We define a map f(p,t) from (UUV)x D to V

(p,t) = (u(p),t/u(p),t) for peUCR,,
(p,t) — (t/v(p),v(p),t) for p€V CR,.
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The map generates an equivalence relation ~¢ on (R, x D)UV; the identification
space Plumbpg(u,v) = (R« X D)UV/ ~ is a degenerating family with projection
to D, and 0-fibre the original noded surface R. The data for the family is the
tuple (R,U,u, V,v,c); in practise U, V are understood and c is fixed beforehand.
The reader can check that the family is independent of ¢ for ¢ small. As noted
above the family gives a holomorphic map of D to Wg: 0 maps to a point in the
compactification divisor of ﬂ; and t # 0 maps to a point of M,.

We would like to find how the initial tangent of a plumbing depends on the
choice of the coordinates u and v. Can an arbitrary infinitesimal deformation
opening the node of a noded surface be realized by plumbing? Obviously such a
calculation will require a model for the tangent and cotangent spaces of -./Wg- at a
noded surface. A description suited for our purposes is contained in the paper of
Masur, [Ms]. Specifically the cotangent bundle (a V -bundle over a V -manifold)
is described as a modification of the bundle of regular quadratic differentials for
a degenerating family. Assume for simplicity that an initial family II: M — PD
is given as follows: PD is a polydisc in s-space, [I7!(s) = R, is a smooth surface
with two punctures a, and b, (equivalently R, is smooth compact and a,, b,
are disjoint sections). It will be simpler if we only consider the general case: if
R, has genus ¢ > 0 assume PD has dimension 3¢ — 1 and the induced map of
PD (PD/{symmetries}) to M, , is injective. Let u, v give rise to holomorphic
charts about the punctures: (u,II): U - Cx PD, U a neighborhood in M of a,,
u(as) = 0 and (v,II): V — C x PD, V a neighborhood in M of b,, v(bs) =0
(trivializations of neighborhoods of the sections). Now we describe how to plumb
each fibre of II: M — PD (a, and b, are first identified to form a noded family).
Arrange, restricting the s-domain if necessary, that the range of u and v each
contain the polydisc {|¢| < ¢} xPD, ¢ > 0 . Start with the family of open surfaces
M, =M —{|u| < c} U{|v|] < c}, the germ V = {zw =t | |2, |w| < ¢, |t| < ¢?},
and the disc D = {|t| < ¢?}. Define a map h(p,t) from (UUV) x D to PD xV

(p,t) = (I(p),u(p), t/u(p),t) for peUC M,,

(p,t) = (I(p),t/v(p),v(p),t)  for peV C M,.

The map generates an equivalence relation ~, on (M, x D) U (PD x V); the
identification space Plumbjps(u,v) is a degenerating family with projection Il
to PD x D. By definition the V-collar will be the intersection of PD x V C
Plumb ps(u,v) and a fibre of II;*. By our hypothesis on II: M — PD the induced
map of PDx D to M., v = g+1 provides a local coordinate chart (sy, ..., sp, t),
n = 39 — 1. We require one last definition: QD the space of regular quadratic
differentials (in the sense of Bers, equivalently the pushdown of the square of
the relative dualizing sheaf). For a smooth surface S the space QD(S) is simply
A (S, O(£®?)) the holomorphic quadratic differentials on S. For a noded surface
R then QD(R) is the vector space of meromorphic quadratic diffentials ¢ on
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Ry = R — {nodes} such that : each ¢ has poles only at the punctures of Ry,
the poles have order at most 2, and for paired punctures a and b, then Res,¢ =
Resy¢. By Riemann-Roch each fibre of @D has rank 3y — 3. We are ready to
state Masur’s result.

Theorem [Ms, expansion 5.3 and Proposition 7.1]. Let v be the genus of
the generic fibre of the family Plumbs(u,v) , there exist functions ay,...,a3,y—3
such that:

i) aj(z,s,t) is holomorphic on {|t|/c < |2| < ¢} x PD x D,
i) aj(z,s,t)(dz/2)? is the restriction to the V-collar in R,y = IIg'(s,t) of a
regular quadratic differential ¢; of R, ¢,
iii) {¢;} form a basis for QD(R,;), L
iv) for the local coordinate (si,...,8q,t) on M, dsy = ¢1,...,dsp = ¢,
dt = t/2mid,+1 (in the sense of linear functionals acting on the infinitesimal
deformations).

Statement iv) provides a local model for the cotangent bundle of M,. As
a sample calculation, consider varying t for the V-collar {zw =t} in R, ;. The
infinitesimal deformation is simply the period for pinching a collar, for ¢ € QD

(Ge) =2/

where « is a core curve for the collar. Evaluating for the basis {¢;} we find the
constant terms for the Laurent expansion in z: ap4+; has constant term 1, aj,
J #n+1, has constant term zero. This agrees with Masur’s formulas (note that
we have suppressed a factor of i/2 from the pairing for Serre duality).

We would like to start our analysis by giving a construction to compare the
families Plumbg(u,v) and Plumbg(u,G(v)) , where R is a surface with a single
node n, R — {n} has punctures ¢ and b, and G is the germ at 0 € C of a
biholomorphism with G(0) = 0. The essential matter is to relate the families
uv =t and uG(v) = 7. As notation let 9/0t be the initial Plumb g(u,v) tangent,
d/87 the initial Plumbg (u, G(v)) tangent and éu(a) the infinitesimal sliding of a
in the u-coordinate on R (see end of Section 2).

Lemma. With the above notation 3/d7 = (G'(0)) ™' ((8/87)+1G"(0)6u(a)).
Proof. The first matter is to check the scaling of 7. For A = 7/G'(0)
the families for uG(v) = 7 and u(G(v)/G'(0)) = A coincide; thus 8/9r =
(G'(()))_l(a/a)\) and for the remaining discussion we can assume G'(0) = 1.
As a technical matter we choose ¢ such that the restriction of G to {|v| < 2¢} is

a biholomorphism, sufficiently close to the identity map. And for latter reference
we define a nonlinear transform of G,

_GW) -yG'@y).
G ="aw
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(G) is a holomorphic germ at the origin with (G)(0) = —2G"(0).
Start by considering the coordinate z of V: for a C-parameter ¢, |¢| < c?,
define a new coordinate z, by

2«G(e/z) =€

(i.e. for z in a neighborhood of |z| = ¢ define z, with domain N a neigborhood of
|z«| = ¢). Now we construct a family Span which includes both Plumb g(u,v) and
Plumbg (u, G(v)) . Start with Ry = Ro — {|u| < c} U {|v| < c}, D = {|t| < ¢?},
V = {zw = t}, A = {l¢] < ¢} and N = (neighborhood of |z,| = ¢). The
identification of R, x D X A to N x D x A is given by the map

(p,t,€) — (u(p),t,e) for pe U CR,,
the identification of N x D x A to V x A is given by the map
(z1,t,6) = (2 =€/G 7 (e/2x), w =tG 7 (e/z4) /e, t,€)
and the R, x D X A to V x A identification is unchanged
(p,t,€) = (t/v(p),v(p),t,¢) for peV CR,.

We have the following picture for ¢ and ¢ fixed.

=)

Ry N fibre of v R

Form the identification space Span of R, X D X A, N x D x A, and V x A;
Span is a family over D x A. The next item is to check for the subfamilies. For
€ = 0 then z, = z and the identification of U C R. to a fibre of V is simply that
of Plumbpr(u,v) . In brief, the restriction of Span to D x {¢ = 0} is Plumbg(u,v)
Now consider the restriction of Span to the diagonal {(t,e =t)} C D x A. Let
us concentrate on the identification of a fibre of NV x D X A to an open set in a
fibre of V x A. Fix t # 0, set € = t; the identification is given by z, = t/G(t/z)
for |z«| & ¢. The sequence of identifications R. X D x A to N x D x A and
N x D x A toV x A is now equivalent to identifying R, x D X A to V x A by

the map
(P,t, t) — (z = t/(;_1 (t/u(p))’ w = G-l (t/u(p)), tat) .
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The identification w = G~*(¢/u(p)) or, equivalently u(p) = t/G(w), provides
for the analytic continuation # of u to the entire V-fibre= {|t|/c < |w| < |¢|,
z = t/c}. The identification of the V-fibre and V C R, is given by w = v(p);
substituting we find the equation & = t/G(v) or 4G(v) = t. If we per-
form the analogous analytic continuation of u across the V-collar in the t-fibre
of PlumbR(u,G(v)) we find the same equation; the families Span|gjagonar and
Plumbg (u, G(v)) coincide.

Span is a family in € and ¢. The 1-cocycle for the e-variation is (the map is

ze =¢€/G(e/2))

G(e/z) — G'(e/2)e/z O
G(S/Z)2 6 < )(6/2)_

QN xD x AV xA)=
and the 1-cocycle for the t-variation is an infinitesimal pinching

0= on an overlap in V x A.

Sl

~ | N

The family Plumbg (u, G(v)) occurs as the restriction of Span to {(t,t)} C DxA
and thus the tangent field of Plumbg(u, G(v)) is the restriction of (8/8t + 8/0e)
o {(t,t)}. Now the pairing of (9/0t 4+ 0/0¢) with ¢ € QD is the period

JomGre(2))¢

and the value on the diagonal is given by setting ¢ = ¢. As the final step consider
that Span is embedded in a family as for Masur’s result. We wish to find the limit
of the period as t — 0. By the theorem the elements of QD converge uniformly
on |z| = ¢; the limit of the period le _(G)(t/2)$ is simply —3G"(0) flll—c

In summary: the initial tangent of Span|diagonal is (9/0t) + lG"(O)éﬁu(a) for
0/8t the tangent relative to the coordinate (s1,...,8ns,t) on _./\7;, and éu(a) the

infinitesimal sliding. The proof is complete.
Let 9/00 now be the initial tangent of the family Plumbg(F(u),G(v)) for
F agerm at 0 € C of a biholomorphism.

Corollary. With the above notation

8% = (G’(O)F’(O))_1 (g; + 2G"(0)6u(a) + %F"(O)&v(b)) .

Proof. Apply the lemma to Plumbpg(u,G(v)) and PlumbR(F(u),G(v)) .

The conclusion is

a - 1 "
2~ (ro) (2 + 1 0860)0).
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By Section 2 the infinitesimal sliding satisfies the transformation law §G(v)(b) =

(G'(O))—l&;(b). Apply the lemma a second time to give /07 in terms of 9/t
and éu(a). The conclusion follows.

Remarks. Our approach is based on a local construction for the plumbing
collars and the description of QD. The method could also be used to establish
the analogous result for the case of a surface with several nodes. The final result
shows that by varying F and G the initial tangent of Plumbg(F(u),G(v)) in
M., varies in the three dimensional subspace TP = span {(8/0t), 6u(a), v(b)}
(note: TP has dimension = 1 + dimspan {6u(a),év(b)} C infinitesimal defor-
mations of R — {node}. In fact F' and G can be chosen to realize an arbitrary
vector of TP with nonzero 9/0t component; TP defines a rank three subbundle
(the span of all possible initial plumbing tangents) of the tangent bundle of M.,
restricted to the locus of stable curves with a single node. We could also consider
the codimension three subbundle of cotangent vectors annihilated by TP. By Ma-
sur’s theorem and the discussion of the tangent-cotangent pairing, the annihilated
subspace corresponds to the regular quadratic differentials, holomorphic on the
compactification of R — {node}. And finally we note that in order to obtain the
expansion of a quantity on M_—, at a noded curve, it is necessary to consider more
than the plumbing construction.
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