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CUT.AND.PASTE DEFORMATIONS
OF RIEMANN SURFACES

Scott A. Wolpert*

Cut-and-paste provides a simple procedure for constructing compact Riemann
surfaces. The method also can be used to construct holomorphic families. We
shall examine three such constructions: the Schifer variation, pinching a collar,
and plumbing a node.

There is a simple procedure for computing the infinitesimal variation of a
cut-and-paste family. The method comes from the Kodaira-Spencer approach to
deformation theory. The key point is to record the relative sliding of the open sets,
which are overlapped to form the surface. In Section L we sketch the procedure
for compact Riemann surfaces. The succeeding sections are devoted to analyzing
the three specific constructions.

The standard construction for opening a node is plumbing, grving a l-pa-
rameter family. Our main result is a formula (Lemma and Corollary, Section 4)
comparing two plumbings of a given node. A simple consequence is the observation
that the general l-parameter deformation for opening nodes is not given by a
plumbing. In fact if R is a Riemann surface with a single node, then there is a three
dimensional subspace 5 of the space of infinitesimal (stable curve) deforrnations
of J?, such that the initial tangent of a plumbing lies in 5.

The author would like to thank David Eisenbud, Joe Hanis and Daniel
Swearingen for their advice and suggestions. The author would also like to thank
the Institute for Advanced Study for its support and hospitality.

1. Preliminaries

We start with a sketch of the Kodaira-Spencer approach for deformations of
a Riemann surface. References are Morrow-Kodaira, [MwK, Chapters 1 and 2]
and Gunning, Lectures on Riemann surfaces, [G, Chapters 1 through 7].

Let .R be a compact Riemann surface with finite atlas (Uo, zo), i.e. each zo is
a biholomorphism from Uo C -R into C. We are interested in various line bundles
over .R. A section / of the R-canonicil bundle r is a collection of C-functions
{ö"}, ö" defined on (Jo, such thaL go(d.zo/dz6): öt on [JoiUa. Alternately /
is a differential 1-form of type dz. A second example of a line bundle on .R is a
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point-bundle. Let / be a holomorphic firnction defined on a neighborhood U of. a
point p € E, and vanishing only at p to order 1. For simplicity of notation assume

that U - Uo is an element of the atlas for .8. A section of the point bundle (,
is a pair of C-functions: t0 with domain [/s and q with domain fi - p, such
that rr/:r0 on Uon(R-p). Moregenerallyasection iP of thelinebundle
\: rce 8rc"8(j over .R is a collection of firnctions {V"}, ilro defined ort Uo,
such that:

."(*)' C)""'": *o on uoiuo

and for a, b l0

The sections of ) over .R form a C-vector space l(.8,Å). And of course we

may also consider the sections f(% f) over an open subsef V C R. In fact the
collection of groups f(U- )) , u C R, U open, determine a shea.f, the sheaf of
germs of sections of ). Two important subsheaves are 6()) the shea,f of germs
of smooth sections (the local representatives ilro are smooth) and' OQst S (j) the
shea,f of germs of holomorphic sections (the local representatives are holomorphic).
Of particular importa,nce for deformations of Riema,nn surfaces are sections of the
line bundles rc*l (vector ffelds), rco2 (quadratic differentials), and t-l I E (*
tr- section is a Beltra.rni diferential).

Fix a particular line bundle .\ and let 5 be the associated sheaf of germs of
sections. A k - cochain o with values ia .9 is an assignment: to each ( & * 1) -tuple
(Jo, ..., (Jx ofsetsof thecover {U'} with Uon...nUx* 0 is assignedasection
os...1 of f(Ug n ...n(Jx,.\). The set of &-cochains Ck({U"1,.9) is a C-vector
space with a natural coboundary operator 0: Ck ({U"},5) * Ck+r ({tJ"},.9) . We
will only consider the simplest case 6: Co - Cr . A O-cochain o is a^n assignment
Uaå oa € l(t/",5); its coboundary is the 1-cochain UofiUtF+ ob a4 € f(Uon
Ua,S). The ft-cochains o € C& with 6o = 0 form a subgroup, the lc-cocycles; the
image 6: Ck-r C Ce also forms a subgroup, the la-coboundaries. The quotient /c-

cocyclesf k-coboundaries is the ,tth Öech cohomology group ål(1fr,1,S) relative
to the cover {Uo}. If we require that all nonempty intersections Uo fl .. .fiU* be
topological discs-then the Öech groups are actually independent of the choice of
cover. In any case a ,t-cocycle determines a class in li&1R,5).

A second cohomology theory is for the ä operator. As a sample case we start
with a holomorphic line bundle ( wiih transition functions €ou (€"a is nonvanishing
holomorphic, defined on Uo O t/a with €ot€rc: fo" on UofiUanU"). A smooth
section l(n,t(6)) is an assignment of smooth functions öo on t/o such that

öo: €otör on Uofi Ua. The collection of functions {(U,,(aö"l7z;)} transform
by the mle



Cut-artd-paste deforrnations of Riemann sur{aces 403

oöo 
.

04'
note that this is simply the transformation law for sections of €O F. Thus ä maps
sections of { to sections of € O rc. We will only need the Dolbeault group

H|,t (^a, t({)) -
f (A,€Gs E))

är(n, r(€)) )

((U",(0ö"102")) is an example section of ( O r). Fbr €: n-r, f (R,t(€ e r))
is the space of smooth Beltrami difierentials and l(.R,S({)) the smooth vector
fields. The Dolbeault isomorphism provides that

E, (a, o@) = n3,' (a,t(€)).

We would like to recall how to evaluate the isomorphism. It will be enough to
consider arr open cover of .R by two sets: [/, I/ such that [/ fl I/ is an annulus Ä.
Assume that a cohomology class (o) e .å1 is represented by the assignment U f)
V *+ o e l(ff nV,O(€)). Let 1be a simple closed curve, representing the core of
,4.; 7 separates Ä into annuli r{y adjoining U, a^nd.Ay adjoiningv.Let X be
a smooth function on B (an approximate characteristic firnction of V) such that
X is identically 1 on V - Au al;'d 0 on U - A.

Deflnition. A forrnal potential F for o is the O-cochain with values in t(()
given by

onu)
onv -8.

The Öech coboundary 6F (restricted to Ay) is given by the assignment
U n(V -E) r+ olty el(Ay,O(O) (the reader may check that the l-cocycles
U n (V --Au) r- ol.t, e l(Ay,O({)) a,nd U nV t+ o €.f (U n V,O(€)) represent

the same class in Et(A,O(O) ). Now for the Dolbeault coboundary of F: öF
is a smooth section of € O rc over U U V (the ambiguity ilr the definition of F
on Ay is holomorphic, thus annihilated bv å). Indeed 6f e f(A,e(EOn))
and its class ä!'1(n, t(€)) is the image by the Dolbeault isomorphism of the
original (o) e E|(R,O(€)). In brief: the image by the Dolbeault isomorphism

of (o) e Ht (R,O(€)) i. the class of. 6F in Ho5't (n, t(O) for tr' a formal potential
for o.

There is an obvious question: when does (o) e El(n,O(()) represent the
trivial class? By a direct approach this would be a tricky combinatorial matter:
does there exist a 0-cochain with coboundary o? A simpler approach is to consider
the linear functional given by (a), acting on the dual space Ho(R,O(n8 €-t)).

Aö" Lbr

02o - s,o (*)

F - {ä"
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Fbom the Dolbeault isomorphism and the specific form of Serre duality the pairing
of (o) and d e Eo(a,0@e€-t)) ir simply

(("), ö) öpö

where F is a formal potential for (o).
6P =:Q on R-A andthus

Recalling the definition of F we note

: l.

AFö -

the last equality follows since F - Xo vanishes on the outer boundary of .4u and
is 1 on the inner boundary 1. In brief: the pairing of (o) e itr (A,O(€)) and

$ e Eo(a,0@@€-t)) i' the period Iroö.
We wish to consider deformations of a compact surface R with a finite number

of distinguished points ptt ...t pn. The space of infinitesimal deformations is
Et (a,O((*Co,. . 

: (o,)-t)) and irs dual is Eo (n,0(*@,6,. . .(r")) . we review
the actual calculation of the l-cocycle representing a deformation. Suppose that
.81 is a family of surfaces given by a cut-and-paste construction with a parameter l.
It will be enough to consider a simple case, two Riemann surfaces glued by a single
map. Let U and V be Riemann surfaces *rd "f a biholomorphism of an open
set in [/ to an open set in V. Form the identification space of U and V by the
map .f, UUV/ -1, i.efor u € U, v €.V thenu ru; u provided u € Domain(/) and
f (") : u . The quotient space UUV f -1 is a Riemann surface. In fact if / depends
holomorphically on a parameter f then Rt: UUV/ -! gives a holomorphic
family. The family is constructed as follows: let D be the domain for f , define a^n

equivalence relation -t on (UUV) x D generated by (u,t) -t (urt'), provided
that u e Domain(/), f(u,t):, and I : t'; (U U l/) x D/ =t is fi.bered over
D with fibre .Bt. To compute the infinitesimal variation dRlf dt,let zs be a
generic coordinate on [/ and ,z1 a generic coordinate on V. Then / is given
ds 21 : f ("0,t). A geometric description is immediate: for ze fixed, as f varies
f ("0,t) traces out the points in the zr -region I/, that zs will be identified to. And
thus the f-derivative of / gives the infinitesimal variation of the identification.
SpecificalJy the L-cocycle

o(v,u) : 0fa on UnVCRt:UUVI =f0t 0zr

l. I^urö - luo,
Fö: I OÖ,

J 1=OU

with values in O(*-l) represents the infinitesimal deformation.
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2. The Schiffer variation

An excellent example of a family obtained by varying a cut-and-paste con-
struction is found in the work of Schifier. We paraphrase the description from
Section 7.8 of [ScS]. Let 7 be an analytic Jordan curve in a surface J?. Suppose
for simplicity that 7 lies in the domain of a local coordinate 21. Let r(21) be
a function which is analytic in a neighborhood of 7. For f sufficiently small the
function f (rt,t) : zr * tr(z) will trace a neighboring Jordan curve 'f1 , ?"s 21

traces 7. Let V with coordinate z1 be the region interior to 1 and U the re-
gion exterior to 7; the coordina,te z1 restricts to a neighborhood of the exterior
of 7; call the restriction zs. A deformed surface .Rr is defined by identifying the
boundary of U and the boundary of. V1z p e 1 : 0U is identified with the point
g € 7t: 0Il provided z1(q) : f ("g(p),t) and Rt : (J UV/ *.

As given the identification is by sewing two regions along their boundaries. We
woull rather have an identification by overlapping open sets. Consider the image
of 7 in Ät with coordinate zs tueat 7 and the image of 7 in Rr with coordinate
zLi zo has an analytic continuation to a neighborhoo_d "f f 

: 0U C R1 and z1

an analytic continuation to a neighborhood of 7t :0V C.Rr. Since z1: f (zs,t)
on 7 (a uniqueness set) it follows that the analytic continuations satisfy the same

equation on a neighborhood of. 1 . In brief: we would obtain the same surface .81

if U and V were enla,rged (same notation) by including neighborhoods of their
boundaries and the identification was by overlapping.

Now to give the l-cocycle for the infinitesimal deformation. The context is
just as in the previous sectionl the 1-cocycle for the Schiffer variation is

o(t): af 
?P't) ! : r(, ' o r(zi a

= T Ar, 
: r\zo )Tr : 

-a 

61^1 6^

on U t'''f 7 giving a class in llr (nr,O1n-t1). Can the deformation be trivial?
Recall that the pairing of (0) with / € iIo(n,0(*@'C0,.'.(n")) is simply the
integral

t 'Qo) a
Jlxau t + t''("o)t

(the integral is calculated in the variable z6 ). We point out a few of the interesting
cases. Let f : 0 and r be meromorphic in the interior of 7. The residue theorem
can be applied; the integral is given by the sum of the residues of r/ interior to 7.
We consider two specific cases. The rtrst is for r having a single simple pole, say
at q, interior to 1. By Riemann-Roch .B has a holomorphic quadratic differential
/s which is nonzero at g. The residue of r$s is nonzero and thus r gives a
nontrivial infinitesimal deformation. The second is for one of the distinguished
points of .R, say p1, lying interior to 7. By Riemann-Roch R has a meromorphic
quadratic differential with its only pole simple and at p1. Now if r is holomorphic
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^f and nonvanishing at pt then the infinitesimal deformation
course this last deformation is simply sliding a point over a
would like to emphasize a particular choice of r for the sliding

Let 6 zo(pt ) denote the infinitesimal Schiffer variation given by

3. Pinching a collar

Consider an annulus .A in a surface .R, situated such that a core curve 7 of
.r4. represents a nontrivial free homotopy class in .R. Let å be a biholomorphism
mapping.4 tothecirculara,nnulus .A: {, < lrol < t} inthe z6-plane. Werecall
how the twist-stretch deformation of ",4 deffnes a deformation of .E. To this end
consideruo: h(p) and z1 : L/h(p) as coordinates on 4. Choose U and V open
in .R, such that U U I/ is a neighborhood of .4 and U llV : A. Let {U,} be an
atlas for r? such that each Uo is either U , V ot disjoint from A. We can define
a deformation of .R by simply redefining the overlap from U to V. Specifically
given f near 1, the new identification of. U to V is given by defining for u e U ,
u € V, u -t u if. zs(u)2v(u) : t. Denote the deformed surface by 8r. Fbom
Sectirrn L the L-cocycle (the map is zr: f (zo,t):tlro) for the deformation is

,t 1A 21 A
" zg 021 t 7rt on the overlap of U and V .

And for a quadratic differential /, holomorphic in A, the pairing (@),ö) is the
period

The literature for the pinching deformation is extensive. We only cite a few
open questions. Evidently it is not known (without some hypothesis on å ) if
the infinitesimal deformation is in general nontrivial. One can also consider the
following: choose 39-3, g thegenusof E,disjointa^nnuli At,..., Ä3r-3 in.R
and charts hi: Ai + C such that each component of .B - Ui Ai is topologically
S'- {3 points}. Does the family E("r,...,sgc-s) : Rtr,.-..,t"r_" for ti : ssi
formed by pinching the collars, map injectively to the Teichmiiller space of. R?
And similarly given an infinitesimal deformation of .R and the free homotopy
class of a simple closed curye, does there exist an a,rrnulus /., representing the free
homotopy class, and chart å: A + C, such that the infinitesimal pinching is the
specified deformation? We expect the answer to be yes; in the next section we
shall examine the analogous question for opening a node.

i l,z,ö.
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4. Plumbing a node

The family for pinching a collar can be extended by allowing the parameter
to tend to zero. The result is a family of Riemann surfaces over the punctured
disc. We shall consider the effect of completing the family by including a special
fibre, a Riemann surface with nodes.

We start with an example. Consider the germ y : {zu : t I l"l,ltol, ltl < 1}
C C3 of a variety. The deffning function is zw-t with difierential z &p*w d,z- di;
as a consequence I/ is smooth with global coordinate (rr.). The projection
TI(z,u): zut: t maps I/ to the t unit-disc D : { lrl < 1}. The differential
d,lI : z dw*ut dz va.nishes only at the origin; II is almost a fibration. What are the
fibres? For t l0 the ffbre is the annul* {ltl < lrl < 7, u) : t/z} andthe 0-fibre
is the intersection of the unit ball in C2 with the union of the coordinate axes.
Removing the special point, the origin, (a node) the union becomes {0 < lzl < 1}
U{0 < l.l < 1} . In fact fI: V --+ D is the fundamental example of a family of
Riemann surfaces with nodes; note that V and D al.e smooth C-manifolds, If is
holomorphic, and a node is the germ of the coordinate axes in C2.

A, Riemann surface with nodes R is a connected complex space, such that
each point has a neighborhood isomorphic to either the unit disc in C or the germ
of the coordinate arces in C2. We will tacitly assume that .R is compact, and
that each component of .Ro - ft, - {nodes} has a negative Euler characteristic.
Such an .B is a stable curve in the sense of Mumford, [DMu, Mu]. A degenerating
family lI: M + B of compact Riemann surfaces is a proper holomorphic map II
of smooth complex manifolds with generic fibre a compact Riemann surface. A
special fibre may have a finite number of nodes, points where the local model for
the fi.bration is the above example. On removing a node n € R we obtain a pair
of punctures o and b of. R - {"}; we will refer to o and ö as being paired to
form n. A degenerating family .fl: M -+ B defines a holomorphic map of the base
B to Ms, the Deligne-Mumford compactification of the classical moduli space
Mo of. Riemann surfaces, [DMu, Mu]. We shall use the description of fi, given
in the work of Bers [Be], Earle-Marden [EMr], Fry [F], and Masur [Mr]. A further
exposition of their description is given in [W]. In all cases the local geometry of
fi, is analyzed by giving constructions of specific families.

The standard construction to include a noded surf,ace in a degenerating family
is plumbing. Suppose for simplicity that .B has a single node ra. Ro : R- {n} is
a smooth noncompact surface with punctures a and ö. Choose a coordinate u for
a neighborhood. (J of a with u(a):0 and a coordinate u for a neighborhood V
of_6 with r(å) :0. Given c ) 0 consider the open surfac€ .R1 : eo - {l"l < "}u{lrl < c}, the germ 7 : {zw:tllzl,lrl < ", ltl < ""} and the disc D:
{ltl . c2}. We define a map f (p,t) from (U U Iz) x D to V

(p,t) - ("(p),tlu(p),t) for p eU a R*,

(p,t) - (t/r(p),u(p),t) for p eV C R*.
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The map generates an equivalence relation =t on (R. x D) UV; the identification
space Pltrmb n(u,u): (å* x D) U V I =t is a degenerating family with projection
Lo D, and 0-fibre the original noded surface R. The datafor the family is the
tuple (R, U,u,V,u, c); in practise U , V are understood and c is fixed beforehand.
The reader can check that the farnily is independent of c for f small. As noted
above the family gives a holomorphic map of. D to fi: 0 maps to a point in the
compactification divisor of To and, t l0 maps to a point of. Mg.

We would like to find how the initial tangent of a plumbing depends on the
choice of the coordinates u and u. Can an arbitrary infinitesimal deformation
opening the node of a noded surface be realized by plumbing? Obviously such a
calculation will require a model for the tangent and cotangent spaces of 

-Mo 
at a,

noded surface. A description suited for our purposes is contained in the paper of
Masur, [Ms]. Specifically the cotangent bundle (a I-bundle over a V-manifold)
is described as a modification of the bundle of. regular quadratic difbreniials for
a degenerating farnily. Assume for simplicity that an initial family II: M + PD
is given as follows: PD is a polydisc in s-space, II-t(") : .R, is a smooth surface
with two punctures c" and ö" (equivalently .R" is smooth compact and c", å"

are disjoint sections). It will be simpler if we only consider the general case: if
.8" has genus g ) 0 assume PD has dimension 3S - 1 and the induced map of
PD (PD l{symmetries}) to Mg,z is injective. Let u, u give rise to holomorphic
charts about the punctures: (u,II): tr + C x PD, U a neighborhood in M of ar,
u(a"):0 and (u,II): V --+ Cx PD, V a neighborhood in M of ö", o(ö") - 0
(trivializations of neighborhoods of the sections). Now we describe how to plumb
each fibre of.II: M -+ PD (a" and ö" are first identified to form a noded family).
Arrange, restricting the s-domain if necessary, that the range of u and u each
contain the polydisc {le t < c} xPD, c > 0 . Start with the family of open surfaces
M* : M -{l"l < "} u {lrl < c,}, the germ V : {zu :tll"l,l.l < ",lfl < c2},
andthedisc D: {ltl <""}. Defineamap h(p,t) from (UUY)x D to PDxV

(p,r) - (U(p), u(p),tlu(p),t) for p eU q M*,

(p,t) - (n(p), t/r(p),r(p),t) for p eV C M*.

The map generates an equivalence relation -å on (M*x D)U(PD x V); the
identification space Plumbla(u, u) is a degenerating family with projection 116

to PD x D. By definition the V-coIIar will be the intersection of PD xV C
Plumbiy(u, u) and a fibre of IIo r. By our hypothesis on II: M -+ PD the induced
map of PD x D to M1, .y : g+1 provides a local coordinate chart (s1,...,s' t),
n:39 - 1. We require one last definition: QD the space of regular quadratic
differentiaJs (in the sense of Bers, equivalently the pushdown of the square of
the relative dualizing shea,f). tr'lor a smooth surface S the space QD(.9) is simply
Ho (5,0("@')) the ho}omorphic quadratic differentials on ^9. For a noded surface
.R then QD@) is the vector space of meromorphic quadratic diffentials / on
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Eo : I - {nodes} such that : each d h* poles only at the punctures of Rs,
the poles have order at most 2, and for paired punctures o and b, then Reso/ :
Res6/. By Riemann-Roå each fibre of QD has rank 3'y - 3. We are ready to
state Masurts result.

Theorem [Ms, expansion 5.3 and Proposition 7.1]. Let 7 be the genus of
the generic fibre of the fanily Plumby(u, u) , there exist functioa.s &1,. . . ,o,s",-s
such that:
i) aiQ,s,t) is holomorphic on {ltllc < lrl < c} x PD x D,
ii) aiQ,s,t)(dz/z)2 is the restriction to the V-collar in R",1: flol(s,l) of a

regular qua.dratic differential öi of R",t,
iii) {dj} form a basis for QD(R",I),
iv) for the local coordinate ("r,...,snrt) onM, d.s1 : örr...rdso : ön,

dt : tl2riör+r (h tåe sense of linear finctionals acting on the infinitesimaJ
deformations).

Statement iv) provides a local model for the cotangent bundle of. M,. As
a sample calculation, consider varying i for the V-collar {zw: t} in .8",1 . The
infinitesimal deformation is simply the period for pinching a collar, for S e QD

where o is a core curve for the collar. Evaluating for the basis {/;} we find the
constant terms for the Laurent expansion in z: an.rl has constant term L, ai,
j * " f 1, has constant term zero. This agrees with Masur's formulas (note that
we have suppressed a factor of i/2 from the pairing for Serre duality).

We would like to start our analysis by giving a construction to compare the
families Plumba(u,u) and Plumba(u,G(r)) , where R is a surface with a single
node n, n- {n} has punctu}es a and ö, and G is the germ at 0 € C ofa
biholomorphism with G(0) : 0. The essential matter is to relate the families
uu : t and uG(u) : r. As notation let 0/0t be the initial Plumb6(u, u) tangent,
0/0r the initial Plumbp(u, G(u)) tangent and 6u(o) the infinitesimal sliding of. a
in the u-coordinate on J? (see end of Section 2).

Lemma. Withthe above notation 0f 0r : (C'(O))-t (@/Ai++c"(0)du(o)) .

Proof. The first matter is to check the scaling of r. For ) : rlG'(0)
the families for uG(u) : , and u(G(u)/G'(0)) : ) coincide; thus 0f 0r :
(C'101)-r1a/äÅ) and for the remaining discussion we can assume G'(O; : 1.

As a technical matter we choose c such that the restriction of G to {lrl a 2c} is
a biholomorphism, sufficiently-close to the identity map. And for latter reference
we def.ne a nonlinear transform of G,

(*,'d) : I I,''
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(G) is a holomorphic germ at the origin with (G)(0) : -+G"(0).
Start by considering the coordinate z of V: for a.C-parameter 6, l"l < "',define a new coordinate z* by

z*G(e/z) : e

(i.e. for z in a, neighborhood of lzl : c define z* with domain /V a neigborhood of
lr*l: c). Now we construct a family Span which includes both Plumba(u, u) a.nd

Plumb6(u,G(r)) .Sta,rt with R*:Ro- {l"l <"}u{lrl ..}, o: {ltl 1"'},
V - {zw -r}, A: {lel <"'} and /V: (neighborhoodof lz*l :6). The
identification of .B* x D x A to JV x D x A is given by the map

(p,t,e) -+ (u(p),t,e) for p e Il q R*,

the identiffcation of N x D x A to ), x A is given by the map

(z*,t,e) - (, - e/G-t(e/z*), w:tc-l(€lz*)f e,t,e)

and the R* x D x A to V x A identification is unchanged

(p,t,e) + (tlv(p),v(p),t,e) for p eV C E*.

We have the following picture for t a^nd e fixed.

N fibre of uR* R*

Fbrm the identification space Span of R* x D x A, JV x D xA, and V x A;
Span is a family over D x A. The next item is to check for the subfamilies. For
e:0 then za:2 andtheidentificationof.U C R* toafibreof V issimplythat
of Plumba(u, u) . In brief, the restriction of Span to D x {e : 0} is Plumba(u, u)
Now consider the restriction of Span to the diagonal {(t,e: t)} C D x A. Let
us concentrate on the identification of a fibre of .lf x D x A to an open set in a
fibre of V x A. Fix t I 0, set e : f ; the identification is given by z* : t/G(t/z)
for lz*lxc. Thesequenceof identifications R*xD xA to NxD xA and
N xD xA to )rxA isnowequivalent toidentifying R*xD xA to VxA by
the map

(p, t, t) - (z : t / g-r (t / "(p)), 
w : G-7 (t 1 u1p1), t, t) .
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The identification w : G-t(t/"(p)) or, equivalently u(p) : t/G(w), provides
for the a^nalytic continuation fi of u to the entire V-fibre: {ltl/. < lrl < l"l,
z : t/c\. The identification of the V-fibre and V C fi* is given by w : v(p);
substituting we ffnd the equation il = tlGQ:) or ilG(u) : t. If we per-
form the analogous analytic continuation of u across the V-collar in the t-fibre
of Plumbp(u,G(u)) we find the same equationl the fa^rnilies Spanlai'goo"r and

Plumbp(u, G(u)) coincide.
Span is a family in e and t. The l-cocycle for the e-variation is (the map is

z* : e/G(e/z))

O(NxDxA,YxA)- G(tlr)-G'(ulz)elz A : (G) r44*,
G(e I z)2 0z*

and the 1-cocycle for the f -variation is an inffnitesimal pinching

e : i! on an overlap in V x A.töz
Thefamily Plumbp(u,G(u)) occursastherestrictionof Span to {(t,t)} c DxA
and thus the tangent field of Plumbs(u,G(u)) is the restrictionof. (010t+0/0e)
to {(t,t)}. Now the pairing of. (010t+ 0l0e) with / eQD is the period

and the value on the diagonal is given by setting €:t. As the ffnal step consider
that Span is embedded in a family as for Masur's result. We wish to find the limit
of the period as t + 0. By the theorem the elements of. QD converge uniformly
on lzf : c; the limit of the period 11,1="(Gl$/z)$ is simply -*c"(0)l',,="ö.
In summary: the initial tangent of Spanlal.go,,"l is (A/Aq + +C"(0)6u(o) for
0l0t the tangent relative to the coordinate ("t,... ,sn,t) on M1, and 6u(a) the
infinitesimal sliding. The proof is complete.

Let 0l0o now be the initial tangent of the family Plumb6(.F'(u),G(u)) for
.t" a germ at 0 € C of a biholomorphism.

Corollary. With the above notation

a
O" - (c,(o)r,(o)) -' + +G" (o)6u( a) +

Plumb n(u, G(r)) and Plumbn(r'( q,G(r))

1,,,:"(i+Gt (;)) ö

/0t-
\at *r"Q)dr(å))

(* + +r"'(o) 6G('xå))

Proof. Apply the lemma to
The conclusion is

a
0o

(F'(o)) -'
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By Section 2 the infiniiesimal sl,iding satisfies the transformation law 6G(u)(6) =
(C'10;)-1Or(ö). Apply the lemma a second time to gi.re 0/0r in terms of 0/0t
and 6u(o). The conclusion follows.

Rernarks. Our approach is based on a local construction for the plumbing
collars and the description of QD. The method could also be used to establish
the analogous result for the case of a surface with several nodes. The final result
shows that by varying.F'and G the initial tangent of Plumb6(p("),G(u)) in
T, vanes in the three dimensional subspane TP: span {@/Aq,6u(a),6u(6)}
(note: ?P has dimension : 1* dimspan{0u1a;,6u(a)} C infinitesimal defor-
mations of .R - {node}. In fact F and G can be chosen to realize an arbitrary
vector of. TP with nonzero 0/0t componentl ?P defines a rank three subbundle
(the span of all possible initial plumbing tangents) of the tangent bundle of.-Mr,
restricted to the locus of stable curves with a single node. We could also consider
the codimension three subbundle of cotangent vectors annihilated by TP . By Ma-
sur's theorem and the discussion of the tangent-cotangent pairing, the annihilated
subspace corresponds to the regular quadratic diferentials, holomorphic on the
compactification of .R - {node}. And finally we note that in order to obtain the
expansion of a quantity onM, at a noded curve, it is necessar5r to consider more
than the plumbing construction.
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