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CONVERGENCE PROPERTIES FOR THE
TIME-DEPENDENT SCHRODINGER EQUATION

Peter Sjogren and Per Sjolin

Abstract. Consider the solution to the generalized Schrodinger equation Pu = i0u/8t in
the halfspace {(z,t) € R™ x R;t > 0}, with initial values u(z,0) = f(z). Here P is an elliptic
operator in the z variables with constant coefficients. Assume that f belongs to the Sobolev
space H,. When P = A, it is known that s > 1/2 implies that u converges to f along almost
all vertical lines. We extend this result to an arbitrary P and sharpen it by replacing “almost all”
by “quasiall”. The values of u must then be made precise in a certain way. A related maximal
function estimate is proved.

By means of a counterexample, it is shown that the vertical lines cannot be widened into
convergence regions. However, for quasiall boundary points (z,0), we prove that u — f along
almost all lines through (z,0).

1. Introduction and results

For f belonging to the Schwartz space S(R™) set
(1.1) u(z,t) = (27)"" /m eir €’ fe)de, zeR™ teR,
where the Fourier transform f is defined by
fo= [ e i@

The function u is then a solution to the Schrédinger equation Au = i0u/0t. We
set

(1.2) u*(z) = sup |u(z,t)], r € R",
0<t<1

and also introduce Sobolev spaces H, = H,(R"™), s € R, by defining the norm

71, = ([ 0y IFoRa)
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14 Peter Sjogren and Per Sjélin

It is then known that the estimate

(13) (f lu*<x)|2)m <Cslfly,, fe€S.

holds for all balls B in R™ if s > n/4 and if s > 1/2 (see L. Carleson [1],
B.E.J. Dahlberg and C.E. Kenig [4], C.E. Kenig and A. Ruiz [5], P. Sjolin [6], and
L. Vega [7]). In particular it was proved in [6] that (1.3) holds for s > 1/2, and
this result was applied to study the existence almost everywhere of lim;_ u(z, 1)
for solutions u to the Schrédinger equation.

We shall here extend these results from [6] in several ways. First we replace A
by an elliptic operator P = —p(D), where D = (D;,...,D,) and Dy = —19/0zy.
The polynomial p is real and elliptic, i.e., its pricipal part does not vanish in
R"™\ {0}. Its degree m is at least 2. Then if f € S(R"), the function

(1.4) u(z,t) = (2r)"" / et O f(e)de, zeR", teR,

solves the Cauchy problem Pu =:0u/0t, u(-,0) = f. With this u, we use again
(1.2) to define u*. We then have the following extension of (1.3).

Theorem 1. If s > 1/2, then

[l 23y < CBIIflE,,  FES,

for any ball B in R™.

This inequality is related to the convergence properties of u at the boundary,
when f € H,. Improving the known almost everywhere convergence results, we
shall obtain convergence along quasievery vertical line. The capacities to be used
are those of Sobolev spaces. They are defined for s > 0 by

Cy(E) = inf {||g||§ 0< g€ L*R"), Gy+g>1on E} ,  ECR"

Here G, is the Bessel kernel, G,(¢) = (1 + I§|2)_8/2. By C,-q.e. we mean

everywhere except on a set of C,-capacity 0, and similarly for C,-q.a. When
s > n/2, only the empty set has C,-capacity 0.

A function f € H, can be written as f = G,*g with g € L%, and conversely.
At C,-q.a. points z, this convolution is well defined in the sense that G,*|g|(z) <
00. One can recover these well-defined values of f, knowing f almost everywhere.
Indeed, it is easily seen that the means of f in small balls centered at x converge
to Gy *xg(z) if G, *|g|(z) < co.

We now describe how to make the solution u precise by defining it at suffi-
ciently many points. Let f € H,. For every t, (1.4) defines u(-,t) as an L?(R™)
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function, because of Plancherel’s theorem. This gives a measurable, a.e. defined
function v in R™ x R. With a point (z,t) as center, we let B ;(6) be the ball
in R™*! of radius § > 0, and

2t(8) = {(a", t); ]2’ — 2| < 6}

the horizontal disc. Define the value u(z,t) as the limit as § — 0 of the mean
value of u in either B, (6) or By ,(§), at all points (z,t) where this limit exists.
We shall speak of the ball and the disc method. Notice in particular that the disc
method for t = 0 gives us back the C,-q.e. defined values of f.

Theorem 2. Let s > 1/2 and take f € H,. Define u by means of (1.4), and
make u precise by the ball or the disc method. If 0 < p <s—1 /2, the following
holds for C,-q.a. z: The function u is defined at every point of the vertical line
{z} x R, its restriction to the line is continuous, and its value at (z,0) is f(z).

We remark that instead of balls B, 4(8), it is possible to use half-balls B +(6)N
{(z',¢"); ¢' > t}. This is more natural at t = 0 if one is interested in u for t >0
only.

For solutions to initial-value problems in a halfspace R® xRy given by kernels
like the Poisson or heat kernel, one has convergence in an approach region at almost
all boundary points. This means that there exists a strictly increasing function
~: R4y — Ry such that the solution u(y,t) tends to the boundary value at (z,0)
as (y,t) = (z,0) and |y — z| < 4(t), for a.a. = € R™. For our problem, however,
there is no such convergence region, except trivially when f € H, and s > n/2.
(In that case, f is continuous and u is a continuous extension of f.) The following
counterexample is for the standard Schrodinger equation Au = i0u/0t.

Theorem 3. Assume that v: Ry — Ry is a strictly increasing function.
Let u and f be related by (1.1). Then there exists an f € Hy/3(R™) such that

u is continuous in {(z,t);t> 0} and

(1.5) limsup  |u(y,t)| = +oo
(y,t)—(z,0)
ly—z|<~(t),t>0
for all z € R™.

This means that near the vertical line through every boundary point (z,0)
there can be bad points accumulating at (z,0), at which u takes values far from
f(z). However, the bad points are sparse at most boundary points, in the sense
that most lines through (z,0) do not intersect them. This is the content of our
last result.

Theorem 4. For f € H,, s > 1/2, let u be given by (1.4) and made precise
as described above. Let 0 < p < s—1/2. Then for C,-q.a. = € R", therestriction
of u to the line t — (z + at,t) is continuous for a.a. o € R™.
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This of course implies convergence to f(z) along almost all lines through
(z,0), since we know from Theorem 2 that u(z,0) = f(z).

We prove Theorems 2 and 4 by first showing that u is locally in a mixed
Sobolev space. This can also be seen by the method of Constantin and Saut [2], [3].

2. Proofs for vertical approach

Proof of Theorem 1. We shall follow the idea in the proof of Theorem 1 in [6].
Choose real functions ¢ € C§°(R") and 3o € C§°(R). Instead of u we shall
consider

(2.1) Sf(z,t) = po(x)o(t)u(z,t).
We shall first prove that
(2.2) 1Sl z2mntry S Cllfllg_, » fes,

where s = (m — 1)/2. One finds that

| [issenPasd= [ [ om-ebem - pe)feFmdedn
R"” JR R” JR"
where ¢ = 2, b = 2. We set

K(&m) = (1+[€)" (1 + Inl) " @(n = )4 (p(n) — p(€)).

Arguing as in [6], we see that to prove (2.2) it suffices to prove that

(23) [ €nlmsc,  cern

The case || < 2 in (2.3) is easy since the ¢ factor makes K rapidly decreasing
in . Now assume that || > 2. It is clear that

(L+ 1D (A +nl)" < CleP + Cl — ¢,

and hence
Jixemlan < cier [
+C [[In= €160 - £ [9 (ot - p(©))] dn

&(n = ©)| [ (e(n) = p(©))] dn+
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The last integral is bounded because of the ¢ factor, and (2.3) follows if we can
prove that

(2.4 J1600= 0l 8o - ()| dn < Cle .

We need only deal with large |£|, and since ¢ € S it suffices to prove that

(25) [ 1etn =) [#(on) = p(6)| an < 0161~

where Bg = B(¢; colél) = {1 In — | < colé]} and g > 0.

To estimate p(n) — p(§) in Bg, we fix € and consider gradp. Let m be
the degree of p and p, its principal part. Since gradpm, is homogeneous of
degree m — 1, the ellipticity of p implies that gradpm # 0 in R™\ {0}. With
v o= |gradpm(§)‘_l grad p,,(€), one can therefore choose ¢y and ¢ > 0 so that
v - grad pp, > c|€|™! in Be. The constants ¢o and ¢ do not depend on £. Since
grad(p — pm) is of degree at most m — 2, it follows that

v-gradp > c|¢|™ ! in B
for large ¢, with a new c. We replace n by coordinates (s,n') defined by
n=~&E+sv+7, seR, n' Lo

With p = p(n) = p(s,n'), this gives |8p/8s| > c|¢|™ ! in Bg. For each 7', there
exists an so € R such that

p(n) = p(E)] 2 cls — soll¢|™ ™" in B,

so that
N

[ (p(m) = p())] < C(1+Is = slle™ ™)™

for any N. Also
).

¢(n—E|<C+n'|

Integrating in the new coordinates, we obtain (2.5) from these two estimates. Now
(2.3) and (2.2) follow.
Setting

1S9 eca = [ 1S5, oy o

we can write (2.2) as

||5f”L2(H0) <C ||f”H(1-m>/2 :
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An estimate for 9Sf/0t can be obtained in a similar way, cf. [6]. One finds that

151 z2arey < C Ml oo

Interpolation yields

||Sf”L2(H1/2+5) S C”f”H, b

where § = §(s) > 0 for s > 1/2. But the supremum norm in R is dominated
by the H;/;4s(R) norm when 6 > 0. Since ¢o and o are arbitrary, Theorem 1
follows.

To prepare for the next proof we introduce mixed Sobolev spaces H, , for

0,7 > 0. Define
Hor = Hor(R" X R) = (G, ® G,) + L*(R™),

where G, and G, are Bessel kernels in R™ and R, respectively. The norm in
H, , is the obvious one. Notice that Ho, = L*(H,). We start by establishing
some properties of H, ,, assuming r > 1/2.

Let *; and *; denote convolution in z and in ¢, respectively. If v € H, .,
we can write

(2.6) v=(G,®G,)*g=Gp*1 (Gr*29)
with g € L2(R™*!). For r > 1/2 one has G, € L%(R), so that for each ¢
|(Gr*2 9)(2,8)] S NGl 2wy 19(2s M 22wy -

The right-hand side here is in L?(R™) as a function of z. But then (2.6) says
that z — v(z,t) isin H,(R") for each t. This means that we have a continuous
restriction map Ry H,, — H,(R™) to each horisontal hyperplane R™ x {t}.

Interchanging the variables, we write v = G, *3 (G, *1 ¢). The function
t — v(z,t) will belong to H.(R) if and only if t — G, *; g(z,t) isin L*(R). By
Minkowski’s inequality,

(2.7) 1G o1 9(z, ) 2 my < (Go* 91l 2 (an) (2)-

lolzzqan (=) = (/|9($,t)|2dt>1/2

is a function in L?(R™). But then the right-hand side of (2.7) is in H,(R"),
hence finite for C,-q.a. . We conclude that ¢t — v(z,t) is in H,(R), and hence
continuous, for C,-q.a. z.

Here
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We shall say that the value v(z,t) is well defined if
(2.8) (G, ® Gr) *|g|(z,t) < oo.

What we have just seen implies that this happens for (z,t) € E x R, where the
complement of E C R" is of C,-capacity 0.
We claim that (2.8) implies

2.9 v(z,t) = lim ——— / v(z', ") dz' dt’
(2.9) (z,1) = _*0|th5)| Bu(6)( )

and similarly for the means in Bj ,(6). Indeed, set x5 = |B(6)|_1XB(5) with
B(6) = Boo(6). The mean in (2.9) is then x5 * (G, ® G,) * g(z,t). Clearly,
x5 * (G, ® G;) converges pointwise to (G, ® G;) as § — 0. Inscribing B(§) in a
product of an n-dimensional ball and an interval, we obtain a majorization

xs*(G,®G,) < CG,®G,.

Now (2.8) implies (2.9) via dominated convergence. For Bj ,(§) we need only use
the fact that z — v(z,t) is in H,(R™).

Proof of Theorem 2. Let f € H,. We write Sf for the function obtained
when we define u by means of (1.4) and then multiply by ¢o(z)10(t). Since ¢
and 1, are arbitrary, we can replace u by Sf in the whole proof.

With f € S, we first argue as in the preceding proof, using instead of Sf
its first-order derivatives with respect to z. This will produce either an extra ¢
factor or a differentiation of ¢¢(z) in the integral expression for Sf. For f € S
we get

lgrad, Sfll L2z, < Cliflaemye

and thus
||Sf”H1,o S C “f“H(a—m)/2 '

If we differentiate also with respect to ¢, the result will be
”Sf”Hl,l S C ”f“H(3+m)/2 *

This can be combined with our previous estimates in Ho o = L?(H) and Hy; =
L?(H,). Interpolating one index at a time, we conclude

ISk, < CUA Hy sy 2pomio— sy

for 0 < p, r £ 1 and f € §. By means of higher order derivatives, this can
actually be extended to arbitrary p,r > 0. Given s > 1/2 and 0 < p < s —1/2,
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we can choose r > 1/2 so that s = p+1/2 4+ m(r — 1/2). Extending S, we get a
continuous linear map S: Hy(R") — H, .(R" x R).

Let f € Hy. Then Sf is a convolution (G, ® G,)*g, g € L?. On C,-q.a.
vertical lines, this convolution is well defined, with a continuous restriction. It
remains to see that its values there coincide with those obtained when we make
Sf precise. For the ball method, it is enough to verify that Sf and Sf agree
a.e. in R™1 because of the properties of H,, discussed above. But Sf and
Sf define the same function in L?(R™*1), since we get two coinciding continuous
maps H, — L*(R™*!). To deal with the disc method, observe that (1.4) gives for
any fixed ¢ a continuous map H,(R") — H,(R"™). Multiplying by ¢o(z)vo(t),
we conclude that the restriction of Sf to R™ x {t} defines a continuous map
H, — H,. This last map agrees with R;0S: H, — H, on § and thus everywhere.
It follows that all the well-defined values of Sf are obtained when Sf is made
precise by means of discs.

It only remains to see that the values of f, or rather o(0)pof, are recovered
Cp-q.e. in the hyperplane ¢t = 0 when Sf is made precise. Both methods produce
the same well-defined values of Sf. But since 1o(0)pof is obviously recovered if
discs are used, the proof is complete.

3. Proof for wider approach

Proof of Theorem 3. We shall first define sequences (R;)f® and (R})§® such
that 2 = Ry < R} < Rz < Ry < R3 < R} < --- and points (z;,t;) € R® x Ry.
We set S; = {¢é € R"; R; < [¢] <R;~},

f(&) = 161 (log [€]) " temm temitilel e s,

and f({) = 0 otherwise. It is then clear that f € H,/;. Our idea is to make
|u| large at the points (z;,t;). Also set 8y = v(1/k)/\/n, k =1,2,3,... We let

T1, T2, ..., Tn, denote all points ¢ in B(0;1) = {z € R"; |z| < 1} such that
z/by € Z™, Tp, 41, ..., Ty, all points in in B(0;2) such that z/63 € Z™, and
generally T, 41, ..., Tn,,, all pointsin B(0;k+1) such that /6542 € Z™. Then
choose (t;){° such that 1 >t; >t; >t3 >+ > 0 and such that
1 : 1
F+1° 97 k2

for ng +1 <7 < ngg1, £ =0,1,2,... (no = 0). Note that the points (z;,1;)
accumulate at each boundary point (z,0), even if only (z;,t;) with |z;—z| < ¥(¢;)
are considered. To define (R;){® and (R})$° we first choose Ry =2 and R} = 3.
Given Ry, Ry, ..., Rj_1, R;_, we then choose R; > R’_, such that for k < j
one has

(3.1) R} > C2 /|ty —
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and
(3.2) lte — tj|R; > |ox — ] + 1.

Also set R} = Rf{ where K is large.
Now let

um(z,t) = (27) ™" f e'meettlel 7 de.

[€I<R,
Then un,(-,t) — u(-,t) in L?2(R") for each ¢, and

Um(z,t) = Z(Zﬂ)""/ ez =) £ i(t=t)IEP || =m (log |¢]) T/ dg = > 4j(z,1).

j=1 S; j=1

We first observe that

k—1
ZAj(x,t)} </ €17 (log €)™ de
j=1 z

<I¢ISR,
Ri—s
= C/ r~Y(logr)~**dr < C(log R}_,)/* < C(log Ri)*/*
2
for all (z,t). We also have

An(zity) = (27)" /S €™ (log ¢]) ™/ de
Rl

k
-C r'l(log 7,)-—3/4 dr = C((log R;c)l/4 — (log Rk)1/4>
Ry

> c(log RY)'4,  e>0.

For j > k > 2 one finds that

R;- .
A]'(.”L'k,tk) = (27-'(-)—11./ dS(EI)/ r—l(logr)~3/4ezF(r) dT,
Sn—l Rj
where
F(r) = (zx —z;) - £'r + (tp — tj)r’.

It follows that
F’(r) = (:Ek — .’tj) . 6' + 2(tk — tj)T‘

and

(33) F”(T) = Q(tk - t]‘).
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Using (3.2) we conclude that
(3.4) |F’(T)| > |tk —_ tj|r > Itk — thRj, Rj <r< R;-,

and an integration by parts gives

/R; ;em(r) dr = /R; 1 Z-Fl(r)eiF(r) dr
r; T(logr)3/* r; r(logr)3/4iF'(r)

)

=[ ! eiF(’)]Rg—/gi( L )eiF(r)drzA—-B
r(logr)3/4F'(r) r, Jr; dr \ir(log r)3/4F!(r) '

Invoking (3.4) and (3.1), one obtains

Al < —S <o
|tk —tlej

and according to (3.4) and (3.3) we also have

"
d( 1 )‘SCI L

dr \ir(logr)3/4F'(r) r2|F'] T r|F)?
= Cr3|tk1— o Cr3,rtkk__tgjl|2 ~ T —ltj|rs
and hence o '
|B| < m <27,
We conclude that for j > &
(3.5) |Aj(zk, te)| < C277.

It follows that

(3.6) |um(ack,tk)' > c(logR}c)l/4 —C(log Rk)1/4 -C Z2‘j > c(logR}c)l/‘*,
k+1

when m > k and K is sufficiently large.

To see that u is continuousin {t > 0}, take a compact set L C {(z,t); ¢t > 0}.
Since the sequence (R;) is very rapidly increasing, there exists a jo < oo such
that (3.1) and (3.2) hold for j > jo with (zk,tx) replaced by any (z,t) € L. But
then one can also take (z,t) € L instead of (zk,tx) in (3.5), j > jo. Hence, the
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U converge locally uniformly in {¢t > 0}. Since each up, is continuous, so is u
in {t > 0}. From (3.6) we conclude that

[ui, )] > eflog R)* — +oo

as k — +o0o. This implies (1.5), and Theorem 3 is proved.
Before the last proof, we must introduce more mixed Sobolev spaces. Fix a
large ball B C R™. Define a space

Hypro=Hyo(R" xR x B) = (G,®G;) *12 L*(R" x R x B),

with the obvious norm. By *;2 we mean convolution in R® x R. The variables
will be denoted z € R", t € R, a € B.

Let v=(G,®G,)*129 € Hyrp with r > 1/2. For C,-q.a. z, we claim
that for a.a. a € B the value v(z,t,a) is well defined for all ¢t € R and depends
continuously on t. As before, “well defined” means that the convolution integral
is absolutely convergent. We argue as when discussing H, , in Section 2. Write
v = G, *3 (Gy*1 g). We need only verify that for Cp-q.a. z the inner convolution
here is in L?(dt) for a.a. a € B. But

G *19(z,, ')||L2(R><B) S G ”g||L2(dt da) (z),

and this last quantity is finite for Cp-q.a. . The claim follows.
Proof of Theorem 4. For f € S we write

(3.7) S'f(z,t,a) = Sf(z + at,t)

with Sf as before. To deduce an a priori estimate for S’f, we consider one a at
a time and argue as in Section 2. The only difference is that p(£) will be replaced
by p(€) + a-£. The result is

15'flln,,, <Clfla,, Fes.

Here o and r are as before and C' = Cp. This gives a continuous extension
S':Hy— Hyro.

We now examine how equality (3.7) extends to S'f. Let f € Hy and take
fj € § with f; —» f in H,. Then S'f; — S'f in Hyro. The H, .o norm is
given by

2 2
ol ., = /B o, a) %, . dac.

Convergence v; — v in H,,o therefore implies that v;(-,-,a) — v(:,*,a) in
H,, for a.a. a, at least for a subsequence. Restricting to R" x {t}, we get that
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v;(+,t,a) = v(,t, @) in H, for all ¢, for a.a.a. On the other hand, Sf;(-+ta,t) —
Sf(-+ta,t) in H, because of (1.4). For a.a. a, we conclude that for all ¢

(3.8) S'f(z,t,a) = Sf(z + ta,t), a.a. .
When f € H,, we have
S'f=(G,®Gr) %129 € Hypro.

The property of H, o deduced before the proof implies that for most = and «,
the value S'f(z,t, «) is well defined for all ¢ and depends continuously on ¢. Here
“most” is taken in the sense of Theorem 4.

It remains to see that if

(39) (GQ ® Gr) *1,2 |g|(:v,t, a) < 00,

then the value (G, ® G,) *12 g(z,t,) is obtained when Sf is made precise at
the point (z +ta,t). Disregarding those a in a null set, we can assume that (3.8)
holds. Notice that o can be kept fixed, since only the restriction g(-,-, &) is used.
We know that (3.9) implies that the value of (G, ® G,) *x12 ¢ at (z,t,a) is the
limit as 6 — O of the mean of the same function in the disc Bj ;(§) x {a}. But
this mean equals the mean of Sf in B, ,(6), because of (3.8). This settles the
case of the disc method.

For the ball method, we see from (3.8) that the mean of Sf in B,ysq.+(6)
equals the mean of §'f in a set EZ,(8) x {a}. Here EZ (8) is defined by

(@) e EZ(8) & (@' +t'at') € Boyau(d).

But (3.9) implies that the means of (G, ® G,) *129 in EZ,(8) x {a} tend to the
value of the same function at (z,t,«). This is because EZ,(8) is contained in the
ball B,, (V2(1+ |a|)§), and its volume is comparable to that of this ball. The

dominated convergence argument used for H, , now carries over. This takes care
of the ball method and ends the proof of Theorem 4.
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