Annales Academiz Scientiarum Fennicae
Series A. I. Mathematica
Volumen 14, 1989, 47-55

SETS OF ZERO ELLIPTIC HARMONIC MEASURES

O. Martio

1. Introduction

An elliptic partial differential equation V- A(z,Vu(z)) =0 in a domain G
with |A(z, k)| & |h|P~? produces a solution w called an A-harmonic measure. For
p # 2, w is non-additive and hence does not define a measure in the Borel sets of
OG as the classical harmonic measure induced by the Laplace operator A(z,h) = h
does. The most interesting problem associated with w is to determine the class of
subsets E of 0G such that w(E) = 0. This class depends on A. For example, in
the plane unit disk B there is a linear elliptic operator A(z,h) ~ h which induces
w such that w(E) > 0 for some compact set E C 0B whose linear measure is
zero. Such an operator A can be constructed using quasiconformal mappings, see
[GLM 2] and [CFK]. Hence w essentially differs from the ordinary plane harmonic
measure induced by the Laplace operator. Contrary to this example we show in
this paper that there exists a reasonable class of subsets E of G such that w(E) =
0 for all operators A. Clearly G must be sufficiently thick for this purpose. For
compact subsets E of G our main result, Theorem 3.1, is formulated in terms
of certain metric conditions of E with respect to 0G. Here the quasihyperbolic
distance [GP] is useful. Surprisingly, for G = B, the unit ball of R™, Theorem 3.1
shows that there are compact sets E C 0B whose Hausdorff dimension is arbitrary
near n — 1 and w(E) = 0 for all A. By the above example this condition cannot
be replaced by the condition that the (n — 1)-dimensional Hausdorff measure of
Eis =0.

For p = n these problems were first studied in [GLM 2] and [HM]. Conditions
for w(E) > 0 were given in [GLM 2, 4.10] and [M]. If G is “thick”, then these
results can be used to prove the counterpart of B. @Oksendal’s theorem for the
A-harmonic measures w, see [HM, Theorem 4.1] and [H, Theorem A]. Our main
theorem, Theorem 3.1, can also be used to study sets E in G which cannot
be seen easily from G. We say that such sets E are buried in G and prove
that w(E) = 0 for all A; this result slightly generalizes [H, Theorem A)]. Using
stochastic methods @Qksendal [@] has also studied the corresponding problems for
p = 2 and for linear operators A.

Suppose that G is a bounded domain in R™ and that 1 < p < n. We shall
study partial differential operators A: G x R™ — R™ which satisfy the following
assumptions:
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a) For each € > 0 there exists a compact subset F' of G such that A|F x R" is
continuous and m(G \ F) < ¢.

b) There exist positive constants v; and -, such that for a.e. € G

(1.1) |'A(:c,h)| < m AP,

(1.2) Az, h) - b 2 72lh|?

forall h e R™.
c) Forae z€G

(A((L’,hl) — A(.’I,‘,hz)) . (hl — hz) > 0, hy ?,é hs.

d) For a.e. z€G
A(z,AR) = |A[P72XA(z, k)
for A € R\ {0} and h € R".

A continuous function u: G — R is a solution of the equation
(1.3) V- A(z,Vu(z)) =0
if u belongs to the Sobolev space loc W}}(G), i.e., u is ACL?, and if

(1.4) /G A(z, Vu(z)) - Vé(z)dm(z) =0

for all ¢ € C§°(G). We call solutions of (1.3) A-harmonic. A lower semicontinuous
function u: G — R U {oo} is A-superharmonic if it satisfies the A-comparison
principle, i.e., if for every domain D CC G and every A-harmonic function h €
C(D)in D, h < u in 8D implies A < u in D. These functions form a similar, but
in general non-linear, potential theory as ordinary harmonic and superharmonic
functions do, see [GLM 1] and [HK].

Finally, let E be a subset of G. The upper class U consists of all A-
superharmonic functions u: G — RU {oo} such that

liminf u(z) > x£e(y)
T—y

for each y € OG. Here xg is the characteristic function of E. It can be shown
that
w(E,G; A)(z) = inf u(z), r€G,
u€U

defines an A-harmonic function w = w(E, G; A), called the A-harmonic measure
of E with respect to G. For this construction see [HK] and [GLM 2]. The set
E has zero A-harmonic measure, if w(z) = 0 for some z € G, or equivalently
w(z) = 0 for all z € G. The last assertation follows from Harnack’s inequality,
see Lemma 3.3 below. In this case we simply write w = 0.
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2. Sets of A-harmonic measure zero

Let G be a bounded domain in R". We assume that G is A-Dirichlet regular,
i.e., for each ¥ € C(8G) there is a (unique) function u € C(G) such that u is
A-harmonic in G and that u|0G = . The function u is called the A-harmonic
function with boundary values 1. The following lemma is a generalization of

[GLM 2, 4.9].

2.1. Lemma. Suppose that E is a compact subset of 0G. Let w =
w(E,G;A). Then w = 0 if and only if there is ¢ € [0,1) and a sequence of
neighborhoods U;, t = 1,2,..., of E such that

(a) uinG=10
and
(b) w(z)<c foreachx e GNAU;, i=1,2,....

Proof. For the only if part choose ¢ =0 and U; = E + B(1/:), 1 = 1,2,....
Here B(r) denotes the open ball of radius r > 0 centered at 0.

For the converse part we first show that
(2.2) u(z) <c
for each ¢ € G. Fix ¢ € G. By (a) there is U; such that = ¢ U;. If = € IU;,
then (2.2) follows from (b). Assume that z € G\U;. Let V be the z-component
of G\U;. Let y € V. If y € G, then y € 0U; and hence w(y) < ¢ by (b). If
y & G, then let ¢ € C(9G) be such that (y) =0, »|E=1and 0 <3 <1. Let
u be the A-harmonic function with boundary values ¢. Then u(y) = 0 and since
u belongs to the upper class U, w < u in G. Hence we obtain
(2.3) ll_rgw(z) = 0.
Thus in both cases

limsupw(z) < ¢
=y

and this holds for every y € 8V . Now constants are A-harmonic functions, hence
the A-comparison principle yields w < ¢ in V and we have shown w(z) < ¢ as
required.

Next we complete the proof for the converse part. If ¢ = 0, then w =0 as
required. If ¢ > 0 and w # 0, then w > 0 and hence

(2.4) w<w/c inG.

On the other hand, w/c <1 in G by (2.2) and if u belongs to the upper class U
for w, then

(2.5) wle<u

by the A-comparison principle. Note that lim,_.,w(z) = 0 for every y € 0G \ E;
this can be proved as (2.3). By (2.5), w/c < w and hence we obtain a contradiction
from (2.4). This completes the proof.
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3. Quasihyperbolic distance and A-harmonic measure

Let E be a closed set in R® and D = R*\ E. If z;, x5 € D, then the
quasihyperbolic distance kp(z1,z2) of 1 and z, is

k‘D(xl,xg):inf/d(x,E)’lds
Ty

where the infimum is taken over all rectifiable curves v joining z; and z5 in D.
Here d(z, E) denotes the distance from z to E. If no such curves exist, i.e., if z;
and z belong to different components of D, then we set kp(z1,z2) = co.

Let G be a domain in R™. We say that G satisfies a p-capacity density
condition if for some ¢y > 0 and 7o > 0

cap, (B(z,r)NCG, B(z,2r)) > cor™?

for all z € 0G and 0 < r < ry. Here cap, refers to the variational p-capacity of
the condenser E = (B(z,r)NCG,B(z,2r)), i.e.,

cap, E = inf |VulPdm
B(z,2r)

where the infimum is taken over all functions u € C§°(B(z,2r)) such that u > 1
in B(z,r)NCG.

3.1. Theorem. Let G be a bounded domain satisfying a p-capacity density
condition. Suppose that E is a compact subset of OG such that there exist a
sequence of neighborhoods U;, t =1,2,..., of E and M < co with
(a) NU;iNG =0 and
(b) for each i = 1,2,... and = € OU; NG there is y € OG with kp(z,y) < M,

D=R"\E.

Then w(E,G;A) =0.

The proof is based on two lemmas. The first is essentially due to V.G. Maz’ya
[Maz]. We shall employ the short argument due to Heinonen [H, Lemma 5.2].

3.2. Lemma. Let F' be a closed set in a ball B(xq,2r). If u is a continuous
function in B(zg,2r) such that u|F =1, 0 <u <1 and u is a solution of (1.3)
in B(zg,2r)\ F, then

u(z) > cyr®—m/(p=1) capp(F N B(zq,r), B(zg, 2r))1/(p_1)

for each x € B(zg,r). Here the constant ¢; depends only on 71, 2, p and n.
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Proof. Let w = W(FHB(%,T),B(IEO,?T)\(FF‘}B"(%,T));A)_ By [H, Lemma
5.2]
w(z) > cyr®—m/(=1) capp(F N B™(zo,r), B(zo, 2r))1/(p_1)

for each = € B(zo,7) \ F and ¢; > 0 depends only on 71, 72, p and n. Next
fix = € B(zo,r) \ F and let V be the z-component of B(zo,2r)\ F. Now
liminfu(z) > limsupw(z) as z approaches y € dV in V; note that 0 < w <1
and that lim, ,yw(z) = 0 for all y € 0B(x¢,2r) because balls are always A-
Dirichlet regular. Hence by the A-comparison principle 4 > w in V' and thus the
required inequality follows from the corresponding inequality for w.

The next lemma is the well known Harnack inequality, see e.g. [S, pp. 264—
269].

3.3. Lemma. Let u be a non-negative solution of (1.3) in B(zo,2r). Then

su u(z) <cp inf u(zx
s€B(anrr) (=) 2€B(z0,r) (2)

where the constant co; depends only on v1, ¥2, p and n.

Proof for Theorem 3.1. Since G is bounded, we may assume that the in-
equality in the p-capacity density condition holds for all r € (0,diam G). Write
w=w(E,G;A). We shall show that there is ¢ € [0,1) such that

w(z) <c

forall z € OU; NG, 1 =1,2,.... Lemma 2.1 then completes the proof. Observe
that since G satisfies a p-capacity density condition, G is A-Dirichlet regular,
see [Maz]. This implies that lim,_.yw(z) =0 for all y € G\ E.

Fix ¢ = 1,2,... and let ¢ € 0U; N G. Choose y € 0G with kp(z,y) < M.
Let v be a rectifiable curve in D joining = to y with

(3.4) /d(z,E)—‘ds <M +1.

¥
Next choose points z1,...,z; and radii ry,...,r; inductively as follows. Set z; = =
and r; = d(z1,E)/4. Assume that zi,...,2; have been chosen and let +; denote

the part of 4 from z; to y. If G N B(2;,2r;) # @, then we set j = 7 and end
the process. If G N B(z;,2r;) = 0, then choose z;4; to be the last point where
v; meets 0B(z;,r;) and put r;y1 = d(zi+1,E)/4. Since y € 0G \ E, this process
ends after a finite number of steps.

Next we obtain an upper bound for j in terms of M. Fix 1 =1,...,7 —1
and let v; be the part of v from z; to z;41. Pick 2’ € E such that

4r; = d(z;, E) = |z; — 2'|.
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Then for z € v; N B(z;,7;),
d(z,E) < |z —2'| < |z — zi| + |2 — 2| < ri + 4r; = 5r;

and thus
/ d(z,E)"'ds > / d(z,E)"'ds > r;/5r; = 1/5.
¥ ¥NB(zi,ri)

Hence
j—1

/d(z,E)_lds > ]i/ d(z,E)"'ds > (j —1)/5

=1 '

-

and we obtain from (3.4)
(3.5) j < 5M+6.

By the above construction G N B(z;,2r;) # 0, hence there is zo € G N
B"(zj,2r;). Set u=1—w. Then u is a solution of (1.3) in G, 0 < u <1 and
if we set u(z) = 1 for € CG N B(zj,4r;), then u is continuous in B(z;,4r;).
Consequently, u is a continuous function in B(zo,2r;) and a solution of (1.3) in
B(z0,2r;) \CG. Let F = CG N B(zo,r;). Thus Lemma 3.2 and the p-capacity
density condition yield for z € B(xg,7;)

u(z) > clrg-p_")/(p_l) capp(F,B(zo,er))l/(p—l)

> clrgp—n)/(p—I)COTEn—P)/(p—l) = ¢1¢0 > 0.

Hence for z € B(zj,r;) we have
(3.6) u(z) > cico.

Set B; = B(z;,ri),t=1,...,7,and u =1 —w. Then (3.6) and Lemma 3.3
yield '
cico <infu < supu < ¢y inf u <+ < ) Vinfu.
B; Bj 1 -1 B

Hence we obtain
wz)=1-u(z) <1~ ig.fu <1- clcocé_j
1
and (3.5) implies w(z) < ¢ < 1 where
SM-5

c=1-=cicocy

This shows that w(z) < ¢ and the proof is complete.



Sets of zero elliptic harmonic measures 53

3.7. Remark. In the case p = n it was shown in [GLM 2, 4.18 and 4.19] that
if E is a compcat set in the boundary of the unit ball B and if the domain R"\ E
is a uniform domain in the sense of [MS], then w = w(E,B;A) = 0. Note that B
satisfies a p-capacity density condition for all p, 1 < p < n. Now Theorem 3.1
implies this result for all A. Hence it is easy to construct compact sets E C 0B
whose Hausdorff-dimension is arbitrary close to n —1 and yet w(E, B; A) =0 for
all A.

On the other hand, since the neighborhoods U; of Theorem 3.1 are at our
disposal, it is easy to construct a compact set E in 0B which satisfies (a) and (b)
of 3.1 and yet R"\ E is not a uniform domain.

4. Buried sets
Let G be a bounded domain in R™. Write C = 8G. For r > 0 set

Cg(r)=(C+B(r))nG
and for ¢ > 0 put
Ce(r)y={z€C :d(z,0Cc(r)NG) > (1+c)r}.

Then C.(r) is a compact subset of 9G.
A subset E of 0G is said to be buried in 0G if there is a number ¢ > 0 and
a sequence of positive numbers r; — 0 such that

(4.1) E CniC¢(ry).

It is easy to see that if G is a C!-manifold, then no subset E of G is buried
in 0G. Roughly speaking, a set E is buried in 0G if there are numbers r; \, 0
with the following property: If one stands at the distance r; from OG in G, then
the set E is slightly further away than 0G.

The following theorem generalizes [H, Theorem A].

4.2. Theorem. Suppose that G is a bounded domain which satisfies a
p-capacity density condition. If a set E is buried in 0G, then w(E,G;A) = 0.

Proof. We may assume that E is compact. Let ¢ > 0 and (r;) be such
that (4.1) holds. For each 7 = 1,2,... write &; = 0G + B(r;). Then U; is a
neighborhood of 0G and hence of E. Moreover, (\U; NG = (. It remains to show
that the condition (b) of Theorem 3.1 is satisfied.

To this end let = € 0U; N G. Then there exists y € G such that

|z —y| =d(z,0G) = r;.
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Now
(4.3) d(z,E) > (1 +c)r;
because in the opposite case
(1+¢)r; >d(z,E) > d(w,Cc(ri)) > (14 o)y,
a contradiction. Let v(t) = (ty+(ri—t)z), t € [0,7;], be the straight line segment
from z to y. If welet D = R"\ E, then
kp(z,y) < /d(z,E)_lds < /0’-‘ [(1+c)r; —t] ~at
24

1+c¢
c

= log =M<

because by (4.3) for each t € [0, 7]
d(7(t), E) 2 (1 + c)ri —t.

Hence the condition (b) of Theorem 3.1 is satisfied and w(E,G;A) = 0 follows
from Theorem 3.1.

4.4. Remark. Simple examples show that there are bounded domains G and
sets E buried in 0G such that OG \ E is countable. Hence the p-capacity density
condition in Theorem 4.2 cannot be completely removed. Slight modifications of
the above example show that this condition cannot by replaced by the condition
that G is A-Dirichlet regular.
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