Annales Academiæ Scientiarum Fennicæ Series A. I. Mathematica Volumen 14, 1989, 63–73

ON THE PRESERVATION OF DIRECTION-CONVEXITY AND THE GOODMAN-SAFF CONJECTURE

Stephan Ruscheweyh and Luis C. Salinas

Abstract. Let $K(\varphi)$ be the set of univalent functions in the unit disk **D** which are convex in the direction $e^{i\varphi}$. We determine the set of analytic functions g in **D** which preserve $K(\varphi)$ under the Hadamard product, i.e., $g * f \in K(\varphi)$ whenever $f \in K(\varphi)$. This result contains as a special case the proof of a conjecture of Goodman and Saff about $K(\varphi)$ and solves partially a multiplier problem concerning convex univalent harmonic functions in **D**, posed by Clunie and Sheil-Small.

1. Introduction

A domain $M \subset \mathbf{C}$ is said to be convex in the direction $e^{i\varphi}$ if for every $a \in \mathbf{C}$ the set

$$M \cap \{a + te^{i\varphi} : t \in \mathbf{R}\}$$

is either connected or empty. Let $K(\varphi)$ be the family of univalent analytic functions f in the unit disk **D** with $f(\mathbf{D})$ convex in the direction $e^{i\varphi}$ and, similarly, $K_H(\varphi)$ with 'univalent analytic' replaced by 'univalent harmonic'. It is well-known (see W. Hengartner and G. Schober [5], A.W. Goodman and E.B. Saff [4]) that for $r_0 := \sqrt{2} - 1 < r < 1$ generally $f \in K(\varphi)$ does not imply $f(rz) \in K(\varphi)$, but Goodman and Saff conjectured that such an implication may hold for $0 < r \le r_0$. Recently J. Brown [1] proved that

$$f \in K(\varphi) \Rightarrow f(r \circ z) \in K(\psi), \qquad \psi \in I(f),$$

where $I(f) \subset [0, 2\pi)$ is a set of positive measure. It was not shown, however, that $\varphi \in I(f)$ and thus the conjecture remained open. We shall prove the following stronger result:

Theorem 1. Let
$$f \in K_H(\varphi)$$
, $0 < r \le r_0$. Then $f(rz) \in K_H(\varphi)$.

Research supported by the Fondo Nacional de Desarollo Científico y Tecnológico (FONDE-CYT, Grant 249/87), by the Universidad Técnica Federico Santa María (Grant 87.12.06), and by the German Academic Exchange Service (DAAD).

¹⁹⁸⁰ Mathematics subject classification (1985 revision). Primary 30C45.

This settles the Goodman-Saff conjecture even for univalent harmonic functions. In the analytic case, however, Theorem 1 is a very simple special case of the solution of the following multiplier problem (* denotes the Hadamard product):

Determine the set DCP of all analytic functions g in **D** such that $g * f \in K(\varphi)$ for every $\varphi \in \mathbf{R}$ and every $f \in K(\varphi)$.

Theorem 2. Let g be analytic in **D**. Then $g \in DCP$ if and only if

(1) for each
$$\gamma \in \mathbf{R} : g + i\gamma z g' \in K\left(\frac{\pi}{2}\right)$$
.

Theorem 1, for f analytic, follows from Theorem 2 by choosing $g_r(z) := 1/(1-rz)$ and showing that $g_r \in \text{DCP}$ for $0 < r \le r_0$. If f is harmonic in **D**, $f = \overline{f_1} + f_2$ with f_1 , f_2 analytic in **D** and $f_1(0) = 0$, we may define for an analytic g

$$f\tilde{*}g := \overline{(f_1 * g)} + (f_2 * g).$$

It is not true that all functions g satisfying (1) preserve $K_H(\varphi)$ under the operation $\tilde{*}$ (Theorem 1, however, says that this is the case for g_r). For an example see Clunie and Sheil-Small [3, (5.21.1)] where the multiplier happens to satisfy (1). But out result does extend to the class K_H of convex harmonic univalent functions f (where 'convex' indicates that $f(\mathbf{D})$ is convex).

Theorem 3. Let g be analytic in **D**. Then $f \cdot g \in K_H$ for all $f \in K_H$ if and only if g satisfies (1), i.e., $g \in DCP$.

This theorem solves partially a problem of Clunie and Sheil-Small [3,(7.7)].

The members of $K(\varphi)$ are usually described analytically through a condition due to M.S. Robertson [7] (see also W.C. Royster and M. Ziegler [8]). Unfortunately, this condition is very difficult to deal with when it comes to convolutions (Hadamards products). In the proof of the basic Theorem 2 we shall use a completely different way, namely the concept of periodically monotone functions, introduced by I.J. Schoenberg [11].

Definition. Let u be a real, continuous, 2π -periodic function. It is said to be periodically monotone $(u \in PM)$ if there exist numbers $\theta_1 < \theta_2 < \theta_1 + 2\pi$ such that u increases on (θ_1, θ_2) and decreases on $(\theta_2, \theta_1 + 2\pi)$.

We shall reduce the discussion of functions in DCP to the characterisation of certain integral kernels which preserve periodic monotonicity. And, as a result of this connection, we also obtain the following very handy criterion for g to be in DCP.

Theorem 4. Let g be non-constant and analytic in **D**, continuous in $\overline{\mathbf{D}}$ with $u(\theta) = \operatorname{Re} g(e^{i\theta})$ three times continuously differentiable. Then $g \in \operatorname{DCP}$ if and only if $u \in \operatorname{PM}$ with

(2)
$$u'(\theta)u'''(\theta) \le (u''(\theta))^2, \quad \theta \in \mathbf{R}.$$

2. Proofs

Let $C_{2\pi}^k$ denote the set of real 2π -periodic functions which are k times continuously differentiable. For $u, v \in C_{2\pi}^0$ we define

$$(u*v) := \frac{1}{2\pi} \int_0^{2\pi} u(\psi) v(\theta - \psi) \, d\psi.$$

There will be no confusion in using the same symbol * for different convolutions since from the context it will be always clear which one is meant. In fact, there is a close connection between the two definitions: let g, h be analytic in \mathbf{D} , continuous in $\overline{\mathbf{D}}$, g(0) = 0, and set

$$u(\theta) := \operatorname{Re} g(e^{i\theta}), \quad v(\theta) := \operatorname{Re} h(e^{i\theta}), \qquad \theta \in \mathbf{R}.$$

Then we have the important relation

(3)
$$(u * v)(\theta) = \frac{1}{2} \operatorname{Re}(g * h)(e^{i\theta}), \quad \theta \in \mathbf{R}.$$

(3) is readily verified by writing down the corresponding Fourier expansions. A function $u \in C_{2\pi}^1$ is said to preserve periodic monotonicity ($u \in PMP$) if

$$u * v \in PM$$
 for every $v \in PM$.

Let V_n be the de la Vallée-Poussin kernels:

(4)
$$V_n(\theta) := {\binom{2n}{n}}^{-1} (1 + \cos \theta)^n, \qquad \theta \in \mathbf{R}, n \in \mathbf{N}.$$

It is known (de la Vallée-Poussin [13]) that for $u \in C_{2\pi}^0$ we have

$$\lim_{n \to \infty} (V_n * u)(\theta) = u(\theta), \qquad \theta \in \mathbf{R}.$$

Furthermore, as has been shown by Pólya and Schoenberg [6], the V_n are variation diminishing. These two properties imply:

Lemma 1. Let $u \in C_{2\pi}^0$. Then $u \in PM$ if and only if $V_n * u \in PM$ for all $n \in \mathbb{N}$.

Similarly we obtain

Lemma 2. Let $u \in C_{2\pi}^1$. Then $u \in PMP$ if and only if $V_n * u \in PMP$ for all $n \in \mathbb{N}$.

Indeed, if $u \in \text{PMP}$, $v \in \text{PM}$ then, by Lemma 1, $V_n * u \in \text{PM}$ and hence $(V_n * v) * u = v * (V_n * u) \in \text{PM}$, which implies $V_n * u \in \text{PMP}$. In the other direction, if $v * (V_n * u) \in \text{PM}$ for all $v \in \text{PM}$ then, using dominated convergence,

$$v * u = \lim_{n \to \infty} (V_n * v) * u \in PM$$

and hence $u \in PMP$. The crucial part in the proof of Theorem 2 is contained in the following result.

Theorem 5. Let $u \in C^1_{2\pi}$ be such that

(5)
$$\tilde{u}(\theta) := u(\theta) - iu'(\theta), \qquad 0 \le \theta \le 2\pi,$$

is a (complex) Jordan curve with a convex interior domain. Then $u \in PMP$.

We remark that a more general definition of the classes PM and PMP has been studied by Schoenberg [11], who also quotes a result of C. Loewner which says that (5) is essentially also a necessary condition for $u \in PMP$. In another paper [10] we give the complete characterisation of the wider Schoenberg class. For our present purpose, however, this is of no relevance.

We shall reduce the proof of Theorem 5 to the following lemma which is of independent interest.

Lemma 3. Let u be a trigonometric polynomial satisfying the assumptions of Theorem 5. Let $h \not\equiv \text{const.}$ be a function in $C_{2\pi}^0$ such that h has at most two sign changes in any interval of length 2π and satisfies

(6)
$$\frac{1}{2\pi} \int_0^{2\pi} h(\psi) \, d\psi = 0.$$

Then u * h has exactly two zeros (which are simple) in $[0, 2\pi)$.

Proof. We first note that \tilde{u} is strongly convex, i.e., there are no three numbers $\theta_1 < \theta_2 \theta_3 < \theta_1 + 2\pi$ such that the points $\tilde{u}(\theta_j)$, j = 1, 2, 3, lie on a straight line. In fact, if they were, then by the convexity we conclude that $\tilde{u}(\theta)$ lies on that straight line, $\theta_1 \leq \theta \leq \theta_3$. This gives a relation

(7)
$$au(\theta) + bu'(\theta) + c = 0$$

on that interval, and since u is a trigonometric polynomial, for all θ . But then \tilde{u} lies completely in that straight line, a contradiction to the assumption. We shall use this information in the following form: let $\psi_1 < \psi_2 < \psi_1 + 2\pi$ and denote by $\mathring{co}(A)$ the interior of the convex hull of a set $A \subset \mathbb{C}$. Then

(8)
$$\operatorname{co}\{\tilde{u}(\psi):\psi_1 \leq \psi \leq \psi_2\} \cap \operatorname{co}\{\tilde{u}(\psi):\psi_2 \leq \psi \leq \psi_1 + 2\pi\} = \emptyset.$$

Now let $\theta_1 < \theta_2 < \theta_1 + 2\pi$ be such that

$$h(\theta) \begin{cases} \geq 0, & \text{if } \theta_1 \leq \theta \leq \theta_2, \\ \leq 0, & \text{if } \theta_2 \leq \theta \leq \theta_1 + 2\pi. \end{cases}$$

Note that by (6) we can be sure that h has at least two zeros in a period. We define the set $M = M(\theta_1, \theta_2)$ as the set of real 2π -periodic functions g, continuous in $I_1 := (\theta_1, \theta_2)$ and in $I_2 = (\theta_2, \theta_1 + 2\pi)$, such that

(9)
$$g(\theta) \begin{cases} \ge 0, & \text{if } \theta \in I_1, \\ \le 0, & \text{if } \theta \in I_2, \end{cases}$$

and

(10)
$$1 = \frac{1}{2\pi} \int_{I_1} g(\psi) \, d\psi = -\frac{1}{2\pi} \int_{I_2} g(\psi) \, d\psi.$$

Clearly $\rho h \in M$ for some suitable $\rho > 0$. For $g \in M$ the function $v_g := g * u$ is a trigonometric polynomial and we wish to show that this polynomial cannot have any multiple zero. In fact, for $\rho \in \mathbf{R}$ we have

$$v_g(\varphi) - iv'_g(\varphi) = \frac{1}{2\pi} \int_{I_1} g(\theta) \tilde{u}(\varphi - \theta) \, d\theta - \frac{1}{2\pi} \int_{I_2} \left(-g(\theta) \right) \tilde{u}(\varphi - \theta) \, d\theta,$$

and from (9), (10) we conclude that

$$\frac{1}{2\pi} \int_{I_1} g(\theta) \tilde{u}(\varphi - \theta) \, d\theta \in \operatorname{co} \left\{ \tilde{u}(\psi) : \varphi - \theta_2 \le \psi \le \varphi - \theta_1 \right\},$$
$$\frac{1}{2\pi} \int_{I_2} \left(-g(\theta) \right) \tilde{u}(\varphi - \theta) \, d\theta \in \operatorname{co} \left\{ \tilde{u}(\psi) : \varphi - \theta_1 - 2\pi \le \psi \le \varphi - \theta_2 \right\}$$

and thus by (8)

$$v_g(\varphi) - iv'_g(\varphi) \neq 0, \qquad \varphi \in \mathbf{R}$$

Hence v_g and v'_g can never vanish simultaneously and v_g cannot have multiple zeros. Now assume that we can find at least one $g_0 \in M$ such that V_{g_0} has only two zeros (simple, of course) in a period. Then, if $v_{\varrho h}$ has more than two zeros in a period (but, because of the periodicity, an even number), then there exists a $\lambda \in (0,1)$ such that

$$\lambda v_{g_0} + (1 - \lambda) v_{\varrho h} = v_{[\lambda g_0 + (1 - \lambda)\varrho h]}$$

has a double zero. But M is a convex set and hence $\lambda g_0 + (1 - \lambda)\rho h \in M$, a contradiction.

What remains is to construct g_0 . We set

$$g_0(\theta) = \begin{cases} 2\pi/(\theta_2 - \theta_1), & \text{if } \theta \in I_1, \\ 0, & \text{if } \theta = \theta_1, \theta_2, \\ -2\pi/(\theta_1 + 2\pi - \theta_2), & \text{if } \theta \in I_2, \end{cases}$$

and extend this definition periodically to **R**. Then $g_0 \in M$ and

$$v_{g_0}(\varphi) = \frac{1}{\theta_2 - \theta_1} \int_{I_1} u(\varphi - \theta) \, d\theta - \frac{1}{\theta_1 + 2\pi - \theta_2} \int_{I_2} u(\varphi - \theta) \, d\theta$$

and hence

$$v'_{g_0} = \left(\frac{1}{\theta_2 - \theta_1} + \frac{1}{\theta_1 + 2\pi - \theta_2}\right) \left(u(\varphi - \theta_1) - u(\varphi - \theta_2)\right).$$

The convexity of \tilde{u} implies that $u \in PM$ and since u is a non-constant trigonometric polynomial v'_{g_0} has only two zeros in a period. The same is therefore true for v_{g_0} . Since $g_0 \in M$ we conclude that v_{g_0} has (exactly) two simple zeros in a period. This completes the proof of Lemma 3.

Proof of Theorem 5. It follows again from the variation diminishing property of the kernels V_n and from

$$V_n * u' = (V_n * u)'$$

that $u_n := V_n * u$ satisfies the assumptions of Theorem 5. Using Lemma 2 we conclude that we have to prove Theorem 5 only for trigonometric polynomials u. Similarly, if $t * u \in PM$ for all trigonometric polynomials $t \in PM$, then $u \in PMP$.

A non-constant trigonometric polynomial t is in PM if and only if t' has exactly two sign changes in any period. Furthermore we obviously have

$$\frac{1}{2\pi} \int_0^{2\pi} t'(\psi) \, d\psi = 0.$$

Hence, if $t \in PM$, we can apply Lemma 3 to h := t' and obtain that

$$v' = (t * u)' = h * u$$

has (exactly) two sign changes in a period. This proves $v \in PM$ and hence $u \in PMP$.

The geometric condition concerning \tilde{u} in Theorem 5 can be replaced by a more analytic one if $u \in C_{2\pi}^3$: we can then describe the convexity by the monotonicity of the tangent rotation at \tilde{u} and by ensuring that the total variation of the argument of the tangent vector is 2π . This leads immediately to:

68

Lemma 4. Let $u \in C_{2\pi}^3$ be non-constant and \tilde{u} as in (5). Then \tilde{u} fulfills the assumption of Theorem 5 if and only if $u \in PM$ and

$$u'(\theta)u'''(\theta) \le (u'(\theta))^2, \qquad \theta \in \mathbf{R}.$$

After these 'real' preliminaries we now turn to the discussion of $K(\varphi)$ and DCP. Also here we need a reduction to polynomial cases. We are working with the analytics version of the de la Vallée-Poussin kernels:

(11)
$$W_n(z) := {\binom{2n}{n}}^{-1} \sum_{k=0}^n {\binom{2n}{n+k}} z^k, \qquad z \in \mathbf{C}, \ n \in \mathbf{N}.$$

Note that

(12)
$$2\operatorname{Re} W_n(e^{i\theta}) = V_n(\theta) + 1, \quad \theta \in \mathbf{C}, \ n \in \mathbf{N}.$$

Lemma 5. Let g be analytic in **D**. Then $g \in K(\varphi)$ if and only if $W_n * g \in K(\varphi)$ for $n \in \mathbf{N}$.

Proof. Without loss of generality we may assume g(0) = 0, $\varphi = \frac{1}{2}\pi$. Let $g \in K(\pi/2)$, $\Gamma = g(\mathbf{D})$. We can construct a sequence of polygonal domains Γ_k with

$$0 \in \Gamma_1 \subset \Gamma_2 \subset \cdots \subset \Gamma, \qquad \bigcup_{k \in \mathbf{N}} \Gamma_k = \Gamma,$$

and Γ_k convex in the direction of the imaginary axis. Let g_k be the univalent functions in **D** with $g_k(0) = 0$, $\arg g'_k(0) = \arg'(0)$ and $g_k(\mathbf{D}) = \Gamma_k$. Then $g_k \in K(\pi/2)$ and $g_k \to g$ locally uniformly in **D** by Caratheodory's kernel convergence. The functions g_k extend continuously to $\partial \mathbf{D}$ and the directionconvexity is reflected by the property that $u_k(\theta) := \operatorname{Re} g_k(e^{i\theta})$ is in PM. Hence, since $V_n \in PMP$, we find using (3), (11), (12):

(13)
$$\operatorname{Re}\left(W_{n} \ast g_{k}\right) = V_{n} \ast u_{k} \in \operatorname{PM}$$

The elements of $K(\pi/2)$ are, in particular, close-to-convex univalent functions while the polynomials W_n are convex univalent in **D** (Pólya and Schoenberg [6]). Hence, by the result of Ruscheweyh and Sheil-Small [9], we conclude that $W_n * g_k$ is close-to-convex univalent in **D**. This fact together with (13) implies that $W_n * g_k \in K(\pi/2)$. But obviously $W_n * g_k \to W_n * g$ locally uniformly in **D** and hence $W_n * g \in K(\pi/2)$ for $n \in \mathbf{N}$.

If, on the other hand, $W_n * g \in K(\pi/2)$ for $n \in \mathbb{N}$ then we have $g \in K(\pi/2)$ since $W_n * g \to g$ locally uniformly in **D**.

Lemma 6. Let g be analytic in **D**. Then $g \in DCP$ if and only if $W_n * g \in DCP$ for $n \in \mathbf{N}$.

Proof. Lemma 5 shows, in particular, that $W_n \in \text{DCP}$ and since DCP is obviously closed under convolutions (i.e., $f, g \in \text{DCP}$ implies $f * g \in \text{DCP}$) we have $W_n * g \in \text{DCP}$ if $g \in \text{DCP}$. If $W_n * g \in \text{DCP}$ for $n \in \mathbb{N}$ then for $f \in K(\varphi)$:

$$g*(W_n*f) = (W_n*g)*f \in K(\varphi).$$

With $n \to \infty$ we obtain $g * f \in K(\varphi)$ and thus $g \in DCP$.

For the proof of Theorem 2 we shall need one further result, due to Clunie and Sheil-Small [3]:

Lemma 7. Let f_1 , f_2 be analytic in **D**, $f_1(0) = 0$. Then $F = \overline{f_1} + f_2 \in K_H$ if and only if

(14)
$$f_2 - e^{i\varphi} f_1 \in K\left(\frac{\varphi}{2}\right), \qquad \varphi \in \mathbf{R}.$$

Proof of Theorem 2. We show first that (1) is necessary for g to be in DCP. We have $g + i\gamma zg' = g * f_{\gamma}$ where

$$f_{\gamma}(z) = rac{1}{1-z} + i\gamma rac{z}{(1-z)^2}, \qquad \gamma \in \mathbf{R}.$$

These functions are close-to-convex univalent and map **D** onto **C** minus a vertical slit. Thus they are in $K(\pi/2)$ and (1) turns out to be a special case of the direction-convexity preservation of g.

Now let g satisfy (1). We observe that this implies that g is convex univalent in **D**. In fact, since $g * f_{\gamma} \in K(\pi/2)$ we see that

$$(g * f_{\gamma})'(0) = g'(0) \cdot f_{\gamma}'(0) \neq 0$$

and thus $g'(0) \neq 0$. Furthermore, for $z \in \mathbf{D}$,

$$0 \neq (g * f_{\gamma})'(z) = \frac{1}{z}(zg' * f_{\gamma}) = g' + i\gamma(zg')'$$

and hence

$$\frac{zg^{\prime\prime}(z)}{g^{\prime}(z)} + 1 \neq \frac{i}{\gamma}, \qquad \gamma \in \mathbf{R}, \quad z \in \mathbf{D},$$

which gives

$$\operatorname{Re}\left(\frac{zg''(z)}{g'(z)}+1\right) > 0, \qquad z \in \mathbf{D},$$

the convexity condition for g.

The convexity of g implies [9] that f * g is univalent for f close-to-convex, in particular for $f \in K(\varphi)$. We found already that $W_n \in \text{DCP}$, $n \in \mathbb{N}$, and therefore

$$W_n * (g + i\gamma zg') = (W_n * g) + iz\gamma(W_n * g)' \in K(\frac{1}{2}\pi), \qquad \gamma \in \mathbf{R},$$

which shows that $W_n * g$ satisfies (1) as well. In view of Lemma 6 this implies that we have to prove the sufficiency part of Theorem 2 only for polynomials g. Similarly, using Lemma 5, we see that we have to prove $f * g \in K(\varphi)$ only for polynomials $f \in K(\varphi)$. Obviously we may restrict ourselves again to the case $\varphi = \pi/2$, and we may assume g(0) = 0. We know already that f * g is univalent in **D**. Hence to prove $f * g \in K(\pi/2)$ we just have to prove that

$$\operatorname{Re}\left[(f*g)(e^{i\theta})\right] = 2\left(\operatorname{Re}f(e^{i\theta})\right)*\left(\operatorname{Re}g(e^{i\theta})\right) \in \operatorname{PM}$$

under the assumption that $\operatorname{Re} f(e^{i\theta}) \in \operatorname{PM}$. But this is surely true if we can show that $u(\theta) := \operatorname{Re} g(e^{i\theta}) \in \operatorname{PMP}$.

We rewrite (1) as follows: let $i\gamma = (1+e^{i\varphi})/(1-e^{i\varphi}), \ 0<\varphi<2\pi$, and note that

$$\arg\left[i(1-e^{i\varphi})\right] = \frac{1}{2}\varphi, \qquad 0 < \varphi 2\pi.$$

Hence

(15)
$$(1 - e^{i\varphi})(g + i\gamma zg') = (g + zg') - e^{i\varphi}(g - zg') \in K(\varphi/2),$$

for $0 < \varphi < 2\pi$. The limiting case $\gamma \to \infty$ can be used to show that (15) holds for $\varphi = 0$ as well. We now apply Lemma 7 and deduce that

(16)
$$F(z) := \overline{g - zg'} + g + zg' = 2\left(\operatorname{Re} g(z) + i\operatorname{Im} zg'(z)\right) \in K_H$$

This clearly implies that

(17)
$$\frac{1}{2}F(e^{i\theta}) = u(\theta) - iu'(\theta), \qquad 0 \le \theta < 2\pi,$$

is a convex curve in the sense of Theorem 5: u belongs to PMP, and this completes the proof of Theorem 2.

We note that the last steps in this proof are invertible: if the curve (17) is convex in the sense of Theorem 5, then, by a Theorem of Choquet [2], the statement (16) also holds true. Using the other direction of Lemma 7 we conclude that the function g satisfies (1). We have shown:

Lemma 8. Let g be analytic in **D**, continuous in $\overline{\mathbf{D}}$ with $u(\theta) = \operatorname{Re} g(e^{i\theta}) \in C^{1}_{2\pi}$. Then $g \in \operatorname{DCP}$ if and only if u fulfills the assumptions of Theorem 5.

The assertion of Theorem 4 is just a combination of Lemma 4 and Lemma 8. Proof of Theorem 1. Using $g_r(z) := 1/(1-rz)$ we obtain

$$u_r(\theta) = \operatorname{Re} g_r(e^{i\theta}) = \frac{1}{2} + \frac{1}{2} \frac{1 - r^2}{1 + r^2 - 2r\cos\varphi}$$

It is a matter of straightforward calculus to show that $u_r(\theta)$ satisfies the conditions of Theorem 4 for $0 < r \leq r_0$. Theorem 1 follows for $f \in K(\varphi)$. A result of Clunie and Sheil-Small [3, Theorem 5.3] extends this immediately to $K_H(\varphi)$.

Proof of Theorem 3. That $f * g \in K_H$ for $f \in K_H$ and $g \in DCP$ follows from Theorem 2 and Lemma 7. On the other hand, Clunie and Sheil-Small [3, (5.5.4)] have shown that

$$f_0(z) = \frac{1}{1-z} - \frac{z}{(1-z)^2} + \frac{1}{1-z} + \frac{z}{(1-z)^2} \in K_H.$$

Hence, if g preserves harmonic convexity, we must have $F = f_0 \tilde{*}g \in K_H$ where F is exactly the function (16). As we have seen in the deduction of Lemma 8 this is equivalent to the fact that g satisfies (1) and hence to $g \in \text{DCP}$.

References

- [1] BROWN, J.E.: Level sets for functions convex in one direction. Proc. Amer. Math. Soc. 100, 1987, 442-446.
- [2] CHOQUET, G.: Sur un type de transformation analytique generalisant la representation conforme et definie au moyen de fonctions harmoniques. - Bull. Sci. Math. (2) 69, 1945, 156-165.
- [3] CLUNIE, J.G., and T. SHEIL-SMALL: Harmonic univalent functions. Ann. Acad. Sci. Fenn. Ser. A I Math. 9, 1984, 3-25.
- [4] GOODMAN, A.W., and E.B. SAFF: On univalent functions convex in one direction. Proc. Amer. Math. Soc. 73, 1979, 183-187.
- [5] HENGARTNER, W., and G. SCHOBER: A remark on level curves for domains convex in one direction. - Applicable Anal. 3, 1973, 101-106.
- [6] PÓLYA, G., and I.J. SCHOENBERG: Remarks on the de la Vallée- Poussin means and convex conformal maps of the circle. - Pacific J. Math. 8, 1958, 295–334.
- [7] ROBERTSON, M.S.: Analytic functions starlike in one direction. Amer. J. Math. 58, 1936, 465-472.
- [8] ROYSTER. W.C., and M. ZIEGLER: Univalent function convex in one direction. Publ. Math. Debrecen 23, 1976, 339-345.
- RUSCHEWEYH, ST., and T. SHEIL-SMALL: Hadamard products of schlicht functions and the Polya-Schoenberg conjecture. - Comment. Math. Helv. 48, 1973, 119–135.
- [10] RUSCHEWEYH, ST., and L.C. SALINAS: On the preservation of periodic monitonicity. -Preprint, 1987.
- [11] SCHOENBERG, I.J.: On variation diminishing approximation methods. Numerical approximation, edited by R. Langer. University of Wisconsin Press, 1959, 249-274.
- [12] DE LA VALLÉE-POUSSIN, CH.J.: Sur l'approximation des fonctions d'une variable reelle et de leurs derivees par des polynomes et des suites limites de Fourier. - Bull. Acad. Roy. Belgique (Classe de sciences) 3, 1908, 193-254.

Universidad Técnica Federico Santa María Departamento de Matemática Valparaíso Chile Universität Würzburg Mathematisches Institut D-8700 Würzburg Federal Republic of Germany

Received 3 November 1987