Annales Academiz Scientiarum Fennicee
Series A. I. Mathematica
Volumen 14, 1989, 63-73

ON THE PRESERVATION OF DIRECTION-CONVEXITY
AND THE GOODMAN-SAFF CONJECTURE

Stephan Ruscheweyh and Luis C. Salinas

Abstract. Let K(¢) be the set of univalent functions in the unit disk D which are convex
in the direction €. We determine the set of analytic functions g in D which preserve K(¢)
under the Hadamard product, i.e., g *x f € K(p) whenever f € K(p). This result contains as
a special case the proof of a conjecture of Goodman and Saff about K(¢) and solves partially a
multiplier problem concerning convex univalent harmonic functions in D, posed by Clunie and
Sheil-Small.

1. Introduction

A domain M C C is said to be convex in the direction e'¢ if for every a € C
the set

Mn{a+te¥:teR}

is either connected or empty. Let K(¢) be the family of univalent analytic func-
tions f in the unit disk D with f(D) convex in the direction e*¥ and, similarly,
Ky (p) with ‘univalent analytic’ replaced by ‘univalent harmonic’. It is well-known
(see W. Hengartner and G. Schober [5], A.W. Goodman and E.B. Saff [4]) that
for ro :=v2—1<r <1 generally f € K(p) does not imply f(rz) € K(¢), but
Goodman and Saff conjectured that such an implication may hold for 0 < r < ry.
Recently J. Brown [1] proved that

feK(p)= f(roz)e K(¢), ¢ el(f)

where I(f) C [0,27) is a set of positive measure. It was not shown, however, that
¢ € I(f) and thus the conjecture remained open. We shall prove the following
stronger result:

Theorem 1. Let f € Ky(p), 0<r <ro. Then f(rz) € Ku(y).
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This settles the Goodman-Saff conjecture even for univalent harmonic func-
tions. In the analytic case, however, Theorem 1 is a very simple special case of the
solution of the following multiplier problem (* denotes the Hadamard product):

Determine the set DCP of all analytic functions g in D such that g+ f € K(¢)
for every ¢ € R and every f € K(y).

Theorem 2. Let g be analytic in D. Then g € DCP if and only if
(1) foreachy e R:g+1y2z9' € K (g) )

Theorem 1, for f analytic, follows from Theorem 2 by choosing g¢,(z) :=
1/(1 — rz) and showing that g, € DCP for 0 < r < ro. If f is harmonic in
D, f = fi + f, with fi, fo analyticin D and f;(0) = 0, we may define for an
analytic ¢

frg:=(fi*xg)+(f2%9)
It is not true that all functions g satisfying (1) preserve K (p) under the oper-
ation * (Theorem 1, however, says that this is the case for ¢,). For an example
see Clunie and Sheil-Small [3, (5.21.1)] where the multiplier happens to satisfy
(1). But out result does extend to the class Ky of convex harmonic univalent
functions f (where ‘convex’ indicates that f(D) is convex).

Theorem 3. Let g be analytic in D. Then f¥g € Ky for all f € Ky if
and only if g satisfies (1), i.e., g € DCP.

This theorem solves partially a problem of Clunie and Sheil-Small [3,(7.7)].

The members of K() are usually described analytically through a condition
due to M.S. Robertson [7] (see also W.C. Royster and M. Ziegler [8]). Unfor-
tunately, this condition is very difficult to deal with when it comes to convolu-
tions (Hadamards products). In the proof of the basic Theorem 2 we shall use a
completely different way, namely the concept of periodically monotone functions,
introduced by I.J. Schoenberg [11].

Definition. Let u be a real, continuous, 27 -periodic function. It is said to
be periodically monotone (u € PM) if there exist numbers 6; < 8, < 6; + 27
such that u increases on (6;,6;) and decreases on (6,,6; + 27).

We shall reduce the discussion of functions in DCP to the characterisation of
certain integral kernels which preserve periodic monotonicity. And, as a result of
this connection, we also obtain the following very handy criterion for ¢ to be in

DCP.

Theorem 4. Let g be non-constant and analytic in D, continuous in D
with u(6) = Reg(e'®) three times continuously differentiable. Then g € DCP if
and only if u € PM with

(2) uw'(0)u"(6) < (u"(6)’,  #ER.
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2. Proofs

Let C¥_ denote the set of real 2w -periodic functions which are k times con-
tinuously differentiable. For u,v € C, we define

(u*v):= %‘/(; 7ru(1,/))v((9—zb)dd).

There will be no confusion in using the same symbol * for different convolutions
since from the context it will be always clear which one is meant. In fact, there
is a close connection between the two definitions: let g, h be analytic in D),
continuous in D, ¢(0) =0, and set

u(6) := Reg(e'®), v(8) := Reh(e'?), 6 €R.
Then we have the important relation
(3) (u*v)() = jRe(gxh)(e), 6€R.

(3) is readily verified by writing down the corresponding Fourier expansions.
A function u € C}, is said to preserve periodic monotonicity (v € PMP) if

uxv € PM for every v € PM.

Let V, be the de la Vallée-Poussin kernels:
2n\ n
(4) Va(0) := . (14 cos6)", € R,neN.

It is known (de la Vallée-Poussin [13]) that for u € C?,. we have

Furthermore, as has been shown by Pélya and Schoenberg [6], the V;, are variation
diminishing. These two properties imply:

Lemma 1. Let u € C9.. Then u € PM if and only if V;, ¥ u € PM for all
n € N.

Similarly we obtain

Lemma 2. Let u € C3,. Then u € PMP if and only if V,, xu € PMP for
all n € N.
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Indeed, if v € PMP, v € PM then, by Lemma 1, V,, * u € PM and hence
(Va*xv)xu = v*(V, xu) € PM, which implies V,, xu € PMP. In the other
direction, if v *(Vy, xu) € PM for all v € PM then, using dominated convergence,

vy = lim (V, *v)*xu € PM
n—oo

and hence u € PMP. The crucial part in the proof of Theorem 2 is contained in
the following result.

Theorem 5. Let u € C}, be such that
5) @(8) = u(6) — iw'(9), 0<8<2m

is a (complex) Jordan curve with a convex interior domain. Then u € PMP.

We remark that a more general definition of the classes PM and PMP has
been studied by Schoenberg [11], who also quotes a result of C. Loewner which
says that (5) is essentially also a necessary condition for u € PMP. In another
paper [10] we give the complete characterisation of the wider Schoenberg class.
For our present purpose, however, this is of no relevance.

We shall reduce the proof of Theorem 5 to the following lemma which is of
independent interest.

Lemma 3. Let u be a trigonometric polynomial satisfying the assumptions
of Theorem 5. Let h #Zconst. be a function in C3, such that h has at most two
sign changes in any interval of length 2n and satisfies

(6) 5= [ hwas=o

Then u * h has exactly two zeros (which are simple) in [0,27).

Proof. We first note that @ is strongly convex, i.e., there are no three numbers
61 < 0283 < 6 + 27 such that the points @(6;), j = 1,2, 3, lie on a straight line.
In fact, if they were, then by the convexity we conclude that #(6) lies on that
straight line, §; < 6 < 3. This gives a relation

(7 au(0) + bu'(8) +c =0

on that interval, and since u is a trigonometric polynomial, for all . But then @
lies completely in that straight line, a contradiction to the assumption. We shall
use this information in the following form: let 1; < ¥2 < ¥ + 27 and denote by
co(A) the interior of the convex hull of a set A C C. Then

(8) cofi() : 1 < <t} Nofi(y) : ¥n < P <y + 21} = 0.
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Now let 8; < 82 < 8; + 27 be such that

207 lfolSOS02>
h(e){so, if 6, <6 < 6 +2m.

Note that by (6) we can be sure that h has at least two zeros in a period. We define
the set M = M(6;,6,) as the set of real 27-periodic functions g, continuous in
I, := (61,02) and in I = (6,,6; + 27), such that

if6el
® {20 wocl,
and
1 1
(10) 1= 5o [ ow)de =5 [ swrav

Clearly oh € M for some suitable o > 0. For g € M the function v, :=g*u isa
trigonometric polynomial and we wish to show that this polynomial cannot have
any multiple zero. In fact, for p € R we have

o) = i) = 5= [ a(@ite —0)d0 - ] (o@)ice - eyas
and from (9), (10) we conclude that

o [ o®)ile ~8)db € ofa) i ¢~ 8 <Y < - b1},
I

%/ (_9(9))’[2(50 — e)de € CQO{ﬂ('(/)) T — 91 —o2r < ,¢, < o — 02}’
I,

and thus by (8)
v(@) = iv}(e) #0,  pER.

Hence v, and vy can never vanish simultaneously and vy cannot have multiple
zeros. Now assume that we can find at least one go € M such that Vg, has only
two zeros (simple, of course) in a period. Then, if v,n has more than two zeros
in a period (but, because of the periodicity, an even number), then there exists a
A € (0,1) such that

Mgy + (1 = A)voh = Vage+(1-A)eh]

has a double zero. But M is a convex set and hence Ago + (1 — A)ph € M, a
contradiction.
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What remains is to construct g,. We set

271'/(62—91), 1f9€Il,
go(ﬂ) = 0, if 6= 01,92,
—27‘(’/(01 + 27 — 02), if 6 € I2,

and extend this definition periodically to R. Then gy € M and

1 1
Vgo($p) = F—y /11 u(<P—<9)d¢9—91—_{;2‘77_—6,2/I2 u(yp — 0)db,

and hence

o oo (1, 1
9o 92-91 91+27’(’—62

) e = 62) — (o — )

The convexity of % implies that v € PM and since u is a non-constant trigono-
metric polynomial vy has only two zeros in a period. The same is therefore true
for vy, . Since go € M we conclude that vy, has (exactly) two simple zeros in a
period. This completes the proof of Lemma, 3.

Proof of Theorem 5. It follows again from the variation diminishing property
of the kernels V,, and from

Voxu' = (Vyxu)

that u, := V,, * u satisfies the assumptions of Theorem 5. Using Lemma 2 we
conclude that we have to prove Theorem 5 only for trigonometric polynomials u.
Similarly, if ¢ +u € PM for all trigonometric polynomials ¢ € PM, then u € PMP.

A non-constant trigonometric polynomial ¢ is in PM if and only if ¢’ has
exactly two sign changes in any period. Furthermore we obviously have

1 27
— t'(y) dip = 0.
= [t
Hence, if t € PM, we can apply Lemma 3 to h:=t' and obtain that
v'=(txu) =hxu

has (exactly) two sign changes in a period. This proves v € PM and hence
u € PMP.

The geometric condition concerning @ in Theorem 5 can be replaced by a more
analytic one if u € C3,: we can then describe the convexity by the monotonicity of
the tangent rotation at # and by ensuring that the total variation of the argument
of the tangent vector is 27. This leads immediately to:
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Lemma 4. Let u € C3, be non-constant and @ as in (5). Then 4 fulfills
the assumption of Theorem 5 if and only if w € PM and

u'(0)u"(8) < (u'(9))®, 6eR.

After these ‘real’ preliminaries we now turn to the discussion of K(¢) and
DCP. Also here we need a reduction to polynomial cases. We are working with
the analytics version of the de la Vallée-Poussin kernels:

2n\ ' 2n k
(11) Wn(z)-—<n) kzﬂ(n+k)z’ z€C, neN.

Note that
(12) 2Re W, (e?) =V,(0)+1, 6€C, neN.

Lemma 5. Let g be analytic in D. Then g € K(y) if and only if W, x g €
K(p) for n € N.

Proof. Without loss of generality we may assume ¢(0) = 0, ¢ = ir. Let
g € K(r/2), T = g(D). We can construct a sequence of polygonal domains I’y
with
0elycIyc---CT, UFk=P,
kEN

and I'y convex in the direction of the imaginary axis. Let g be the univalent
functions in D with ¢4(0) = 0, argg,(0) = arg’(0) and gx(D) = I'x. Then
gr € K(m/2) and gr — g locally uniformly in D by Caratheodory’s kernel
convergence. The functions gx extend continuously to 0D and the direction-
convexity is reflected by the property that ui(6) := Re gk(eie) is in PM. Hence,
since V, € PMP, we find using (3), (11), (12):

(13) Re (W, * gx) = Vi x ux € PM.

The elements of K(7/2) are, in particular, close-to-convex univalent functions
while the polynomials W, are convex univalent in D (Pélya and Schoenberg
[6]). Hence, by the result of Ruscheweyh and Sheil-Small [9], we conclude that
W * gr is close-to-convex univalent in D. This fact together with (13) implies
that W, * gx € K(7/2). But obviously Wy, * gr — Wy, * g locally uniformly in D
and hence W, x g € K(7/2) for n € N.

If, on the other hand, W, *x g € K(7/2) for n € N then we have g € K(7/2)
since W, * ¢ — ¢ locally uniformly in D.

Lemma 6. Let g be analytic in D. Then ¢ € DCP if and only if W, *xg €
DCP for n € N.
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Proof. Lemma 5 shows, in particular, that W, € DCP and since DCP is
obviously closed under convolutions (i.e., f,g € DCP implies f * g € DCP) we
have W, xg € DCP if ¢ € DCP. If W,,xg € DCP for n € N then for f € K(¢):

g* (Wpxf)=(Wnxg)*f € K(p)

With n — oo we obtain g * f € K(p) and thus g € DCP.
For the proof of Theorem 2 we shall need one further result, due to Clunie

and Sheil-Small [3]:

Lemma 7. Let f;, fo be analyticin D, f1(0) =0. Then F = f1+ f, € Ky
if and only if

(14) fr-e®fieK(Z), peR.

Proof of Theorem 2. We show first that (1) is necessary for g to be in DCP.
We have g + ivzg' = g * f, where

1 ) z
f‘y(z)=1_z+z7(1_z)2, v € R.

These functions are close-to-convex univalent and map D onto C minus a vertical
slit. Thus they arein K(7/2) and (1) turns out to be a special case of the direction-
convexity preservation of g.

Now let g satisfy (1). We observe that this implies that g is convex univalent
in D. In fact, since g x f, € K(7/2) we see that

(g £+)'(0) = g'(0) - f3,(0) # 0
and thus ¢'(0) # 0. Furthermore, for z € D,
0# (9% f2)() = 2(2g' ;) = o'+ in(z')
and hence

zg"(2)

9'(2)

"
Re (Zg, (2) + 1) >0, z €D,
9'(z)

+17é$, vy€R, zeD,

which gives

the convexity condition for g¢.
The convexity of ¢ implies [9] that f * g is univalent for f close-to-convex,
in particular for f € K(yp).
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We found already that W, € DCP, n € N, and therefore
Wo(g+1iv2g9") = (Waxg) + tz2y(Wy * g)' € K(%ﬂ'), ~vyeR,

which shows that W, x g satisfies (1) as well. In view of Lemma 6 this implies
that we have to prove the sufficiency part of Theorem 2 only for polynomials g.
Similarly, using Lemma 5, we see that we have to prove f * g € K() only for
polynomials f € K(g). Obviously we may restrict ourselves again to the case
¢ = 7/2, and we may assume ¢(0) = 0. We know already that f * g is univalent
in D. Hence to prove f * g € K(n/2) we just have to prove that

Re [(f * g)(eia)] =2(Re f(ew)) * (Re g(ew)) € PM
under the assumption that Re f(e'®) € PM. But this is surely true if we can show

that u(8) := Reg(e'¥) € PMP.
We rewrite (1) as follows: let iy = (1 +¢€¥)/(1—¢'?), 0 < ¢ < 27, and note

that
arg[i(1 — €'?)] = 1o, 0 < 2.
Hence
(15) (1—€e")(g+ivzg') = (g + 29') — (g — z¢") € K(¢/2),

for 0 < ¢ < 27. The limiting case ¥ — oo can be used to show that (15) holds
forp = 0 as well. We now apply Lemma 7 and deduce that

(16) F(z):=g—29'+ g+ 29" = 2(Reg(z) + ilmzg'(2)) € Kpy.
This clearly implies that
(17) iF(e?) =u(f) —iu'(d), 0<6<2m,

is a convex curve in the sense of Theorem 5: u belongs to PMP, and this completes
the proof of Theorem 2.

We note that the last steps in this proof are invertible: if the curve (17)
is convex in the sense of Theorem 5, then, by a Theorem of Choquet [2], the
statement (16) also holds true. Using the other direction of Lemma 7 we conclude
that the function ¢ satisfies (1). We have shown:

Lemma 8. Let g be analytic in D, continuous in D with u(6) = Reg(e*?) €
C3.. Then g € DCP if and only if u fulfills the assumptions of Theorem 5.
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The assertion of Theorem 4 is just a combination of Lemma 4 and Lemma 8.
Proof of Theorem 1. Using ¢,(z) := 1/(1 — rz) we obtain

1—1r2

1+7r2—2rcosep’

u,-(0) = Re g,.(ew) = -;- + %

It is a matter of straightforward calculus to show that u,(8) satisfies the conditions
of Theorem 4 for 0 < r < rg. Theorem 1 follows for f € K(¢). A result of Clunie
and Sheil-Small (3, Theorem 5.3] extends this immediately to Kg(p).

Proof of Theorem 3. That f*g € Ky for f € Ky and g € DCP follows from
Theorem 2 and Lemma 7. On the other hand, Clunie and Sheil-Small [3, (5.5.4)]
have shown that

1 z 1 z .
e =y gt T o €

Hence, if g preserves harmonic convexity, we must have F = fokg € Ky where
F is exactly the function (16). As we have seen in the deduction of Lemma 8 this
is equivalent to the fact that g satisfies (1) and hence to g € DCP.
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