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ON THE PRESERVATION OF DIRECTION-CONVEXITY
AND THE GOODMAN-SAFF CONJECTURE

Stephan Ruscheweyh and Luis C. Salinas

Abstract. Let K(Q be the set of univalent functions in the unit disk D which are convex

in the direction eip . We determine the set of analytic functions g in D which preserve K(9)
under the Hadamard product, i.e., g * f e K(p) whenever f e X(d. This result contains as

a special case the proof of a conjecture of Goodman and Saff about l((rp) and solves partially a

multiplier problem concerning convex univalent harmonic functions in D, posed by Clunie and

Sheil-Small.

1. Introduction

A domain M c C is said to be convex in the direction e;p if f,o, every o € C
the set

Mn{a*teic:teR}
is either connected or empty. Let K(Q be the family of univalent analytic func-
tions / in the unit disk D with /(D) convex in the direction eie and, similarly,
I{ ru(p) with 'univalent analytic' replaced by 'univalent harmonic'. It is well-known
(see W. Hengartner and G. Schober [5], A.W. Goodman and E.B. Satr [a]) that
for rs::A-1<r ( l generalty / eI<(d doesnotimply f(rz)e I((9),but
Goodman and Saff conjectured that such an implication may hold for 0 ( r ( 16.

Recently J. Brown [1] proved that

f € K(p) + f(roz) € K(rh), ,h € I(f),

where f(/) c l},Zn) is a set of positive measure. It was not shown, however, that
g e I(f) and thus the conjecture remained open. We shall prove the following
stronger result:

Theorem L. Let f e Ka(d, 0 ( r ( rs. ?åen f(rz) e Kn(p).
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This settles the Goodman-Saff conjecture even for univalent harmonic func-
tions. In the analytic case, however, Theorem f. is a very simple special case of the
solution of the following multiplier problem (*, denotes the Hadamard product):

Determine the set DCP of all a^nalytic functions 9 in D such that g*f e K(9)
for every p € R and every f e X191.

Theorem 2. Let g be anaJytic in D. Then 9 € DCP if and only if
(1) foreachl€R:

Theorem 1, for / analytic, follows from Theorem 2 by choosing g,(z) ::
ll\-rz) and showing that g, € DCP for 0 < r (-rs. If f is harmonic in
D, f : ft-t fz with fi, f2 analytic in D and fi(0):0, we may define for an
analytic A

fis ::@ + Uz', il.
It is not true that all functions g satisfying (1) preserve Kru(p) under the oper-
ation * (Theorem 1, however, says that this is the case for gr). For an example
see Clunie and Sheil-Small [3, (5.21.1)] where the multiplier happens to satisfy
(1). But out result does extend to the class Ks of convex harmonic univalent
functions / (where'convex'indicates that /(D) is convex).

Theorem 3, Let g be analytic in D. Then fiS e Ks for aJI f e Ka if
and only if g satisfies (1), i.e., g € DCP.

This theorem solves partially a problem of Clunie and Sheil-Small [3,(7.7)].
The members of -I((rp) are usually described analytically through a condition

due to M.S. Robertson [7] (see also W.C. Royster and M. Ziegler [8]). Unfor-
tunately, this condition is very difficult to deal with when it comes to convolu-
tions (Hadamards products). In the proof of the basic Theorem 2 we shall use a
completely different way, namely the concept of periodically monotone functions,
introduced by I.J. Schoenberg [L1].

Deffnition. Let u be a real, continuous, 2r-periodic function. It is said to
be periodically monotone (u e PM) if there exist numbers il I 0z I 0r * 2tr
such that u increases on (91, 02) ar,d decreases ot (02,0t i 2tr).

We shall reduce the discussion of functions in DCP to the characterisation of
certain integral kernels which preserve periodic monotonicity. And, as a result of
this connection, we also obtain the following very handy criterion for g to be in
DCP.

Theorem 4. Let g be non-consta.nt and analytic in D, continuous in D
with u(0):R"g("ie) three times continuously differentiable. Then g € DCP if
and only if u e PM with

s+ivzs'e"(;)

(2)
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2. Proofs

Let C!* denote the set of real 2n-periodic functions which are å times con-

tinuously differentiable. For u,u e Clo we define

\ lzn
(u * u) ,: * J, u(r[)u(0 - ,b) drb.

There will be no confusion in using the same symbol * for different convolutions
since from the context it will be always clear which one is meant. In fact, there
is a close connection between the two definitions: lel g, å be analytic in D,
continuous in D, g(0) :0, and set

u(0) ::P,.eg(eio), a(0) ::Reh(eio), d e R.

Then we have the importa.nt relation

(3) (u * u)(0): |Re (s * h)(eio), 0 e R.

(3) is readily verified by writing down the corresponding Fourier expansions.
A function u e Cl* is said to preserve periodic monotonicity ( u e PMP ) if

'u*u€-PM foreveryv€PM.

Let Vn be the de la Vallde-Poussin kernels:

(4) v,(o):- H-'(1 + cos o)', o€ R, n € N'

It is known (d" Ia Va116e-Poussin [13]) that for u € C3* we have

jg(%*u)@):u(o), deR.

Furthermore, as has been shown by Pdlya and Schoenberg [6], the Vn are variation
diminishing. These two properties imply:

Lemma L. Letue C$*. Then u€PM if andonlyif Vn*u €PM foraJl
n€N.

Similarly we obtain

Lemma 2. Let ueC)*. Then u € PMP if andonlyif Vn*u € PMP for
a/Jn€N.
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Indeed, if u € PMP, u € PM then, by Lemma 7, Vn* u € PM and hence
(V."u)*u,: u*(Vn*u) e PM, which implies Vn*u € PMP. In the other
direction, if u*(V.*u) e PM for all o € PM then, using dominated convergence,

?)*1r:,1!g(%*u)xu€PM

and hence u e PMP. The crucial part in the proof of Theorem 2 is contained in
the following result.

Theorem 5. Let u e Cl* be such that

is a (complex) Jordan crrve with a convex interior domain. Then u € PMP.

We remark that a more general definition of the classes PM and PMP has
been studied by Schoenberg [11], who also quotes a result of C. Loewner which
says that (5) is essentially also a necessary condition for u € PMP. In another
paper [10] we give the complete characterisation of the wider Schoenberg class.
For our present purpose, however, this is of no relevance.

We shall reduce the proof of Theorem 5 to the following lemma which is of
independent interest.

Lemma 3. Let u be a trigonometic polynomial satisfying tåe assumpäions
of Theorcm5. Let äfconst. beafunctioninCl* suchthat h hasatmosttwo
sign changes in any interval of length 2r and saiisfies

(5)

(6)

(7)

(8)

or(0) + bu'(0) + c - 0

, o2zr

* J, n@')d''b - o'

Then u * h has exactly two zeros (which are simple) in 10,2r).
Proof. We first note that fr is strongly convex) i.e., there are no three numbers

et < 0203 < 0t * 2zr such that the points t(?i), j :7,2,3, lie on a straight line.
In fact, if they were, then by the convexity we conclude that m(9) Iies on that
straight line, 91 < e < d3. This gives a relation

on that interval, and since u is a trigonometric polynomial, for all d. But then fr
lies completely in that straight line, a contradiction to the assumption. We shall
use this information in the following form: let $r < ,lrz < rh * 2r and denote by
cb(A) the interior of the convex hull of a set .4. C C. Then
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Now let 0t I 0z I 0t * 2tr be such that

o(') 
{ : 3; ;it:iTi',? *,.

Note that bV (6) we car] be sure that ä has at least two zeros in a period. We define

the set M : M(0t,02) as the set of real 2zr-periodic functions g, continuous in

\ z: (01,02) and in Iz - (02,0r * 2r), such that

(e) ,(,) {= 3l ii',|',i,
and

(10) t : * l,,t@ 
d,b : -* l,,o@) 

a,t,.

Clearly phe M for some suitable p > 0. For g € M the function Ds i:9 *u is a

trigonometric polynomial and we wish to show that this polynomial cannot have

any multiple zeto. In fact, for p € R we have

,c(p) - iu'o(v) : * l,,s{)t 
(e - 0) d0 - * l,,es@)a(e - 0) d0,

and from (9), (10) we conclude that

l. I

* J,,g?)a@ - 
qd0 e cb{a(/) : e - 0z <'b s p - 0r},

L I r-,ril)a(e - 0)dle cb{a(/) i e - 0t -21 1,b < p - 0r},
ztr Jn \ Y\"

and thus by (8)
,s@)-iv'o(v)*0, p€R.

Hence u, and u'o can never vanish simultaneously and u, cannot have multiple
zeros. Now assume that we can find at least one g0 € M such that 7ro has only
two zeros (simple, of course) in a period. Then, if unt has more than two zeros

in a period (but, because of the periodicity, an even number), then there exists a

) e (0,1) such that

)uro * (1 - ))us,, : o[Ågo+(r-])eäl

has a double zero. But M is a convex set and hence )go + (1 - ))pä € M, a

contradiction.
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1 n2r

G l, {oh)d''h - o'

PM, w€ can apply Lemma 3 to h :: t' and obtain that

u,:(t*u),_h*u

two sign changes in a period. This proves u € PM and hence

What remains is to construct gs. We set

( »r11e, - o), if o e 11,
go(d): { 0, if|:0r,02,

| -2tr l@1 t 2tr - 02), if 0 e 12,

and extend this definition periodically to R. Then 9o e M ar,d

,no(p) : h, 1,,^o - o) do - # 1,,,(, - 
q do,

and hence

./1 1\..,, _t _ rr_)(r(e_0t)_"lp_02)).
"oo _ 

\d2 _0'- e'i/iart

The convexity of fi implies that u € PM and since u is a non-constant trigono-
metric polynomial ulo has only two zeros in a period. The same is therefore true
for uro. Since go € M we conclude that uro has (exacily) two simple zeros in a
period. This completes the proof of Lemma 3.

Proof of Theorem 5. It follows again from the variation diminishing property
of the kernels 7, and from

Vn*u':(Vo*u)'

lhat un :: Vn * u satisfies the assumptions of Theorem 5. Using Lemma 2 we
conclude that we have to prove Theorem 5 only for trigonometric polynomials u.
Similarly, if. t+u € PM for all trigonometric polynomials t € PM, then u e PMP.

A non-constant trigonometric polynomial t is in PM if and only if t, has
exactly two sign changes in any period. Furthermore we obviously have

Hence, if t e

has (exactly)
U C PMP.

The geometric condition concerning fr in Theorem 5 can be replaced by a more
analytic one if u e C8*: we can then describe the convexity by the monotonicity of
the tangent rotation at fi and by ensuring that the total variation ofthe argument
of the tangent vector is 2tr. This leads immediately to:
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Lemma 4. Let u e Cl* be non-const'ant and fi, as in (5). Tåen il' fulfiLls
the assumption of Theorem 5 if and only if u e PM and

u'(0)u"'(0) < ("'(0))', d e R.

After these 'real' preliminaries we now turn to the discussion of .K(g) and
DCP. Also here we need a reduction to polynomial cases. We are working with
the analytics version of the de la Vallde-Poussin kernels:

( 11)

( 13)

Note that

(12) 2ReWn(eio):V*(0)+t, 0eC,neN.

Lemma 5. Let g beanalyticin D. Then g e K(V) if andonly if Wn*g e
K(9)forn€N.

Proof. Without loss of generality we may assume g(0) : 0, I : lr . Lef
g e K(Tl2), l: g(D). We can construct a sequence of polygonal domains 17,

with
0eIrClzc...CI, [.Jfu:I,

k€N

and |r convex in the direction of the imaginary axis. Let gx be the univalent
functions in D with Sr(0):0, argSi,(O): arg'(0) and 91(D) - fr. Then

9* e K(trl2) and 9* --+ 9 locally uniformly in D by Caratheodory's kernel
convergence. The functions 91 extend continuously to 0D and the direction-
convexity is reflected by the property that up(d) r: R"g*("ia) is in PM. Hence,

since V, € PMP, we find using (3), (11), (12):

w*(,):- 0-'å (,';r),r, z€ c, nr-N

R" (Wn * gx) - Vn * uk € PM.

The elements of KQr/2) arc, in particular, close-to-convex univalent functions
while the polynomials Wn are convex univalent in D (P61ya and Schoenberg

t6]). Hence, by the result of Ruscheweyh and Sheil-Small [9], we conclude that
Wn* 9* is close-to-convex univalent in D. This fact together with (13) implies
lhat Wn * gx e I{(n l2). But obviotsly Wn * g* -- Wn * 9 locally uniformly in D
and hence Wn* 9 e I<Qr12) for n € N.

If,ontheotherhand, Wn*9e K(rlz) for n€N thenwehave g e K(r12)
since Wn * g ---+ g locally uniformly in D.

Lemma 6. Let g be analytic in D. Then 9 € DCP if and only if Wn* g e
DCPforn€N.
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Proof. Lemma 5 shows, in particular, that Wn € DCP and since DCP is
obviously closed under convolutions (i.e., 1,9 e DCP implies /*,9 € DCP) we
haveWn*g € DCP if 9 e DCP.If W"xg e DCP for n €N thenfor /e K(p),

9 * (W.r "f) : (W" * s) * f e K(V).

With n --+ oo we obtain S * f €K(cp) and thus g € DCP.
Fbr the proof of Theorem 2 we shall need one further result, due to Clunie

and Sheil-Small [3]:

Lemma 7. Let fr, f, be analytic in D, .fr(O; : 0. Then p :T* fz € Ks
if and only if

(14) fz-eiehrK(r), e€R.

Prcof of Theorem 2. We show first that (1) is necessary for g to be in DCP.
We have g * ilzg' : g * ft where

1f4"):fi+4&, ?€R.

These functions are close-to-convex univalent and map D onto C minus a vertical
slit. Thus they are in KQr 12) and (1) turns out to be a special case of the direction-
convexity preservation of g.

Now let g satisfy (1). We observe that this implies that 9 is convex univalent
in D. In fact, since g + h € l{(rl2) we see that

(g*f^,)'(o) -s'(o) ./1,(o) #o

and thus g'(0) + 0. Furthermore, for z e D,

o * (g * fr), (r)- )rrn, 
* f^,) - e, + i^t(rg,),

and hence

19-:yJ+1+0, ^t€R, z€D,
g'\z ) 7

which gives

f*

0, z€D,

g is univalent for f close-to-convex,

Re (#*,)
the convexity condition for g .

The convexity of g implies t9] that
in particular for f e Ii (p) .
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We found already that Wn € DCP , n € N, and therefore

Wn* (g + ilzg') : (W*'r s) + iz1(Wn* g)' e K(id, ^l e R,

which shows that Wn + 9 satisfies (1) as well. In view of Lemma 6 this implies
that we have to prove the sufficiency part of Theorem 2 only for polynomials g.

Similarly, using Lemma 5, we see that we have to prove f * S e K(9) only for
polynomialr .f e N(d. Obviously we may restrict ourselves again to the case

g : r 12, and we may assum" S(0) : 0. We know already that f * I is univalent
in D. Hence to prove f * g e I{QrlZ) we just have to prove that

R" [(/ * il@nt)]:2(R" f ki\) * (Res("ia)) e ru

under the assumption that Re /(e'a) € PM. But this is surely true if we can show

that u(0) ': Reg(rio) € PMP.
We rewrite (1) as follows: let fi: (1 + "i')lQ - "io), 0 I ? 12tr , and note

that
*gft1t - "nr)l 

: ls, o < 92tr.

Hence

(15) G- etc11, *i1zst): (g+ zs')-"i'(g - zs') e l{(plz),

for 0 < g < 27r. The limiting case 7 --+ oo can be used to show that (15) holds
forg - 0 as well. We now apply Lemma 7 and deduce that

(16) F(z) z: sA + s + zs' :2(ResQ)+ilmzs'(z)) e Kru.

This clearly implies that

(17) LtG'\:"(0)-iu'(0), 0<-0<2tr,

is a convex curve in the sense of Theorem 5: u belongs to PMP, and this completes
the proof of Theorem 2.

We note that the last steps in this proof are invertible: if the curve (L7)

is convex in the sense of Theorem 5, then, by a Theorem of Choquet [2], the
statement (16) also holds true. Using the other direction of Lemma 7 we conclude

that the function g satisfies (1). We have shown:

Lemma 8. Let g be analytic in D , continuous inD with u(0) : Re9(ei0) e
Cl*. Then g € DCP if a,nd only if u fulfills the assumptions of Theorem 5.

7t
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The assertion of Theorem 4 is just a combination of Lemma 4 and Lemma 8.

Proof of Theorem J. Using 9,(z) :: ll\ - rz) we obtain

u,(0):rteg,(eie): * + + !^- "' 2'J-+12 -2r cosg

It is a matter of straightforward calculus to show that u,(0) satisfies the conditions
of Theorem4for 0 ( r ( re. Theorem l followsfor / e X(e).A result of Clunie
and Sheil-Small [3, Theorem 5.3] extends this immediately to K n(p).

Proof of Theorem 3. That f*g e Ks for f e Ku and g € DCP followsfrom
Theorem 2 and Lemma 7. On the other hand, Clunie and Sheil-Small [3, (5.5.4)]
have shown that

fo(r):1 -:+ 
1 +:€Ks.- 1- z (L-r)'' l-z- (1-z1z =

Hence, if g preserves harmonic convexity, we must have .F' : f o*g e I{ g where
.F' is exactly the function (16). As we have seen in the deduction of Lemma 8 this
is equivalent to the fact that g satisfies (1) and hence to g € DCP.
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