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RIEMANN SURFACES WITH
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Introduction

Let W be an open Riemann surface. We say thal W satisfies the (absolute)
LD-maximum principle if every end I/ of. W , i.e., a subregion of ?7 with compact
relative boundary 0V,has the property that each functionin AD(V), the class

of analytic functions with a finite Dirichlet integral on V : V U AV, assumes

its supremum on 0V. It is natural to expect that the validity of this principle
presumes some sort of weakness of the ideal boundary of W . Actually, our main
theorem (Theorem 1) asserts that, given any end V CW and any f e AD(V),
the cluster set of / attached to the relative ideal boundary of I/ is a null-set of
class .l[pr in the familiar notation of Ahlfors-Beurling. This result is completely
analogous to that of Royden concerning Riemann surfaces which satisfy a similar
principle for bounded analytic functions [19].

The interest in the class of surfaces introduced above stems in part from the
fact that it contains both Ox» and O4,p (see Chapter 2). In particular, owing
to Theorem 1, the boundary theorems of Constantinescu (ort (9y2,-surfaces) and
Matsumoto (on Oap-surfaces) can be given a unified treatment. In fact, our
version improves these results in three respects. First, it applies to a wider class

of surfaces. Second, instead of. AD-functions we deal with the larger class of
meromorphic functions with a finite spherical Dirichlet integral. Third, we will
show that the behavior of the functions at the ideal boundary is not just continuous
but even "analytic" in a well justified sense of the word. This in turn makes it
possible to draw certain conclusions of an algebraic nature (see Theorem 3 and its
corollary).

The main theorem also bears on Royden's version of the Riemann-Roch the-
orem (on Oyp-swf.aces). It turns out that, roughly speaking, his result is the
pullback of the classical case via a finite sheeted covering map. Furthermore,
Theorem 1 entails a Kuramochi-type result concerning the nonexistence of certain
meromorphic functions on Riemann surfaces with arbitrary "holes" (Theorem 6).
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1. The main theorem

Let V be an end of an open Riemann surface W . For the sake of convenience,
we always assume that 0V consists of a finite number of piecewise analytic closed
curves. Let f be a nonconstant analytic function on V . Assuming that z e
C \ /(aY), the index of z is defined by

i(z) : (2n)-, 
luro^,r(f @) - ").

With suitable interpretation (see [19]), i(z), as well as the valence u(z) of. f af z
with respect to V , can be defined also for z e f (0V) and even in such a way that
the expression 6(z) : i(z) - r(r) remains unaltered whenever V is subjected to a
compact modification.

Assume now that tr4l satisfies lhe AD-maximum principle, and let / €
AD(V) be nonconstant. In what follows, our principal aim is to show thai 6(z) > 0

for all z e C and the set .E : {z € Cl6(z) > 0} is of class I[p. The proof is
largely based on the ideas of Royden [19]. However, there are some extra problems
due to the fact that the class .4D is not closed under composition of functions.
This state of affairs explains the division of the proof into "topological" and "an-
alytical" parts. More precisely we first show that E is totally disconnected and
then, by means of this preliminary result, that E actually belongs to Np. We
begin with a simple lemma.

Lemma. Let K C C be a proper continuum with connected complement.
Then C \ K carries a nonconstant analytic function g such that both g a.nd g'
are bounded.

Proof. Obviously we may assume that .I( is nowhere dense in C. Fix two
distinct points 21,22 € K. Denote by g, the restriction to C \ /i of a linear
fractional mapping that sends z1 to 0 and z2 to oo. Further, denote by gz
some branch of the mapping z r-+ z1/21 z e gr(C \ I(). Pick out a point z3 €
C \ tpr@G\y'(), and let rp3 stand for the inversion z ;-+ llQ - ,r). Finally,

let ga denote the map z ,-. z2 and 95 the map z ,-. (z - (tlrr)')'. Then
g : gs o ?s o gt o gz o 91 is the desired function. o

We return to the function f € AD$) fixed previously. Set -A/ :
max{l(z)lz e C} and let E7, denote the closed set {z e Cl|(z): i(z) - u(r) >
kl, k e Z. We claim that Eo:C and.E1 G E) is totally disconnected. Ob-
serving that -81,,a1 is empty, we assume that .E7.a1 is totally disconnected, k < N.
We show that E* also is totally disconnected provided that it is nowhere dense
in C. Set D;, : -Er \ -83-p1 and let z € D7,. Since 6 remains unaltered by the
removal from I/ of a compact set with nice boundary, we may modify 7 so that
z hasa neighborhood [/ such that no point of tJ nD1, is assumed (on 7) by /,
while each point of U\D* is assumed (on Iz) by /. Furthermore, we may arrange
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so that U n f(An: 0. If tl n D* is not totally disconnected, we can obviously

find in tl n Dk a proper continuum 1( with connected complement. Let I be a
function described in the preceding lemma. Because g' is bounded, I o / belongs

to AD(V). However, since g assumes a larger value at some point of U than its
maximum in c\u, 9ol must take alarger valuein |/ than on 0v. This violates
the ,4D-maximum principle for W. Thus U t-l D* is totally disconnected. Since

this is true for each z € Dr and E6..1 is totally disconnected, we conclude that
E* is totally disconnected.

Assume then that D7, has interior points, and suppose the interior of D* has

a boundary point z in the complement of Epa1. Modifying v suitably, we can

find an open disc u containing z such that unl(Ov) :0, ;f assumes no values in
U n Dx and assumes all values in U\Dt. Since U fl D7, has interior points, we can

find a rational function g whose only pole is in the interior of. U nD7, and which is

Iargerin U thanin C\U. Since g'isboundedin C\(Un Dx), gof eAD(V).
However, lg(/(s))l ,*.*{ls(/(p))l lp.0v} ror ealh q€ 7 with f(ile u'
Thus we have again arrived at a contradiction to the ,4.D-maximum principle for
w . It follows that D* has no boundary points in the complement of E3-p1 . But
this implies that Dt: C\ E*+r.In other words, D* is the whole complement of
.E111 provided it contains interior points.

Since / is bounded inV, Ds contains aneighborhoodof oo. Therefote, Dp
hasinteriorpointsonlyif &:0' Hence Eo:C andthedeficiencyset E (:Er)
is totally disconnected. We conclude that / has bounded valence: ,(r) < N for
all z e C.

We are now in a position to establish ihe definitive result E e N o. The
proof is again by induction. Recalling that Er+r is empty, assume Ex+t € No
for some k < N. Let z e Dx - Ex \ Et+r. As above, we may modify V
so that z has a neighborhood [/ such that U O f(AV) : 0 and no point of
U n Dx is assumed by f , while each point of U \ D* is assumed by /. Suppose

there is a compact part, say -F', of U nDk that does not belong to N;r. Then
there is a nonconstant -AD-function g defined in C \ F. As shown previously,

/ has bounded valence, so that S o f e AD(V)' By the maximum principle, g

assumes a larger value at some point of U than its maximum in C \ U. Hence

'"p{le(/(pl)l I p e V} > max{lg(/(p))l I ,. 0v}, in violation of the ÅD-
maximum principle for W . We conclude that the compact parts of [/ O D7, are of
class Np. Since this holds for each z € Dp, and E6-p1 € l/p also, we infer that
Ex e No. It follows that .E belongs to I/o as was asserted. We have thereby
completed the proof of

Theorem 1. Let W be a,rt open Riemann surface satisfying the AD-
maximum principle, and let V be a.n end of W . Let f e AD(V) be nonconstant.
Then f has bounded valencel in fact, "(") 

< i(z) for each z € C. Moteover, the
deficiency set E: {z e C I u(z)-i(") < 0} is of class N2.

91
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2. Some consequences

2.I-. We begin with some notation and terminology. By definition, a harmonic
function u with a finite Dirichlet integral on a Riemann surface 17 is in KD(W)
if. *du is semiexact, i.e., [r*du:0 for every dividing cycle 1 on W. If KD(W)
reduces to the constants, 17 is said to belong to Oyp 127, p- 732). Further,
17 belongs to Oa.D [27, p. 17] provided every bordered subregion V of W,
with compact or noncompact border 0V , has the property that the double of
(V,?V) about äV belongs to Oto, the class of surfaces without nonconstant
Äl) -functions. Both 0 x nt arrd 0 -e. D provide examples of surfaces with the ,4,D -
maximum principle as appears from

Proposition 1. (a) Every Riema,nn sudace in Ox»l) Oa.p satisfies the
AD-maximum principle.

(b) Iei W be a Riemann sudace satisfying the AD -maximum principle. Then
W belongs to O ap.

Proof. For W e Oa2 the validity of the AD-maximum principle is es-
sentially proved in [21, pp.373-a]. For W € Oxo the corresponding statement
readily follows from assertion IV in [5, p. 1995] (see also [22, p. 25a]). Assertion
(b) is of course trivial. o

Let V be an end of W. Then MC(V) denotes the class of meromorphic
functions on I/ which have a limit at every point of the relative Stoilow ideal
boundary 0v of. I/. F\rrthermore, B7(I/) stands for the class of constants and
of meromorphic functions of bounded valence orr V , while M D*(V) denotes the
class of meromorphic functions with a finite spherical Dirichlet integral on V.
Whenever / is a function of class MC, we let /* denote the extension of / to
the (relative) ideal boundary.

We first show that the M D* -functions behave continuously at the ideal
boundary provided 17 satisfies the .4D-maximum principle.

Theorem 2. Let W be a Riemann surface satisfying the AD -maximum
principle, and let V be an end of W. Then MD*(I) : BV(V) C MC(V).
Furthermore, f.(/v) belongs to Np for every I e MD.(V).

Proof. Suppose first that f e ,lO(V). By Theorem 1 .f has bounded valence
and the deficiency set .E belongs to .l[p. It is not difficult to verify that Cl(f ;/fl,
the cluster set of / attached to 0v, is contained in E (details can be found in [10,
p.303]). Since E is totallydisconnected, each CI(/;p), the clusterset attached
to p € By, must be a singleton, i.e., f e MC(V). Finally, f-@v) C.E implies
f .@v) € Na.

Now let f e MD.(V) be nonconstant. Let Vt, ..., Vn be mutually disjoint
subends of I/ such that 7\ (UL, %) is compact and / omiis in ui!1% a compact
set .E C C of positive area measure. By a theorem of Nguyen Xuan Uy [23,
Theorem 4.1], we can find a nonconstant analytic function g such that both g
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u;ad g'areboundedin C\-8. Fix ie {L,...,n}. Wearegoingtoshowthat h:
g.(f I 7;) b"lorrgr to AD(V;). To this end, choose .R > 0 such that E c D(0, R) :
{z e C I lrl . -E}. Set Ft:Vrn.f-'(D(0,.8)), F2:V;fi f-'(C \D(o,R))
1Ö : CU {*}) and choose M >0 suchttrat la'(z)l I M f.or z €C\E. Then

I l r,dh ^ 
* d,h : I I r,lg, 

(r (p)) l' d,r 
^ 

* d,f

1

(1 + lf (p)lr)'

Let gdenotethemappinE z å Lf z, z e C\D(0,R). Then o I C1A1O, R) : gpg
with s1 analytic i"ffi. Suppose ls'r@|1 M1 for e@|il. Then

I l,,oo 
A * dh : I L,lg\@(r(p)))l'a@o /) ^ 

* @
< M? I l,,orro.r) ^ 

*d,@

< M?(r + tll)')' I lr,
1

d(v o /) 
^

* d(,p o f)

: u?(t+tla)'z)' ll,,# d,f n*df <*.

Thus ä e AD(V). By Theorem 7, h : g o(f | 7;) has bounded valence. Of course,

the same is true of flV;. Since i e {7,...,r} was arbitrary and 7 \ uprt4 is

compact, / has bounded valence, too.
Now pick out a point zs e C such that the valence of / attains its maximum

at zs. Choose a small disc I/ centered at zs such that /-1(U) consists of a
finite number of mutually disjoint Jordan domains h V. Lel tl.t stand for the
mapping z *+ llQ - ,o). Then ,r/ o / is bounded in 7 \ /-'(U). This implies that
,l,o f e eO(V \/-'(U)). By the first part of the proof, ,bo f € MC(V \/-t(U))
and (t/ 

" f).@v) € lfo. But then I e UC(V) ail f.(Bv) € Np also.

The inclusior- BV(V) c MD.(t) being trivial, the proof is complete. o

Remark. The argument proving the relation h e AD(V) also appears in the
forthcoming paper [12].

In view of the next theorem we may even claim that the M D* -fiinctions
admit an analytic extension to the ideal boundary.
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Theorem 3. Let W be a Riema,nn surface satisfying the AD -maximum
principle and let po be a point of B, the ideal boundary of W , sueh that some
end V C W with po € 0v camies a nonconsta,nt M D* -function. Then there is an
end Vs C W with po e Byo a.nd an analytic map g of bounded valence from Vo

into the closed unit disc D with p(lvo) c 0D such that for every f e MD.(V1)
(:BV(VI)) thereisauniquefunction g meromorphicon D sothat f :gog.
In pa,rticular, _g å g o g is an isomorphism of M(D), the field of meromorphic
functions on D, onto M D*(Vs).

We omit the proof because it is essentially the same as that of [10, Theorem
5], given in the context of Riemann surfaces with the ,AB-maximum principle.
How to treat sets of class N2 instead of Ns appears from [9, p. 14].

Corollary. Let W be a Riemarn sudace satisfying the AD -maximum prin-
ciple and let V CW be an end. Then MD*(I) (: BV(V» is a field.

Remark. In view of Proposition 1, Theorems 2 and 3 provide improvements
of the boundary theorems of Constantinescu ([5, Th6oröme 1], [6, Theorem],122,
Theorem X 4 C (a)]) and Matsumoto ([15, Theorem 3], [21, Theorem VI 2 C];
see a,lso [L2, Theorem 3]). In particular, it follows from Theorem 2 that the
requirement that the boundary elements be weak is superfluous in Constantinescu's
theorem. This statement is at odds with Remark 2inl22, p.265]. It seems that
the authors of l22l overlooked the possibility that the class of functions involved
in Theorem X 4 C (c) reduces to the constants.

2.2. A global counterpart to the preceding theorem is the following

Theorem 4. Let W be a Riema,nn surface satisfying the AD -maximum
principle. Then either
(a) MD.(W): BV(W): C, or
(b) MD.(W)(: BV(W)) is a freld algebraically isomorphic to thefield of rationa)

functions on a compact Riemann surface Ws, which is uniquely determined
up to a conformal equivalence. Moreover, the isomorpåjsm is induced by
an analytic mapping g of bounded valence from W into Ws such that the
defrciency set of g (i.e., the set of points in Wo not covered maximally) is
of class Np.

Proof. Suppose lhat MD*(I,Z) contains a nonconstant function /. By The-
orern2, /.(B) belongs to N2. Thus /-(0) does not separate the plane. Hence

the valence of / is finite and constant in Ö\ f.@); in other word.s, the deficiency
set of / belongs to I[p. The theorem now follows from [9, Theorem 7]. o

Remark. Suppose, in particular, that W has finite genus. Then W canbe
taken as the complement of a closed set of class y'fp on a compact surface I7*.
It is readily shown (see e.g. [9, Lemma 6]) that the elements of BV(W) coincide
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with the restrictions to W of the rational functions ot W*. Accordingly, the same

is true of. M D*(W) so that we may take Wg : W* in this situation.
The next theorem shows how to find the genus of Wo in terms of analytic dif-

ferentials on W . The proof to be given is an adaptation of the argument by Accola

[1, pp. 23-24| As usual, l"(W) denotes the space of square integrable analytic
differentials on W, while f',(I4z) stands for the subspace of f,(I4/') consisting of
differentials which are exact outside some compact set (which may depend on the
differential).

Theorem 5. Let W be a Riemann surface satisfying the AD -maximum
principle and suppose MD-(W) contains anonconstattt function. Let Ws be the
compact Riemann surface described in Theorem 4. Then the genus of Wo equaJs

dim ri(il/) .

Proof. Let g: W -+ Wo be the mapping given in the preceding theorem.
Since the genus of We equals diml"(I4r6), it is enough to show that l'"(I{z):
{v*rll e T,(Wo)}, *h"r" g*ar denotes the pullback of o via g.

Let E C Wo denote the deficiency set of p; recall that E is of class No. Since

E is totally disconnected, we can find an open simply connected neighborhood
U of. E. Fix c.r e l,(Wo). Then wlU : d/ with / analytic in U. Now
p-'(Wo\U) C W is compact arrd g*w lV-'@) : d(f oV), so that g*u € t'"(W) .

Conversely fix cu € t',(W) not identically zero (if fl(W) : {0}, then also
t"(Wr): {0} by the preceding argument). By definition, there is a compact set

K cW suchthat rlW\ K -- df forsome f e AD(W \K). F\rrther, let c.rs bea
nontrivial meromorphic differential on Ws whose poles do not lie in .8. As above,
wecarlfindacompactset K'CW andafunction ge AD(W \.I(') suchthat
g*oolw\K'- dg. We are going to show that the function ulg*uo belongs to
M D*(W).

Fix ps e P, the ideal boundary of. W . Invoking Theorem 3, we can find
an end Vs c W such that po e gvo and 7s n (K U lit) :0 and an analytic
mapping 12 from % into D such that / ** -f o ry' is an isomorphism of M(D)
onto MD.(Vo). Hence there are functions fo,go e M(D) such that f lVo:
footb and g lVo:9ootb. Of course, fÅlg'o also belongs to M(D), and because

ff(,lsDotb: @f ldg)lvo: @lp*ro)lVo, lrlp*ro)l% belongs to MD.(Vs).
By the compactness of, B, ,'t/g*uo e MD-(W), as was asserted.

By Theorem 4, there is a rational function äs on Wo such that ufg*c-s:
hoo?. Thus ,:(hoog)g"uo:g*(hses),i.e., u is thepullback via g of an
analytic differential on Ws. The proof is complete. o

2.3. Consider now the situation of [17, Section 3] (see also [21, pp. 138-
1 a]); in other words, suppose I4l is an open Riemann surface of class Oxo,
and let M(W) denote the class of all meromorphic functions f ot W such that
/ has a finite number of poles and a finite Dirichlet integral over the comple-
ment of a neighborhood of its poles. Assume also that M(W) is nontrivial, i.e.,
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contains a nonconstant function. Since 17' satisfies the -AD-maximum principle
(Proposition 1), each f e U1W1 is bounded outside a compact subset of. W.
Tfuts M(W) constitutes a ring. We maintain that the quotient field of M(W)
is MD*(W) (: BV(W)). Indeed, given a nonconstant function f € MD.(W)
choose a point zo € C such that the valence of / attains its maximum at zs.
Then g : 7lU - zs) is bounded off a compact subset of. W (cf. the proof of
Theorem 2). Hence g e M(W). Since f : (7 + zoS)lg, the assertion follows.

By Theorem 4, there exist a compact Riemann surface Ws arrd an analytic
mapping g of. a, bounded valence from W into W6 such that each / e MD-(W)
admits a representation

(*) f - 9 o P,

where g is a rational function on Ws. C1early, f e M(W) if and only if g is a
rational function on Ws whose poles lie outside the defrciency set of g. It follows
that the problem of whether there is a function in M(W) which is a multiple of
a given divisor and has a given principal part can be decided in terms of analytic
objects on Wg. In this sense, Theorem 2in 11,7, p. 47) ([21, Theorem II 16 I])
can be regarded as the pullback via the map p of the classical Riemann-Roch
theorem. Of course, the rigidity of the class M(W) , as evidenced in ( * ), imposes
severe limitations on potential singularities for elements of M(W). In particular,
M(W) separates points of. W if and only if W has finite genus. As observed
previously, 77 is then the complement of a set of class Np on a compact Riemann
surface.

Remark 1. In his paper [1] Accola discusses more broadly generalizations
of some classical theorems from the point of view of Heins' composition theorem
[8], which is a special case of Theorem 4.

Remark 2. A frequent substitute for the field of rational functions is the
class of quasirational functions in the sense of Ahlfors [3. p. 316]. In the present
situation a function is quasirational if and only if it belongs to MD*(W) and is
bounded away both from 0 and from oo outside some compact subset of. W.

2.4. Let Us denote the class of open Riemann surfaces whose ideal boundary
contains a point of positive harmonic measure [21, p. 385]. Suppose that W
belongs to Us and satisfies the AD-maximum principle, and let .I( be an arbitrary
compact set in W with connected complement. Let f e MD.(W\K). By
Theorem 2, / admits a continuous extension to the ideal boundary of I4z. On the
other hand, Theorem X 4 C (c) in [22] implies that / must be constant. Thus,
denoting by Oyp- the class of Riemann surfaces without nonconstant MD*-
functions, we obtain the following theorem, which contains [21, Theorem VI 5 B]
and [12, Corollary to Theorem 3].
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Theorem 6. Let W be a Riemann surface which satisfies the AD -maximum
principle a,nd belongs to [)s, and let K be an arbitrary compact set in W with
connected complement. Then W \ I{ € Oyp* .

Familiar instances of Us-surfaces are furnished by the interesting class (?pp \
06, where Ou» is the class of Riemann surfaces without nonconstant Dirichlet
bounded harmonic functions and 06 the class of parabolic surfaces. Recall that
the ideal boundary of each W e Ono \ 06 contains exactly one point of positive

harmonic measure. Since every surface it On» also satisfies the AD-maximum
principle (for osp C oxo), we have the original version of Kuramochi [14,
Theorem 1], [21, Corollary to Theorem III 5I].

Corollary. Let W €Ono\Oc a'ndlet I{ be an atbitta,ry compact set in
W with connected complement. Then I4l \ /( € O ao .

3. Characterizations of Riemann surfaces with
th,e AD -rnaximum principle

8.1. It is clear that a Riemann surface of finite genus satisfies the AD-
maximum principle if and only if it belongs to O to. On the other hand, it is

known that for these surfaces 0 ap : O xo [21, Theorem II ]'4 D]' However, in the
general case the inclusions given in Proposition 1 are strict. The next theorem gives

some criteria to recognize surfaces with the .4D-maximum principle. In particular,
we will show that it suffices to impose the maximum principle on the bounded
AD-functions. Given an open Riemann surface W and an end V CW, we set

ABD(V) : U I / is bounded in I/ and / e AD(V)\ and say that W satisfies

the ABD-ma,ximum principle if max{lffp)l I p € ov}: sup{l/@)l I p e V} for
each end V cW and for each / e ABD(V).

Theorem 7. Let W be an open Riemann surface. Then the following state-

ments are equivalent:
(1) W satisfies the AD-maximum principle.
(2) W satisfies the A_BD -maximum principle.
(3) MD"(V) C BV(V) for every end V cW.
(a) For every end V c W and for every f e MD-(V) the clustet set of f

attached to the relative ideal boundary of V is totally disconnected.

Proof. The implications (1) + (3) and (1) =+ (4) are direct consequences of
Theorem 2. Also, (+) + (3) is immediate by observing that the valence function

is finite and constant in every component of C \ (f @V)u Cl (/; g1)) . The impli-
cation (t) + (2) being trivial, there remains to be proved (3) + (2) and (Z) +
( 1).

(S) + (2): Suppose there is an end V c W and an ABD-function / on

V with *u"{l/(r)l lp e 0V} <."p{l/(p)l I n e V}. We may assume that



98 Pentti Järvi

."p{l/(e)l I n e V} : t. We maintain that AD(V) contains a function of
unbounded valence. If I / BV(V), there is nothing to prove. Otherwise pick out
a sequence of points (2") h /(V) such that

log

By a result of Carleson [4, Theorem L], there is a nonconstant .AD-function g in
the open unit disc such that g(""):0 for each n. Since / has bounded valence,

Sof €AD(V), while sof /BV(V). Theimplicationfollows.
(2) + (1): Suppose that ?I/ satisfies the ABD-maximum principle, and let 7

be an end of W . If suffices to show that AD(V) contains no unbounded function.
Assume AD(V) contains one, say .f , and fix r? > 0 such that f(lv) c D(O,-B)
(: the open disc of radius .E centered at 0). Assume first that the interior of
(Ö 1 O1O, E)) \ /(y) is nonempty. Then we ca"tr find a point zs in this interior
and a positive r such that D(zs,r)n f(V) * 0 a',d D(zo,r) n D(0, R):0. lt
follows that 1/(f - ze) belongs to ABD(7) and takes a larger value in V than
on 0V. This contradicts the ABD-maximum principle for W . Assume then that
/(Iz) is {""r"i" Ö\D(0-E). Since f € AD(V), / omits inV acompact set
E C C \ D(0, R) of positive area measure. Invoking [23, Theorem 4.1], we find a
nonconstant analytic function g such that g and g' are bounded in C \ E. Then
sof e ABD(V). Theset /(I/) beingdensein Ö\D@;O,9of assumes alarger
value at some point of 7 than its maximurn on 0V. Thus we have again arrived
at a contradiction to the ABD-maximum principle for W. o

Remark. In view of Theorem 2 and Corollary to Theorem 3 one may ask
whether the condition MD*(V) C UC(V) or the field property of. MD*IV)
implicates the validity of the ,4.D-maximum principle. Cf. also [11, Theorems 7
and 2]. Unfortunately, we have not been able to answer these questions.

3.2. Suppose 7 is an end of a Riemann surface satisfying the ,4.D-maximum
principle. If the genus of 7 is infinite, AD(V) fails to separate points of 7; this
is immediate by Theorem 3. In other words, in case AD(V) separates points, I/
can be taken as the complement on a finite Riemann surface of a closed set of class
Iy'p. Actually, in order to establish this result one need not the full force of the
.AD-maximum principle as shown by

Theorem 8. Let W be an open Riemann surface, and let V C W be a,n

end such that 0V consists of a finite number of closed a,nalytic curves. Suppose
that AD(V) separates the points of V and for each f e AD(v) max{lf(p)l 

I

e e AV\ : sup{l/(p)l I e e V}. Then there exist a frnite Riemann surface V*
and a compact set E CV* of class Np such that V is conforrnally equivaJent to
y- \ E. Further, V* is uniquely determined up to a conformal equivalence.

/ 1 \-tlzI _t
\t - lr"l)å
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Prcof. The assertion is an easy consequence of a theorem by Royden. Namely,
by [20, Theorem 3] V has finite genus. Therefore, V car, be taken as a subdomain
of a compact surface Wo such lhat Wo\ I/ consists of a finite number of mutually
disjoint closed discs U1 , ..., (Jn corresponding the components of 0V and of a
closed set E. Set I/* : V U E. Assuming that .E fails to be of class Np, we

can find a nonconstant function f ia AD(Wg \ E) [2i, Theorem I 8 E]. By the
maximumprinciple *""{l/(r)l lre ULr 6u} < '"p{l/(p)l lnev1, contrary
to the assumption. The uniqueness of V" is obtained by observing that sets of
class Np are removable singularities for conformal mappings. o

Remark. Wermer [2a] has proved a similar result about Riemann surfaces
satisfying the corresponding maximum principle for bounded analytic functions.

4. Concluding remarks

Needless to say, the validity of the AD-maximum principle is preserved under
conformal mappings. More generally, given two Riemann surfaces W and Wt arrd

a proper analytic mapping W + Wt, 77 satisfies the AD-maximum principle if
and only if 77' does. Also it is clear from the very definition that validity of
lhe AD-maximum principle, unlike belonging to Oap, is a property of the ideal
boundary (see [21, p. 54]).

Riemann surfaces with small boundary are close to being maximal. For in-
stance, it is known that surfaces of class Oxo or O*o are essentially maximal,
i.e., they cannot be realized as nondense subdomains of other surfaces. For Oyp
this result is due to Jurchescu (see lZZ, p.270]) and for 04.p to Qiu Shuxi [16,
Theorem 3]. On the other hand, one can exhibit Riemann surfaces which are es-

sentially extendable and satisfy the AD-maximum principle; take, for example,
the construction by Heins [7, pp. 298-299] modified in an obvious way. However,
provided that a surface also carries enough locally defined M D* -furrcfions, it is

essentially maximal; what is more, the ideal boundary is absolutely disconnected
(see 122, pp. 240 and 2701).

Proposition 2. Let W be a Riemann surface which satisfies the AD -
maximum principle and let B be the ideal boundary of W. Suppose that for
every point p e P there is an end V C W with p e 0v such that M D*(V)
contains a nonconsta,rtt function. Then B is absolutely disconnected.

Proof. Fix ps e 0. By Theorem 3 we can find an end I/ C llr with po e 0v
and a function f e BV(V): MD.(V) such that f (V) c D, the open unit disc,
and f (0V) C AD. Since f.(/v) belongs to No (Theorem 2), and the mapping
p,- f (p), y\.f -r (f.@")) - D\f.@v) is proper, we can apply [13, Theorem 1].

Thus By is absolutely disconnected. Since po € B was arbitrary, the proposition
follows. o
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