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RIEMANN SURFACES WITH
THE AD-MAXIMUM PRINCIPLE

Pentti Jarvi

Introduction

Let W be an open Riemann surface. We say that W satisfies the (absolute)
AD -maximum principle if every end V of W i.e., a subregion of W with compact
relative boundary AV, has the property that each function in AD(V), the class
of analytic functions with a finite Dirichlet integral on V = V U 9V, assumes
its supremum on OV . It is natural to expect that the validity of this principle
presumes some sort of weakness of the ideal boundary of W. Actually, our main
theorem (Theorem 1) asserts that, given any end V C W and any f € AD(V),
the cluster set of f attached to the relative ideal boundary of V is a null-set of
class Np in the familiar notation of Ahlfors-Beurling. This result is completely
analogous to that of Royden concerning Riemann surfaces which satisfy a similar
principle for bounded analytic functions [19].

The interest in the class of surfaces introduced above stems in part from the
fact that it contains both Ogp and O4.p (see Chapter 2). In particular, owing
to Theorem 1, the boundary theorems of Constantinescu (on O p-surfaces) and
Matsumoto (on O 4. p-surfaces) can be given a unified treatment. In fact, our
version improves these results in three respects. First, it applies to a wider class
of surfaces. Second, instead of AD-functions we deal with the larger class of
meromorphic functions with a finite spherical Dirichlet integral. Third, we will
show that the behavior of the functions at the ideal boundary is not just continuous
but even “analytic” in a well justified sense of the word. This in turn makes it
possible to draw certain conclusions of an algebraic nature (see Theorem 3 and its
corollary).

The main theorem also bears on Royden’s version of the Riemann—-Roch the-
orem (on O p-surfaces). It turns out that, roughly speaking, his result is the
pullback of the classical case via a finite sheeted covering map. Furthermore,
Theorem 1 entails a Kuramochi-type result concerning the nonexistence of certain
meromorphic functions on Riemann surfaces with arbitrary “holes” (Theorem 6).
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1. The main theorem

Let V be an end of an open Riemann surface W. For the sake of convenience,
we always assume that OV consists of a finite number of piecewise analytic closed
curves. Let f be a nonconstant analytic function on V. Assuming that z €

C\ f(0V), the index of z is defined by
i(z) = (2m)7 ! dar —z).
(z) = (2m) /av g(f(p) - 2)

With suitable interpretation (see [19]), i(z), as well as the valence v(z) of f at z
with respect to V', can be defined also for z € f(9V) and even in such a way that
the expression é(z) = ¢(z) — v(z) remains unaltered whenever V is subjected to a
compact modification.

Assume now that W satisfies the AD-maximum principle, and let f €
AD(V) be nonconstant. In what follows, our principal aim is to show that §(z) > 0
for all 2 € C and the set E = {z € C|§(z) > 0} is of class Np. The proof is
largely based on the ideas of Royden [19]. However, there are some extra problems
due to the fact that the class AD is not closed under composition of functions.
This state of affairs explains the division of the proof into “topological” and “an-
alytical” parts. More precisely, we first show that E is totally disconnected and
then, by means of this preliminary result, that E actually belongs to Np. We
begin with a simple lemma.

Lemma. Let K C C be a proper continuum with connected complement.
Then C\ K carries a nonconstant analytic function g such that both ¢ and g¢'
are bounded.

Proof. Obviously we may assume that K is nowhere dense in C. Fix two
distinct points 21,z € K. Denote by ¢; the restriction to C\ K of a linear
fractional mapping that sends z; to 0 and z; to co. Further, denote by ¢o
some branch of the mapping z — 2'/2, z € ¢,(C\ K). Pick out a point z3 €
C\ ¢2(¢1(C\ K)), and let 3 stand for the inversion z — 1/(z — z3). Finally,

let ¢4 denote the map z + 2? and ¢s the map z — (z — (1/23)2)2. Then
g = @5 0@y 0p30pg 0y is the desired function. o

We return to the function f € AD(V) fixed previously. Set N =
max{i(z)|z € C} and let E) denote the closed set {z € C|6(z) = i(z) — v(z) >
k}, k € Z. We claim that Ey = C and E; (= E) is totally disconnected. Ob-
serving that En4 is empty, we assume that Exy; is totally disconnected, £ < N.
We show that E; also is totally disconnected provided that it is nowhere dense
in C. Set Dy = Ex \ Ex41 and let z € Dy. Since é remains unaltered by the
removal from V of a compact set with nice boundary, we may modify V so that
z has a neighborhood U such that no point of U N Dy is assumed (on V') by f,
while each point of U\ Dy, is assumed (on V') by f. Furthermore, we may arrange
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so that U N f(8V) = 0. If UN Dy is not totally disconnected, we can obviously
find in U N Dy a proper continuum K with connected complement. Let g be a
function described in the preceding lemma. Because ¢’ is bounded, g o f belongs
to AD(V). However, since g assumes a larger value at some point of U than its
maximum in C\U, go f must take a larger value in V' than on V. This violates
the AD-maximum principle for W. Thus U N Dy is totally disconnected. Since
this is true for each z € Dy and Ej4; is totally disconnected, we conclude that
E} is totally disconnected.

Assume then that Dy has interior points, and suppose the interior of Dy has
a boundary point z in the complement of Er4i. Modifying V' suitably, we can
find an open disc U containing z such that UNf(dV) = @, f assumes no values in
UND;, and assumes all values in U \ Dy . Since UN D} has interior points, we can
find a rational function g whose only pole is in the interior of U N Dy and which is
larger in U than in C\U. Since ¢’ is bounded in C\(UNDy), go f € AD(V).
However, |g(f(q))| > max{|g(f(p))| ‘ p € 9V} for each ¢ € V with f(q) € U.
Thus we have again arrived at a contradiction to the AD-maximum principle for
W . It follows that Dj has no boundary points in the complement of Exy;. But
this implies that Dy = C\ Ex+1. In other words, Dy is the whole complement of
E)41 provided it contains interior points.

Since f is bounded in V', Dy contains a neighborhood of co. Therefore, Dy
has interior points only if ¥ = 0. Hence Ey = C and the deficiency set E (= E1)
is totally disconnected. We conclude that f has bounded valence: v(z) < N for
all z€ C.

We are now in a position to establish the definitive result E € Np. The
proof is again by induction. Recalling that En4; is empty, assume Ex41 € Np
for some k < N. Let z € Dy = Ei \ Ex+1. As above, we may modify V
so that z has a neighborhood U such that U N f(dV) = 0 and no point of
U N Dy, is assumed by f, while each point of U \ Dy is assumed by f. Suppose
there is a compact part, say F, of U N Dy that does not belong to Np. Then
there is a nonconstant AD-function g defined in C\ F. As shown previously,
f has bounded valence, so that g o f € AD(V). By the maximum principle, g
assumes a larger value at some point of U than its maximum in C\ U. Hence
sup{lg(f(p))] | peV} > max{|g(f(p))| ‘ p € OV}, in violation of the AD-
maximum principle for W. We conclude that the compact parts of U N Dy are of
class Np. Since this holds for each z € Dy, and Er4+; € Np also, we infer that
E; € Np. It follows that E belongs to Np as was asserted. We have thereby
completed the proof of

Theorem 1. Let W be an open Riemann surface satisfying the AD-
maximum principle, and let V be an end of W. Let f € AD(V) be nonconstant.
Then f has bounded valence; in fact, v(z) < i(2) for each z € C. Moreover, the
deficiency set E = {z € C | v(z) —i(2) < 0} is of class Np.
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2. Some consequences

2.1. We begin with some notation and terminology. By definition, a harmonic
function u with a finite Dirichlet integral on a Riemann surface W is in KD(W)
if * du is semiexact, i.e., f7 *du = 0 for every dividing cycle vy on W. If KD(W)
reduces to the constants, W is said to belong to Oxp [21, p. 132]. Further,
W belongs to O4ep [21, p. 17] provided every bordered subregion V of W,
with compact or noncompact border 0V, has the property that the double of
(V,0V) about 9V belongs to Oap, the class of surfaces without nonconstant
AD -functions. Both Ogp and O 4. p provide examples of surfaces with the AD-
maximum principle as appears from

Proposition 1. (a) Every Riemann surface in Oxp U Q4ep satisfies the
AD -maximum principle.

(b) Let W be a Riemann surface satisfying the AD -maximum principle. Then
W belongs to O ap.

Proof. For W € O4op the validity of the AD-maximum principle is es-
sentially proved in [21, pp. 373-4]. For W € Okp the corresponding statement
readily follows from assertion IV in [5, p. 1995] (see also [22, p. 254]). Assertion
(b) is of course trivial. o

Let V be an end of W. Then MC(V) denotes the class of meromorphic
functions on V' which have a limit at every point of the relative Stoilow ideal
boundary By of V. Furthermore, BV (V) stands for the class of constants and
of meromorphic functions of bounded valence on V', while M D*(V) denotes the
class of meromorphic functions with a finite spherical Dirichlet integral on V.
Whenever f is a function of class MC, we let f* denote the extension of f to
the (relative) ideal boundary.

We first show that the MD*-functions behave continuously at the ideal
boundary provided W satisfies the AD-maximum principle.

Theorem 2. Let W be a Riemann surface satisfying the AD -maximum
principle, and let V be an end of W. Then MD*(V) = BV(V) c MC(V).
Furthermore, f*(Bv) belongs to Np for every f € MD*(V).

Proof. Suppose first that f € AD(V). By Theorem 1 f has bounded valence
and the deficiency set E belongs to Np. It is not difficult to verify that Cl1(f; v),
the cluster set of f attached to By, is contained in E (details can be found in [10,
p. 303]). Since E is totally disconnected, each Cl(f;p), the cluster set attached
to p € By, must be a singleton, ie., f € MC(V). Finally, f*(fv) C E implies
F*(8v) € Np. ]

Now let f € MD*(V) be nonconstant. Let Vi, ..., V,, be mutually disjoint
subends of V' such that V'\ (U, V;) is compact and f omits in U™, Vi a compact
set E C C of positive area measure. By a theorem of Nguyen Xuan Uy [23,
Theorem 4.1], we can find a nonconstant analytic function g such that both g¢
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and g’ are bounded in C\ E. Fix 7 € {1,...,n}. We are going to show that h =
go(f | V;) belongs to AD(V;). To this end, choose R > 0 such that E C D(0,R) =

{z € C|lzl <R}. Set FH =V;n f~(D(O,R)), F» = V:n f~1(C\ D(0, R))
(C = CU{c0}) and choose M > 0 such that |¢'(z)] < M for z € C\ E. Then

//p dh A+ dh = / g (F(p))|"df A +df

<(14+R? 2M2// (1+R2)2df/\*df_

S(l—i—R)M //Fl W(lf/\*df<oo.

Let ¢ denote the mapping z — 1/z, 2 € C\D(0, R). Then g | C\D(0,R) = g10¢
with g, analytic in D(0,1/R). Suppose |g}(z)| < M; for € D(0,1/R). Then

//F, dh/\*dﬁ=//F?Ig’l(w(f(p)))lzd(wOf)/\*d(swf)
SM?/ d(po f)Axd(po f)
F,
2 1 -
< MX(1+41/R)? d(po f)Axd(po
C+ym)’ [ e DA

2 22 1 xdf < oo
=M:(1+1/R)?) //F (1+|f(p)|2)2df/\ df < oo.

Thus h € AD(V;). By Theorem 1, h = go(f|V;) has bounded valence. Of course,
the same is true of f|V;. Since i € {1,...,n} was arbitrary and V \ U™, V; is
compact, f has bounded valence, too.

Now pick out a point zy € C such that the valence of f attains its maximum
at zo. Choose a small disc U centered at zy such that f~1(U) consists of a
finite number of mutually disjoint Jordan domains in V. Let 3 stand for the
mapping z — 1/(z—zp). Then o f is bounded in V\ f~}(U). This implies that
Yof € AD(V\ f~(U)). By the first part of the proof, ¢ o f € MC(V\ f~1(U))
and (¢ o f)*(Bv) € Np. But then f € MC(V) and f*(8v) € Np also.

The inclusion BV(V) C MD*(V) being trivial, the proof is complete. o

Remark. The argument proving the relation h € AD(V) also appears in the
forthcoming paper [12].

In view of the next theorem we may even claim that the M D*-functions
admit an analytic extension to the ideal boundary.
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Theorem 3. Let W be a Riemann surface satisfying the AD-maximum
principle and let p, be a point of (8, the ideal boundary of W, such that some
end V C W with py € By carries a nonconstant M D* -function. Then there is an
end Vo C W with pg € Bv, and an analytic map ¢ of bounded valence from Vo
into the closed unit disc D with p(8V,) C D such that for every f € MD*(V;)
(= BV(V,)) there is a unique function g meromorphic on D so that f = go .
In particular, g — g o ¢ is an isomorphism of M(D), the field of meromorphic
functions on D, onto M D*(Vj).

We omit the proof because it is essentially the same as that of [10, Theorem
5], given in the context of Riemann surfaces with the AB-maximum principle.
How to treat sets of class Np instead of Np appears from [9, p. 14].

Corollary. Let W be a Riemann surface satisfying the AD -maximum prin-
ciple and let V. C W be an end. Then MD*(V) (= BV(V)) is a field.

Remark. In view of Proposition 1, Theorems 2 and 3 provide improvements
of the boundary theorems of Constantinescu ([5, Théoréme 1], [6, Theorem], [22,
Theorem X 4 C (a)]) and Matsumoto ([15, Theorem 3], [21, Theorem VI 2 CJ;
see also [12, Theorem 3]). In particular, it follows from Theorem 2 that the
requirement that the boundary elements be weak is superfluous in Constantinescu’s
theorem. This statement is at odds with Remark 2 in [22, p. 265]. It seems that
the authors of [22] overlooked the possibility that the class of functions involved
in Theorem X 4 C (c) reduces to the constants.

2.2. A global counterpart to the preceding theorem is the following

Theorem 4. Let W be a Riemann surface satisfying the AD -maximum

principle. Then either

(a) MD*(W)=BV(W)=C, or

(b) MD*(W)(= BV(W)) is a fleld algebraically isomorphic to the field of rational
functions on a compact Riemann surface Wy, which is uniquely determined
up to a conformal equivalence. Moreover, the isomorphism is induced by
an analytic mapping ¢ of bounded valence from W into W, such that the
deficiency set of ¢ (i.e., the set of points in Wy not covered maximally) is
of class Np.

Proof. Suppose that M D*(W) contains a nonconstant function f. By The-
orem 2, f*(f) belongs to Np. Thus f*(8) does not separate the plane. Hence
the valence of f is finite and constant in C \ f*(B); in other words, the deficiency
set of f belongs to Np. The theorem now follows from [9, Theorem 7]. o

Remark. Suppose, in particular, that W has finite genus. Then W can be
taken as the complement of a closed set of class Np on a compact surface W*.
It is readily shown (see e.g. [9, Lemma 6]) that the elements of BV(W) coincide
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with the restrictions to W of the rational functions on W*. Accordingly, the same
is true of M D*(W) so that we may take Wy = W* in this situation.

The next theorem shows how to find the genus of W, in terms of analytic dif-
ferentials on W . The proof to be given is an adaptation of the argument by Accola
[1, pp. 23-24]. As usual, I'o(W) denotes the space of square integrable analytic
differentials on W, while I',(W) stands for the subspace of I',(W) consisting of
differentials which are exact outside some compact set (which may depend on the
differential).

Theorem 5. Let W be a Riemann surface satisfying the AD -maximum
principle and suppose M D*(W) contains a nonconstant function. Let W be the
compact Riemann surface described in Theorem 4. Then the genus of W, equals

dim T (W).

Proof. Let ¢: W — W, be the mapping given in the preceding theorem.
Since the genus of Wy equals dimT,(W)), it is enough to show that I'\,(W) =
{prwlwe To(Wo)}, where ¢*w denotes the pullback of w via ¢.

Let E C Wy denote the deficiency set of ¢; recall that E is of class Np. Since
E is totally disconnected, we can find an open simply connected neighborhood
U of E. Fix w € I'4(W,). Then w|U = df with f analytic in U. Now
@ Y (Wy\U) C W is compact and ¢*w |~} (U) = d(foy), so that p*w € T, (W).

Conversely, fix w € I',(W) not identically zero (if T',(W) = {0}, then also
I',(Wy) = {0} by the preceding argument). By definition, there is a compact set
K C W such that w | W\ K = df for some f € AD(W\K). Further, let wy be a
nontrivial meromorphic differential on W, whose poles do not lie in E. As above,
we can find a compact set K' C W and a function ¢ € AD(W \ K') such that
©*wo |W \ K' = dg. We are going to show that the function w/p*wo belongs to
MD*(W).

Fix py € B, the ideal boundary of W. Invoking Theorem 3, we can find
an end Vo C W such that py € By, and Vo N (K U K') = § and an analytic
mapping ¥ from V; into D such that f — f o is an isomorphism of M (D)
onto MD*(Vy). Hence there are functions fo,g90 € M(D) such that f|V, =
foo and g|Vy = goot. Of course, fi/g} also belongs to M (D), and because
(f3/96) 0% = (df/dg) | Vo = (w/¢*wo) | Vo, (w/¢*wo)|Vo belongs to MD*(Vs).
By the compactness of 8, w/p*wy € MD*(W), as was asserted.

By Theorem 4, there is a rational function hy on Wy such that w/¢*wg =
ho o w. Thus w = (ho 0 ¢)p*wo = ¢*(howo), i.e., w is the pullback via ¢ of an
analytic differential on Wy. The proof is complete. o

2.3. Consider now the situation of [17, Section 3] (see also [21, pp. 138-
144]); in other words, suppose W is an open Riemann surface of class Okp,
and let M(W) denote the class of all meromorphic functions f on W such that
f has a finite number of poles and a finite Dirichlet integral over the comple-
ment of a neighborhood of its poles. Assume also that M(W) is nontrivial, i.e.,
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contains a nonconstant function. Since W satisfies the AD-maximum principle
(Proposition 1), each f € M(W) is bounded outside a compact subset of W.
Thus M(W) constitutes a ring. We maintain that the quotient field of M(W)
is MD*(W) (= BV(W)). Indeed, given a nonconstant function f € MD*(W)
choose a point zy € C such that the valence of f attains its maximum at zg.
Then g = 1/(f — 29) is bounded off a compact subset of W (cf. the proof of
Theorem 2). Hence g € M(W). Since f = (1 + z99)/g, the assertion follows.

By Theorem 4, there exist a compact Riemann surface W, and an analytic
mapping ¢ of a bounded valence from W into Wy such that each f € MD*(W)
admits a representation

(%) f=gop,

where ¢ is a rational function on Wy. Clearly, f € M(W) if and only if ¢ is a
rational function on Wy whose poles lie outside the deficiency set of . It follows
that the problem of whether there is a function in M(W) which is a multiple of
a given divisor and has a given principal part can be decided in terms of analytic
objects on Wy. In this sense, Theorem 2 in [17, p. 47] ([21, Theorem II 16 I})
can be regarded as the pullback via the map ¢ of the classical Riemann-Roch
theorem. Of course, the rigidity of the class M(W), as evidenced in (), imposes
severe limitations on potential singularities for elements of M(W). In particular,
M(W) separates points of W if and only if W has finite genus. As observed
previously, W is then the complement of a set of class Np on a compact Riemann
surface.

Remark 1. In his paper [1] Accola discusses more broadly generalizations
of some classical theorems from the point of view of Heins’ composition theorem
[8], which is a special case of Theorem 4.

Remark 2. A frequent substitute for the field of rational functions is the
class of quasirational functions in the sense of Ahlfors [3. p. 316]. In the present
situation a function is quasirational if and only if it belongs to M D*(W) and is
bounded away both from 0 and from oo outside some compact subset of W.

2.4. Let Us denote the class of open Riemann surfaces whose ideal boundary
contains a point of positive harmonic measure [21, p. 385]. Suppose that W
belongs to Ug and satisfies the AD-maximum principle, and let K be an arbitrary
compact set in W with connected complement. Let f € MD*(W \ K). By
Theorem 2, f admits a continuous extension to the ideal boundary of W. On the
other hand, Theorem X 4 C (c) in [22] implies that f must be constant. Thus,
denoting by Oprp+ the class of Riemann surfaces without nonconstant M D*-
functions, we obtain the following theorem, which contains [21, Theorem VI 5 B]
and [12, Corollary to Theorem 3].
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Theorem 6. Let W be a Riemann surface which satisfies the AD -maximum
principle and belongs to Us, and let K be an arbitrary compact set in W with
connected complement. Then W\ K € Oy p-.

Familiar instances of Ug-surfaces are furnished by the interesting class Ogp\
O¢, where Opp is the class of Riemann surfaces without nonconstant Dirichlet
bounded harmonic functions and Qg the class of parabolic surfaces. Recall that
the ideal boundary of each W € Opp \ Og contains exactly one point of positive
harmonic measure. Since every surface in Ogp also satisfies the AD-maximum
principle (for Oyp C Okp), we have the original version of Kuramochi [14,
Theorem 1], [21, Corollary to Theorem III 5IJ.

Corollary. Let W € Ogp \ O and let K be an arbitrary compact set in
W with connected complement. Then W\ K € O4p.

3. Characterizations of Riemann surfaces with

the AD-maximum principle

3.1. It is clear that a Riemann surface of finite genus satisfies the AD-
maximum principle if and only if it belongs to O4p. On the other hand, it is
known that for these surfaces O 4p = Ok p [21, Theorem II 14 D]. However, in the
general case the inclusions given in Proposition 1 are strict. The next theorem gives
some criteria to recognize surfaces with the AD-maximum principle. In particular,
we will show that it suffices to impose the maximum principle on the bounded
AD-functions. Given an open Riemann surface W and an end V C W, we set
ABD(V) = {f | f isbounded in V and f € AD(V)} and say that W satisfies
the ABD-maximum principle if max{lf(p)! | peEIV} = sup{lf(p)| | p€V} for
each end V C W and for each f € ABD(V).

Theorem 7. Let W be an open Riemann surface. Then the following state-
ments are equivalent:
(1) W satisfies the AD-maximum principle.
(2) W satisfies the ABD -maximum principle.
(3) MD*(V)C BV(V) for every end V.C W.
(4) For every end V. C W and for every f € MD*(V) the cluster set of f
attached to the relative ideal boundary of V is totally disconnected.

Proof. The implications (1) = (3) and (1) = (4) are direct consequences of
Theorem 2. Also, (4) = (3) is immediate by observing that the valence function
is finite and constant in every component of (@ \ (f(8V) U CI(f; Bv)). The impli-
cation (1) = (2) being trivial, there remains to be proved (3) = (2) and (2) =

(1)
~ (3) = (2): Suppose there is an end V C W and an ABD-function f on
V with max{lf(p)| I p €IV} < sup{|f(p), | p € V}. We may assume that
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sup{'f(p)| l p € V} = 1. We maintain that AD(V) contains a function of
unbounded valence. If f ¢ BV(V), there is nothing to prove. Otherwise pick out
a sequence of points (z,) in f(V) such that

oo 1 -1/2
log (—) < oo.
2 e\

By a result of Carleson [4, Theorem 1], there is a nonconstant AD-function ¢ in
the open unit disc such that g(z,) = 0 for each n. Since f has bounded valence,
gof € AD(V), while go f € BV(V). The implication follows.

(2) = (1): Suppose that W satisfies the ABD-maximum principle, and let V'
be an end of W. If suffices to show that AD(V) contains no unbounded function.
Assume AD(V') contains one, say f, and fix R > 0 such that f(0V) C D(0, R)
(= the open disc of radius R centered at 0). Assume first that the interior of
(C \ D(0,R)) \ f(V) is nonempty. Then we can find a point z, in this interior
and a positive r such that D(z,7) N f(V) # @ and D(zo,7) N D(0,R) = 0. It
follows that 1/(f — z9) belongs to ABD(V) and takes a larger value in V than
on 0V. This contradicts the ABD-maximum principle for W. Assume then that
f(V) is dense in C\ D(0,R). Since f € AD(V), f omits in V a compact set
E C C\ D(0,R) of positive area measure. Invoking [23, Theorem 4.1], we find a
nonconstant analytic function g such that g and g’ are bounded in C\ E. Then
gof € ABD(V). Theset f(V) being densein C\ D(0,R), go f assumes a larger
value at some point of V' than its maximum on 8V. Thus we have again arrived
at a contradiction to the ABD-maximum principle for W. o

Remark. In view of Theorem 2 and Corollary to Theorem 3 one may ask
whether the condition MD*(V) C MC(V) or the field property of MD*(V)
implicates the validity of the AD-maximum principle. Cf. also [11, Theorems 7
and 2]. Unfortunately, we have not been able to answer these questions.

3.2. Suppose V is an end of a Riemann surface satisfying the AD-maximum
principle. If the genus of V is infinite, AD(V) fails to separate points of V; this
is immediate by Theorem 3. In other words, in case AD(V) separates points, V
can be taken as the complement on a finite Riemann surface of a closed set of class
Np. Actually, in order to establish this result one need not the full force of the
AD-maximum principle as shown by

Theorem 8. Let W be an open Riemann surface, and let V. C W be an
end such that OV consists of a finite number of closed analytic curves. Suppose
that AD(V') separates the points of V and for each f € AD(V) max{|f(p)| |
peE IV} = sup{lf(p)| i p € V}. Then there exist a finite Riemann surface V*
and a compact set E C V* of class Np such that V is conformally equivalent to
V*\ E. Further, V* is uniquely determined up to a conformal equivalence.
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Proof. The assertion is an easy consequence of a theorem by Royden. Namely,
by [20, Theorem 3] V has finite genus. Therefore, V' can be taken as a subdomain
of a compact surface Wy such that Wy \ V' consists of a finite number of mutually
disjoint closed discs Uy, ..., U, corresponding the components of 9V and of a
closed set E. Set V* = V U E. Assuming that E fails to be of class Np, we
can find a nonconstant function f in AD(W, \ E) [21, Theorem I 8 E]. By the
maximum principle max{lf(p)| | pe Ui, 0Ui} < sup{|f(p)| | p € V'}, contrary
to the assumption. The uniqueness of V* is obtained by observing that sets of
class Np are removable singularities for conformal mappings. o

Remark. Wermer [24] has proved a similar result about Riemann surfaces
satisfying the corresponding maximum principle for bounded analytic functions.

4. Concluding remarks

Needless to say, the validity of the AD-maximum principle is preserved under
conformal mappings. More generally, given two Riemann surfaces W and W' and
a proper analytic mapping W — W', W satisfies the AD-maximum principle if
and only if W' does. Also it is clear from the very definition that validity of
the AD-maximum principle, unlike belonging to O4p, is a property of the ideal
boundary (see [21, p. 54]).

Riemann surfaces with small boundary are close to being maximal. For in-
stance, it is known that surfaces of class O p or O4ep are essentially maximal,
i.e., they cannot be realized as nondense subdomains of other surfaces. For Ogp
this result is due to Jurchescu (see [22, p. 270]) and for O 4. p to Qiu Shuxi [16,
Theorem 3]. On the other hand, one can exhibit Riemann surfaces which are es-
sentially extendable and satisfy the AD-maximum principle; take, for example,
the construction by Heins [7, pp. 298-299] modified in an obvious way. However,
provided that a surface also carries enough locally defined M D*-functions, it is
essentially maximal; what is more, the ideal boundary is absolutely disconnected

(see [22, pp. 240 and 270)).

Proposition 2. Let W be a Riemann surface which satisfles the AD -
maximum principle and let 3 be the ideal boundary of W. Suppose that for
every point p € (3 there is an end V C W with p € By such that MD*(V)
contains a nonconstant function. Then (3 is absolutely disconnected.

Proof. Fix py € 8. By Theorem 3 we can find an end V C W with py € 8y
and a function f € BV(V) = MD*(V) such that f(V) C D, the open unit disc,
and f(0V) C 8D. Since f*(Bv) belongs to Np (Theorem 2), and the mapping
p f(p), VA~ (F*(Bv)) — D\ f*(Bv) is proper, we can apply [13, Theorem 1.
Thus By is absolutely disconnected. Since py € 3 was arbitrary, the proposition
follows. o
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