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LE-AVERAGING DOMAINS AND
THE POINCARE INEQUALITY

Susan G. Staples*

1. Introduction

We shall assume in this paper that O and D are proper subdomains of R"
with n ) 2. For such domains Q and bounded D,we say that afunction u €
fil"(O) is of bounded mean oscillation in Q with respect to D , u e BMO(O, D),
if llzll.,p ( oo, where

1.f
ll"ll.,o : ;äpn 6 J o,l" - 

u p'ld,m.

Here D' is any domain in O obtained by a similarity transformation of D and
uD, is the average of u over Dt ,i.e.

1t D, _ # l,u d"m - /r,u 
d,m.

In the standard definition of BMO the supremum is taken either over balls or cubes

in O. It is a well known fact that these two give equivalent norms in R"; that it
is also true for arbitrary domains is an elementary consequence of the main result
of this paper. We denote the usual BMO norm over balls by llrll.,a" : llull.. The
question naturally arises for which types of domains D can we say

(1.1)

where cr a^nd c2 ä,re constants independent of u .

The first half of (1.1) holds for all bounded domains D. This fact follows
directly from the inequality

lu-uBld*, c - c(n, r).

* This work has appeared in the author's doctoral dissertation written at The University of
Michigan. This research was supported in part by a grant from the U.S. National Science Foun-

dation and by an America,n Association of University Women Dissertation Fellowship.

t,

koskenoj
Typewritten text
doi:10.5186/aasfm.1989.1429



104 Susan G. Staples

Here the supremum on the right hand side is taken over balls B satisfying rB c D
for some constant r ) 1 and c is a constant independent of u [RR].

We determine which domains D satisfy the latter half of (1.1) by reformu-
lating this question more generally as a localization problem. Let D be a domain
with rn(D) < oo. The bounded domains in question are precisely those for which
u e BMO(D) implies u e Lt(D) and the following inequality holds for p: !:

/ 1 f
(1 3) (;1p9 J,tu-

1f
@Jrlu-1c

where c is a constant independent of u and B is any ball in D. We say that D is
an Lp-averaging domain if it satisfies (1.3). Bounded .tl-averaging domains then
satisfy (1.1).

In Section 2 we characterize these domains in terms of the quasihyperbolic
metric on D, k(*,y). In particular, we show that for p ) 1 , D is an -LP-averaging
domainif andonlyif k(",a) is.tr integrableover D. Intheproof forsufficiency
we actually prove the stronger result, namely that for each r > 1

\ 7/p

uBlP d,m ) ,/
(.,,o
\gc^D

\ 7/p

uDlP d*)
/

\ \/p
uBlP d,m ) ,/

( sup
\"^B CD

\ r/p
uDlo o*)(1.4)

(1 5)

lu- 1f
,,rrq Jrlu -

where c: c(r). Since balls are .tP-averaging domains (1.2) is a special case of
this result.

Properties and examples of -Lp-averaging domains are examined in Section 3.
For example, we show that .tp-averaging domains satisfy a Poincar6 type inequal-
ity and that John domains are LP -averaging domains. We also prove that the
class of .Lp-averaging domains is preserved under quasi-isometries, but not under
quasiconformal maps.

We can regard the quantity

as a seminorm for u over D. The BMO seminorm

1f
@ Jrlu - 

uDldm - ";soscu

1f
;äB @ Jrlu - uBldm -;:n"(";soscu)

avg osc u I c sup (."g osc ?/ ).DBCDB

then gives a corresponding local seminorm. By definition .tl -averaging domains
have the local to global norm property given by (1.3), namely
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We can also ask which types of domains satisfy the same type of inequality for
seminorms other than the one given by average oscillation. Gehring and Martio

[GM] have answered this question for the Lipschitz class of mappings, denoted by
Lip"(D).

A mapping f: D -+ R" is in Lip"(D),0 ( a < 1 if for some n1<@)

in D. The mapping / belongs to locl,ip"(D) if there exists a constant n'L < @
such that (1.6) holds whenever 01 and 12 lie in any open ball which is contained in
D. The seminorms ll/ll, *d ll/ll'j" are defined as the smallest rn for which (1.6)
holds in the respective sets. Gehring and Martio have characterized the domains
which satisfy

ll/ll. s 
" ll/ll:.

forall/elocLip"(D).
In Section 4 we consider the domains D which satisfy (1.5) with average

oscillation replaced by the maximal oscillation of u over D, namely

(1.6)

( 1.7)

( 1.8)

lf @1 ) - f (*r)l l mlr 1 - nzlo

osc u - suD u - inf u.
DD,D

oscu 1c sup(oscu)D gio'B /

The corresponding local norm is given by the maximal oscillation of u over balls
in D. We call domains satisfying

oscillation domains.
Finally we study the geometry of such domains D. If D is an oscillation

domain it is necessary that each point in the boundary of D is contained in the
closure of some ball B in D. Moreover if each point in D lies in a ball B C D of
fixed radius 6 > 0 then D is an oscillation domain.

2. LP -averaging domains

We establish some notation and definitions first. We let D denote a proper
open subdomain of R" with *(D) < oo; here m(D) is the n-dimensional
Lebesgue measure of D, d(2,0D) is the distance from z to the boundary of
D, and dm represents Lebesgue measure. We let B and B' denote open balls in
Rn , en the volume of the unit ball in R" , Q *y cube in R" and /(@) the
side length of Q, and rB (similarly oQ) that ball with the same center as B and
expanded by a constant factor of r > L.
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Definition. The quasihyperbolic distance between r and y in D is given by

k(*, y) : k(x,y; D) : r{ lr# 0",

where 7 is any rectifiable curve in D joining x lo y. Gehring and Osgood have
proven that for any two points r and y in D there is a quasihyperbolic geodesic
arc joining them [GO].

In this section we determine which domains satisfy (1.3).

2.1. Theorem. If D is an Lp-averaging domain, then

(2.2) (/,rr.,*o)p d*)''o . o

for each as in D where a depends only on d("o,?O)t tut pt *@), and the
constant c in (1.3).

Proof. Let B be any ball in D with center 01 and radius r. We first show

(2.8) ({rrr,,*,)n d*)''' . o,

where o is aconstant dependingonlyon n and p. Wemay assume that cr:0.
Then for each c € B, d(a,?D) > , - l"l and thus

l,r@,,)P 
d.m 

= l, ("r fi)' o*.

Switching to polar coordinates and integrating one verifies (2.3). Let u(c) :
k(r,rs). From the triangle inequality we obtain

(f ,wal - uuto o*)''o 
=, (|,tu@) - u(,,t)tp a*)'/' . ro.

Since D is an Lp -averaging domain, we have

(2.4) (l,Wal - uot, o*)''o 12ca.

Let r : d(rs,0D) ar,d B : B(*o,r/2). Assume up) 2, ar,d then on B,

u(r) < l"e l log2 l upf 2,r-P-rol
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so that

(2.b) lrl"r.l -url'a*r- lrl,@) - uolo o*.ff.
Combining (2.4) and (2.5) yields

up 1 4ca(2"*(D) d,(x,0D)-" lr*)'/o .

By Minkowski's inequality we also have

(f ,l"atl' o*)''o 
= (l,l"a) - u,lo o*)''o . (l,uooo*)"o

< (2ca) + 4ca(2"m(D) d,(r,0D)-" lw,)'/o - o. o

2.6. Theorem. Suppose D satisfies

(2.7) (/,r1-,*o)p .*)''o . o

for some fixed point xs in D . Then D is art Lp -averaging domain and the constant
c in (1.3) depends only on n, p a,nd a.

Note that the choice of the fixed point as is immaterial.
In proving Theorem 2.6 we use the following three lemmas and obtain the

stronger conclusion, namely that if (2.7) holds then D satisfies (1,.4) where c
depends only on r, fr, p, and a.

2.8. Lemma. If

(2 s) 
";=, 

(å fi" -,Btp d*)"0 . ,0,

then there exist positive constants s and q : q' l"o with s and q' depending only
on n such that,

(2.10) m{r € B:lu(a)-"rlrt} <se-qtn'L(B)

for all balls B satisfying nrB C D.

Lemma 2.8 follows from elementary geometry and the John-Nirenberg theo-
rem [JN] and the observation that for p ) 7,

# l,w - ustdm= (# l,w - u'to o*)''''
The key step in the proof of Theorem 2.6 involves comparing the average

of u over various balls in D. Lemma 2.11 gives an estimate in terms of the
quasihyperbolic metric alone.
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2.11. Lemma. Suppose that st gt r are constants with r > I a,nd that

(2.72)

c - ,(r, s, Q, n) sucå

(2.13)

For j-1,
Bj,then

Hence

forall s andy in D;here B(x) and B(y) denotetheballs B(r,d(r,0D)lr) and
B(v,d(v,a\lr).

Proof. To simplify computations, assume r ) 31 the same proof holds for
r € (1-,3) with minor changes. For each z e D,let B(z) : B(z,r), with
r : dlr where d: d(2,äD), so that rB(z) c D. Fix o,g e D and choose a
quasihyperbolic geodesic arc .'l joining x to y in D. We use induction to define an
ordered sequence of points {zi} on 7 as follows. First set z1 : r. Next suppose
thaf, 21, ..., zj have been defined and let 0j: ^l(zi,y) denote that part of 7
from zi to y and 1i the component of BinB(21) whichcontains zi. Defrne zi1l
as the other endpoint of ^f j .

We simplify notation as follows: B i -
and y - z m*t . From our definition of {, i} ,

(2.14) l"i*, - ,jl:, j for j :1to m - 1, and l"*+r. - z^l<-r*.

each B satisfying rB C D. Then there exists a constant
that

lur<,> - uB(y) I S.(tr(*,y) + 1),

B(ri), rj- ,(Bi), di: d(ri,AD)
we see that

..,ffi-1pick ,'j € 0D sothat d(ri,AD)-lri-r'jl .If z e jj C

f 7 ,-

Summirg the above over j gives

4di 4r
3

4d, t,

(2.15)

and we conclude n't. < @.
Consider now the relative size of neighboring balls. Fix j and choose z,

z'€0D sothat d,i:lz-zilarddj+r:lr'-"j+rl. Then d,ild,ia1f r; and
dj*, < d1 * ri, with the first inequality yielding

4r ^/ t,
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and the second yielding ri ) 2ria1f3 if rial ) ri. Hence

(2.16) 2ril3 < ri+r 131112.

Next we show that

(2.L7) m(BifiBi+r)> c1(m(B)*m(By1)),

where 4:6-"/2. Fix i andset *:(rj*zia1)fL,5: (max(ri,r;-p1))/6 and
B : B(w,s). In the case rj ) ,i*, we have s: ril6 ( ria1f4; similarly if
ri+r ) rj we get s S r1f 4. Ahtsfor z € B we have,

l, - "il < lz - utl+ lw - ril < s * |lz1 - zi+rl 3ri;
a similar argument shows l, - ,i+rl 3, j+t. Hence we conclude B c Bi i Bial
and (2.17) follows.

Now for i : 1, 2r'.', rn* 1 let

Ei : {a € Bi : lr(r) - "a;l> t},

where 1 : (log 2s lc1) lq. By (2.72),

(2.18) *(Ei) < c1m(Bi)12

and combining (2.17) and (2.18) yields

*((Bjo Br+r) \ (Ei u Ei+r)) > o.

Therefore there exists r e (Bi n Br+r) \ (Ei U Ei+r) and hence

lue, - uB;a,l< l"(r) - uBil+ lu(c) - uBj+tl < 2t.

Summing and using (2.15) we obtain

lur<,t-uB(y) I = i luo; -uB;7tl12mt<ar(k(r,y))tfi+zt.
1

Then (2.13) follows with c: Srlog(4s6")/3q. o

2.19. Lemma. Suppose st gt and r are constants with r ) 1 and that

(2.20) m{r e B:lu(x) -ual> t} < se-qtm(B)

for each t > 0 and each ball B satisfying rB c D. If D satisfies (2.7), then

(2.21) (-r lrW -,ole d,*)''' . u,

where b : b(s, q, r rn, p, a) .



110 ,Susan G. Staples

Proof. Let )(r) - m{r € D : k(*,ro) > ,}. Then by (2.7),

lr* 
ptp-'l(t ) dt - t k@, no)o d* I aPm(D).

Jn

Let c be the constant in (2.73), fix t > 0 and let

E1 : {x e D : lu(x) - uB@o)1, t},

F:{reD:le(x,q)<t2}.
Here t2 is a function of f to be chosen later. We estimate m(E1) by first noting
that

(2.22)

By Lemma 2.LL, for each o € .F we get a closed ball B(r) with rB(r) C D
such that

lu u@o) - u B@)l < c(*(","0) + 1) < c(t2 a t).

Theset Fisboundedsinceforanypoints r,y e F wehave k(*,y)12t2<x
[GP]. Here for each x e F,

d(r, 0D) ( diam F + d(rs,0D) : 6,

so that the radii of the balls B(r) are uniformly bounded. The union of all such
balls covers F and we can apply a well known covering theorem from page I of [S]
to obtain a subcover of balls Bi : B(*i), nj €F with the following properties:

(i) r c UiBi,
(ii) The balls Bj : BilS are pairwise disjoint.

This gives the useful relation:

(2.23) D*@) - 5" » *@» < 5"m(D).
t1

Now fix r € Et t1 87. Then since ri, so e F ,

l"(") - ua@i)l> l"@) - uB@o)l-lue@i) - uB(xo) | > t - "(tz+ 1) : tr,

and hence

(2.24)
J
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by (2.20) and (2.23). Combining (2.22) and (2.2a) then yields

*(Er) < Snse-qtt*(D) + )(tr).

Let t2: (tlzc) so that t1- (tlz) - c, and then

*(Er) < SnseQ"e qt/Z*(D) + )(, l2r).

As

(fr l,l"r.t-uB(co)r 
o*)"' : (# lo nto-,*tr;or)

we have

(2.2b) (# lrl"t.l - uB(ao)f o*)"0 
= 

r,rr-p * czapcp)t/t,

where c1 and c2 depend only on n) s, r, and p. Now (2.21) follows with
b:2(ctq-P * c2aPcP)tln. o

We prove Theorem 2.6 by recalling the definitions of the appropriate constants
in each of the three lemmas. Only q: qt/"0 and the constant c in (2.13) depend
on cs in (2.9) and (2.21) can be rewritten to give

( 1 f llP

where ct : 
"'(n, 

T, a, p) .

1f
"tffn "(B) Jrl" - uBldm I cs

for some constant cg, then u € BMO(A), with ll"ll. < ccs, c= "(n,r).
Proof. From the calculations in Theorem 2.1 we see balls satisfy (2.7) for

p : 1. Theorem 2.6 then gives

1 
f ,tu - uBld,m 1c,L?" # lrtu - uBld,m. a;:,"@
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3. The Poincard inequality and examples of .tP-averaging domains

We begin this section by observing that -LP-averaging domains are preserved

under quasi-isometries. This result will aid our computations in proving the
Poincar6 inequality theorem and other theorems throughout Section 3.

Deflnition. A mapping / defined in D is said to be a K-quasi-isometry,
K>7,if.

Ir@-r@l
l"-vl

for all x,y e D.

3.1. Theorem. If f : D --+ Dt is a quasi-isometry and D is an LP-averaging
domain, then D' is an LP -averaging domain.

Proof.If / is a K-quasi-isometry, then lf K" S J(f) I I{n a.e., where "I(/)
is the Jacobian of /. Let 7 be a quasihyperbolic geodesic joining r to y in D
and set l' : f 0). We can easily check that

1

K

ds'

@
K2 ds

ffi- K'*(n''u;D)'

r l/p
( J qra),/(ro); D)e dn1\"' 

=or*'n+zn1t/n,\"/''^\'/\&'/'J\-u'"" 
/ " 

/

where o is as in (2.7). o

Using Theorem 3.1we can easily estimate the integral of k(x,rg) over a cube

Q with center og. This result will be needed when we cover the domain D with
cubes, such as in the Whitney cube decomposition of. D.

3.2. Corollary. For any cube Q with center xg, we have

/ f \1/p(3.3) II t(*,xq)Pdm) Sc, c:cln,p).
\Je /

Combining these observations yields

Proof. For any cube @ there exists a quasi-iscmetry / mapping Q to
B(*q,l(A)D with /(rq) - te. By the calculations done for balls in Theo-
rem 2.1 and by Theorem 3.1 we have (3.3).

.LP-averaging domains constitute a large class of domains in R" which satisfy
a Poincar6 type inequality [H], [M].



Lp -averaging domains and the Poincat{ inequality 113

3.4. Theorem. If D is an Lp -averaging domain, p ) n, then there exists a

constant c, such that

(3.b) (fr, l,w -,Dr d*)'/o ..*1D)"" (# loto,r o,n)''o ,

for each function u in the Sobolev class W{(D).

Proof. For each ball B C D, we see from (7.45) in [GT] thai

(fr lrw - 'Blp 
d*)'t' . ",*7B1otn)-(rtil (l,ta'0,,)''o

< c1m(D)tt" (# lo,r,f o*)''o .

Thus (3.5) follows from (1.3). o

The following shows that the hypothesis p ) n is essential in Theorem 3.4.

3.6. Theorem. If p < n, there exists a domain D C R" which is Lq -

averaging for all g ( m, such that (3'5) does not hold fot any consta'nt c.

Proof. Construct D by alternately adjoining large cubes, {Qt}, with small

cubes, {.R;}, with centers r; and yi respectively, so that
(i) Qo is centered at the origin,
(ii) each cube is centered on the positive 11 axis, and

(iii) the c 1 coordinates of the centers form an increasing sequence when the centers

are ordered as follows:

\*0, yr, r 11 !2t 02t . . ., u l, Ui+t\,

Next join this domain to its reflection in 't 
: 0 to get a symmetric domain' The

sidelengths of the cubes in D are

l(Q):t(Q): qi:2-G+r) for i:0,7,2,...

and
,(.Ri): l(R-;):ri:2-aN for i:1,2,... witha) L,

where Q-; and R-; are the reflections of Q; and .it; respectively.
We show first that D is an Zq-averaging domain for each finite q. Decom-

posing D gives

(3.2) [ re,o)q dm =ri,( [ kQ,o)q d* + [ e(2,0)s drn) .

Jo ?\Je,-, Jn, /
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By (3.3) we have

(8.8) 
lo,rrr,0)q 

d,m 
= lo,(b(z,r;) 

* to(u;,0))q dm 1 2q (c1 * tc(r;,,o)o)*(Qn).

We get a similar statement for each r?l with center y;. Now estimating the
quasihyperbolic metric geometrically we get

k(*;r,o) < k(y;,0) < 2 (f,r* r"* ;}) : czi * csi2.
\-'- ri+t 

1

Thus

(3.9) k(*;-r,0)o 3 k(y;,O)t < 
"n;zt.

Substituting (3.8) and (3.9) in (3.7) yields

r /? .\(8.10) I *Q,o)q dm < 2[ t 2o("r + cni2t)(2-'i +2-na;) ) . *,Jo\?\
so that D is an .tq-averaging domain for each g < oo.

Now we construct a function u so that (3.5) does not hold in D. Define u
to be the piecewise linear function in 11 which satisfies u : 0 on Qs and

du _ { 2tltl on .81 for all f ,
a^:to otQrforalli

so that uD:0. Here ö is chosen so that

(3.11) ry a6 a!2.pp

Thisispossibleif andonlyif wechoose o sothat a>nl(n-p).
Now let us estimate each of the integrals in (3.5). On the right hand side we

have,

(3.12)

by (3.11).
We get a lower bound on the left hand side by noting,

Jo
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oo

lu - uolP d,m 2 z»2@n-aP-n)i - @,
1
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Thus

(3.13) t,
by (3.11). Therefore (3.5) does not hold in the case p < n. EI

John domains, studied by Martio and Sarvas [MS] in their work on injectivity
are a subclass of .LP-averaging domains. Murty well known domains are John
domains including bounded convex domains, bounded quasidisks and bounded
uniform domains. Martio has recently shown that John domains satisfy a Poincard
inequality for exponents p ) 1 [M].

Deffnition. Let 0 ( o ( B < oo. A domain D C R" is called * (o,0)
John domain, if there is an os € D such that every x € D has a rectifiable path

7: [0,d] --+ D with arclength as parameter such that 7(0) : r,l(d): uo, d10
and

for all t € [0, d].

We prove that John domains are LP -averaging domains.

3.14. Theorem. If D is a John domain, then D is an LP'averaging domain.

Proof. By aresult of Boman [B], there exist constants z ) 1, N ] 1, and a
covering I for D consisting of open cubes Q and a distinguished cube Q6 with
the following properties:

(3.15) Do." x,q(a) < lfxo(r), r € R', and

(3.16) Each cube Q in f can be connected to Qo by a chain of cubes Qo, Qt,...,
Q": Q from I such that foreach j:0r1,...,s - 1, Q c NQi, and there
exists a cube.B; CQinQ;11 which satisfies QiUQi+, C l/r?i.
We proceed using integration techniques found in [IN] and the notation

k(*,no) d*.

(3.3) we deduce

f;t

t,

2Ur

kq:

Let ts be the center of Qo.From
(3.17) 

\ ltp
*q)l'O*)' 12c.ln@,, no) - k(*0,

Now using the cover f and the elementary inequality
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we have

(8.18) 
lolr(*,xs) - kq"le dm

= 
,,(ä 

lolro,xo) - kele dm* 
nlrO, - 

*q"1o a*).

Estimating the first term using (3.15) and (3.17) gives,

»
Qer

For the second term, fix a cube Q: Q" and let Qo, Qr,..., Q" be the chain
given in (3.16). Since Q; U Q i+, c .lfE;,

{*lrO,*o) - keolo a*.ffi 
{olrO,,o) - kqil'a*. (2c)eN',

and thus 
wet - kqia,lP 12(+cy1y*'

Property (3.16) gives

lkqo - kq, *,lo Xq@) < z@c)P N" X xg, (r),

so that 
I .

lkq" - kel'xe@)= 
€ we, - trq,*,lxe@))

< 2(+c1ny,(! ,r"f,l)'.
\Re I ,/

Now any point r is in at most N cubes Q in f by (3.15); thus

l*^ *Lrlke, 
- heloxe@) d,m < 2(4c)PNn+7 t" (ä v*r1*7)' a*.

By Lemma 4 of [IN],

I (ä"'('))' dm1c1t" (ä Y*67)o a*'
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with c1 : cr(If,n,P) so that

» [ We" - kqlP d,m < 2c1(4c)PNn+t+n*(p).
QerJQ

Substituting these two estimates in (3.18) and using (3.3), we obtain,

( J *@,ro), d-) ''o 
= 

o, a: a(N,n,p).o
\/" /

John domains may have internal cusps, but no external cusps. Certain out-
wardly directed spires are allowed in .LP-averaging domains and the following
theorem characterizes such finite spires.

3.19. Theorem. Let D be the domain I U S C R', where Q is the cube

Q = {@r,a2s...,rn) : lr1 - 2l,l*rj ,..., lr,l < 1},

and S is the spire

(8.20) ,9: {(rr, nzt...,**),l@)'<g(*r)', 0 (,, < 1}
2

a,nd where g(r) satisfies the following properties:
(i) g(o) :0, e(1) ( 1,
(ii) 0< s'@)3M,for 0<c(1,
(iii) o"(r) ) 0. for 0 ( r ( 1.
Then D is an Lp -averaging domain if and only if

(s.21) 
lo' 

o@)'-'(1,' hat)' a, <*.

Proof. We take zo : (7,0,0,...,0) for our fixed point and estimate k(z,zs)
for z:(orrorr...rar) €.9 as follows. We let z1 : (a1r0,...,0) and obtain an
upper bound on le(2, zr) by examining the cross section of .9 where nt : aL. This
gives

(3.22) k(z,z)S tog A , where R: s(at) and ,':f{o)'.
rL-r 

2

For any point y : (tr,0,. .. ,0), note that the distance to the boundary
satisfies
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Thus

(3'23) h=#=h(n'r*')' *7)'/'' #'
by (ii).

Combining (3.22) and (3.23) yields

(l^',ho,)' 
=tc(2,zs)e = "((r* 9)' * (' l,',h")')

By a change of coordinates, we have

l,re,zs)ed.m=o l,' 1,"'' (,o* #)'rn-2d,rd,x
* o l,' I,'o' (1,' h")' rn-z dr dx.

The first integral is finite for all n ) 2 and l- I p < oo, so we need only
consider the behavior of the second integral. After integration with respect to r
this reduces to (3.21). By (3.3) we can get a bound on the integral of. lc(z,zs)n
over Q, thus completing the proof. o

Similarly we can prove that an infinite spire of revolution ,S in R" given by

.9: {(rr, t2t...,*;,f{*o), <g(*r)r, o(rr (oo}
2

is an .Lp-averaging domain if and only if

(824) 
lo* 

o@)"-'(1,' h")'. *
The above two results can be applied to get specific examples. For instance,

finite spires ,S of revolution generated by g(xt): rf , for o ) 1 and p *7 ) n,
are Lp -averaging domains if and only if

(s.2b) ". Le+t _rr.

Similarly the infinite spire ^9 generated by g(rr) : o?, for p* 1< n is an
Zp-averaging domain if and only if (3.25) holds.

These examples serve to differentiate .tP-averaging domains from John do-
mains in another way. Using these domains we can show that the class of .Lp-
averaging domains is not preserved under quasiconformal maps.
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3.26. Theorem. LP -averaging domains are not invariant
quasiconformal self mappings of R'.

Proof. We use spires of revolution S in each of the followirrg
the quasiconformal mapping, f Q)_ lrlo-72. Denote /(^9) by St

Case i: p + 7 ) n. Here consider the finite spire .9 generated

s(rr) - rfl

so that ^S is not an LP -averaging
for large values of K .

Case ii: p+I<-n. We take

s(r|) - ri

119

with respect to

three cases and

by

w ' P+!-n'

domain. The spire S' is an Lp -averaging domain

the infinite spire S generated by

w \ p+7-n'

so that ^9 is an Zp-averaging domain. Now ,S' is not an -LP-averaging domain for
large values of K.

Case iii: p + ! : n. In this case consider the infinite spire .9 generated by

g(*r):rl-K"-"*, with K, n,
n-l.

so that by (3.2a) .S is an .LP-averagiug domain. By means of Q.z ) again, we see

that ,S' is not an .tp-averaging domain. o

Also in contrast to the situation for John domains, the boundary of. an Lp -

averaging domain can have positive n-dimensional measure. Specifically, for p 1
n - L , we can constru ct an Lp -averaging domain satisfying m(1D) : oo . Since the
class of ZP-averaging domains is a decreasing set with respect to p, an example
for the case p : n - 1 will suffice. We give the proof here for the case n :2 and
p : L and sketch the idea for the generalization to p : n - 7 , n )- 2.

3.27. Example. We construct an Lr-averaging domain D in R2 with
m(1D): oo. Let Q be the unit square centered at zs - (-112,0) and let .F be
the edge r :0.

On F we choose a countable dense set of points as follows. Let F; denote the
dyadic decomposition of F into 2t intervals and define Cl as the set of all centers
of. F,i. The set of all centers,

c -ir,
of points irl 

"u,.r, 
C;is

lct - 2i.

is dense in F and the number
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/\a:r\lf[ U aoi).'y\,,rä '/
(Note that for all future unions over both i and j as above the notation will be
abbreviated U;,7.) We have

*(E) > *(F) -!z-n-' : tl2.\ / ,n

We attach the spire ,S;i to base B;i where .9;; is a suitable translation of the
spire ,9; generated by

S(a) : e-tr(zt)-et', with I : (r;)-1.

Finally define D as

Now for each point z;i in C;, we take the closed interva,l B;; of length r; : 2-2i-r
centered at z;i. The lengths are thus chosen so that

m(B;)lC,l: )-i-r.

We define the set E as

D:QrUs,r.

The boundary of D contains [0,*) x E, so that m(?D): oo.
Now we show that D is an .tP-averaging domain. In the following computa-

tions, c denotes any positive constant depending only on the dimension n.
First by using the technique in Theorem 3.19 we obtain

lr,r(,,,)d,m<* l,* l"o''' (., #* l,' ha,) a,a,,

where
M : mg?'@)' + 1)'/' .2 -tlog2t.

After performing the integration the above simplifies to

(3.28) [ rQ,o)d,mlct-2.
Js;

We have the following inequality,
(3.2e)

lorQo,o)d'm 
<D(1, rus,zii)d'm+ l, r,("ni,")o*) * 

lorQ,zs)d,m.
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We can obtain the following estimates for k(zs,z;i) ar.d *(Sni),

k(zs, z;i) < L - clog r; and *(S;) l ct-2.

Substituting these and the value of r; into 3.29, and using (3.3), we see that the

sum in (3.29) converges or that D is an .Ll-averaging domain'
To generalize to the case p : n- L for all n) 2, we take the countable dense

set of centers generated by the dyadic decomposition of the face lt : 0 in the

n,-dimensional cube Q. Define balls Bli of radius

r ; - lGni-t) I @-t) (t n-1 ) -r /(n-r;

and attach spires of revolution generated by the function S@r). The desired

conclusions follow after similar but more involved computations. o

The classical case of the Poincar6 inequality, with p : n : 2, has been

studied more extensively. For this case we can get the following stronger version

of Theorem 3.4.

3.30. Theorem. Let D be a simply connected domain in R2. If D is an

L7 -averaging domain, then there is a constattt c, such that

(s.s1) (# lrW-,»l'd.*)'/' . "*1D)','(# lolr,l'o*)''' ,

for each function u e Lz(D) nW?(D).

Proof. Hamilton [H] has shown that if there exists a point zo € D and
constant c such that

(3.32)

for all / analytic in D normalized so that f(ro):0, then D satisfies (3.31).

Also note that the quasihyperbolic metric, k(*,y;D), and the hyperbolic
metric, h(*,y;D) are equivalent metrics in simply connected domains D in R2

tcl.
With the above two results the proof of Theorem 3.30 can now be reduced to

showing that for some z0 € D and for all / analytic in D we have

We show (3.33) as follows. Let B denote the unit disk, choose 9: B --+ D
conformal with g(0) : zo,arrd set g: f op.

lrtfl'd* 1c lrtr't'd*,

(B.BB) l,lra> - r(,0)l'd* s+ (l,v'r ^) l,h(z,zs;D)dm.
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Then

(3.35)

Next suppose that

,Susan G. Staples

oo

g(u,) 
- » cln?t)n.

0

ItQ) - f (,0)l': lg(*) - e(o)l' -
By Hölder's inequality we have,

lr@ - r(,0)l' 
= (å,lo,l')(å #)

(t- l,ln' r*)l' o*)(,* #)
= (* l,u'rr-).*#

(t" l"v't'o*)h(w,o;",: (* l,trr a*)ne,,o;D).

This pointwise estimate clearly gives (3.33). o
Combining Theorem 3.30 with Example 3.27 gives us a domain D with infinite

boundary measure that satisfies the Poincard inequality. Theorem 3.30 also clearly
shows that the hypothesis that D is an -tp-averaging domain in Theorem 3.4 is
not necessary.

Finally we observe that .tp-averaging domains can be characterized in terms
of their covers by Whitney cubes [S].

3.34. Theorem. If the Whitney cube cover F of D consists of cubes Qi
with centers r i, then the following two conditions are equivalent:

å 
an?t)"|'

(3.36)
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Proof. Assume (3.35) holds. Then by (3.3),

(lrrr.,*io a*)/

3z'|tp((; lo,rr*,,.r')' . (; !n,rr*,,,,,')"')

s (zm(o))' /' 
"n 

* r''' (E tc(x i, xo)e mtO,l)''' .

\?;
Thus (3.36) follows clearly. The implication in the other direction is proven simi-
larly. o

3.37. Corollary. If D is an LP'averaging domain and if Ni denotes the
number of cubes of side length 2-i in the Whitney decomposition F of D, then

(3.38) I ioz-"i Ni < *.
l

Prcof. From Gehring-Palka [GP] we have the inequality

k(as,a) > ur@-.' d(a,?D)'
Let Qs with center rs be the largest cube in F, and let Ql with center r1 be of
side length 2-i. From the Whitney cube cover properties,

rt(xs,x;) arrrw : c* itog2.

Substituting this estimate in (3.36) we deduce (S.SA). o

3.39. Remark. An example exists proving condition (3.38) is not sufficient.

4. Oscillation domains

We now turn our attention to the class of oscillation domains, i.e. the ana-

Iogues of LP -averaging domains with the average oscillation,

/ 1 I \1/p
(;6a1 Jol" - 

uole dm 
)

replaced by the maximal oscillation,

oscu:supu-infu.

Deffnition. We say that D is an oscilJation domain if D satisfies

(1.8) oå"" S c sup (ogcu).

These domains can be characterized by a special chaining property.
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4.L. Theorem. A boutded domain D C R" satisfies (1.8) if and only if
for some constant N each pair of points r a,nd y in D ca,n be joined by a chain
of baJls Bo, Br, ..., B" in D such that a e Bo, U e 8", BjlBi+, * A and
s ( l[.

Proof. Assume first that D does not have this chaining property. We assign
each ball B in D to an open set Li as follows. Let Bs be the largest ball contained
in D and set Zs - Bo. Next suppose that Lo, Lr, ..., Lj-, have been defined
for some j > L and let Li be the union of all balls B contained in D which
satisfy:

(i) BnLi-tlA,
(ii) B\u3-'Lr*0.

Clearly D:Uf Li.
Next define u so that

Since D does not have the chaining property, oscD u : oo.
To show sups.p(osca u) is bounded, let B be any ball in D and set

,t:inf{r:(Lioq+A}.
Then 

å-1
B c(LxuLx+r)\ U Zr,

0

and hence u assumes at most the two values /c and å + 1 in B. Thus

oscu : sBpu - inf u ( 1.

For the sufficiency, suppose that sup6a poscu ( rn. Next for any two points
r and y h D, let .86, Bt, ..., B, be the chain of balls connecting them and
choose ri in Bi-t O Bi. Then

e-l

l"(") -"(y)l < l"(") - "("r)l + !lu(ri) -"(rr+,)l + lu(r,) - "@)lI

< (, f 7)* < (N + t)rn.

We have

(4.2) oB" " S (ff + 1) 
åE%("8" ") "

We conclude this paper by giving two geometric conditions, one necessary and
one sufficient, f.or D to be an oscillation domain.

f 0 ori Is,
u - ti on Li \ Uå-t L,,for j- 1,,2,...
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the bound-4.3. Theorern. If D is an oscillation domain, then each point in
ary of D is contained in the closure of a ball B C D .

Proof. We proceed by induction on N, where N is the chaining constant
given in Theorem 4.1. For the case N:0, D itself is a ball and each z e 0D is
in the closed ball D.

Assume that the result has been established for N : k. Consider all balls B
in D and assign each to the open set Li defined in the proof of Theorem 4.1. Let
D be a domain with chaining constant k + 1. Each ball B C D is then in some

Li for j <k+ 1. Wewrite

k+r
D - U L1- D*u Lk*1,

1

k

where Dr*- Utr.
1

Choose zs e AD. We I'rrant to show there exists a ball B, with

(4.4) zs e B, BCD.

lf. zs e lDp,lhen (4.4) follows directly from the induction hypothesis. If zs /
0D1,, ther there exists a sequence of points {ri} C tr*+, \ D6 which converges

to zs. For each j choose a ball Bi(yi,r;) which lies in L*+r, intersects .t1,
and contains zi, By passing to subsequences we may assume that {y1} and iri}
converge. Setting ro : lim r7 and Uo : lim gi , we have

hence given any e > 0 there exists an M such that

l"o-yol(ro+t

for all j > M. We conclude zo €W6. If rs ) 0 we have (4.4); hence we

assume that rs :0 or Uo: zo. To show ro :0 implies zo € 0D*, we let
e > 0 be given and choose j such that both lyi - ,ol < €13 and ri < el\. Then
B(Vi,r) C B(zs,e), so that B(zs,e) intersects Lp for all e > 0, i.e. zs e 1Dp. o

Domains with outwardly directed corners or spires are not oscillation domains.
In particular the slit domain formed from a disc by removing an arc containing a
right angle is not an oscillation domain, even though it does satisfy the conclusion
of Theorem 4.3. The following theorem provides a sufficient condition.

4.5. Theorern. Let D be a domain in R" and suppose each point in D lies

inabaJl B cD of fixedradius 6>0. Then D isa'noscillationdomain.
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Proof. We show D has the chaining property of Theorem 4.1 with I[ :
N (n,m(D),6) . Consider the cover I of D given by taking all balls B c D such
that the radius of. B ) 6. Let r < L be a constant, define

(4.6) s: l) rB,
B€T

and let rn denote the number of components of E. As each component of E
contains at least one ball of radius greater than or equal to 26,

(4.7) *<79)."'- Tn6nrrn'

We show now that the set E car. be covered by M balls B C D where
M : M(n,*(D),6). Observe first that

(4.8) Ec{aeDld(o,2D)>r}, where ,:(1 -")6.
For each point r € E, we define the ball B(r): B(x,r). By (a.8) B(o) C D and
the union of all such balls covers .8. We again use the covering lemma [S] as in
the proof of Lemma 2.19 to extract a subcover {B;} such that

(4.e)

Thus {B i} contains

(4.10)

» b-nm(Bi) - » t-nrnrn <.-m(D).

at most M balls, where

M<(:) "(+3)

Denote the components of E by fi, . . ., E* and define

(4.11) Fi: U lfrl
BCEi

The union of the sets F; covers D by hypothesis and since D is connected each
.F; must intersect some .Q for i I j . Observe that if F1 intersects {, then we
canfindballs B;, Biir D suchthat .B1 intersects E;, Bj intersects Ei,ard B;
intersects 87; this gives us a means to chain across the components of .8.

Consider any two points r and y h D and take for Bs and B, any balls of
radius 6 containing r and y respectively. Then Bs intersects .E; for some i and
B, intersects .Ei for some J. Connecting component E; to .Ej requires at most
2rn balls and E itself can be covered by M balls. Therefore a chain Bs , Br, ...,
B, exists joining r to y with

(4.12) s12m*M*1.a
The condition in Theorem 4.8 is not necessary as can be seen in the following

example.
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4.13. Example. Let Bs be any ball, take a sequence of disjoint balls Bi
intersecting Bs, but not contained in .86, whose radii tend to zero and define
D : UBi. Clearly D has the covering property of Theorem 4.1 with N : 2, but
the hypothesis of Theorem 4.5 is not satisfred. o

Acknowledgement. I would like to thank Professor F.W. Gehring for suggesting this
problem and for his advice and constant encouragement.
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