Annales Academiæ Scientiarum Fennicæ Series A. I. Mathematica Volumen 14, 1989, 103-127

L^p-AVERAGING DOMAINS AND THE POINCARÉ INEQUALITY

Susan G. Staples*

1. Introduction

We shall assume in this paper that Ω and D are proper subdomains of \mathbb{R}^n with $n \geq 2$. For such domains Ω and bounded D, we say that a function $u \in L^1_{\text{loc}}(\Omega)$ is of bounded mean oscillation in Ω with respect to D, $u \in \text{BMO}(\Omega, D)$, if $||u||_{*,D} < \infty$, where

$$||u||_{*,D} = \sup_{D' \subset \Omega} \frac{1}{m(D')} \int_{D'} |u - u_{D'}| dm.$$

Here D' is any domain in Ω obtained by a similarity transformation of D and $u_{D'}$ is the average of u over D', i.e.

$$u_{D'} = \frac{1}{m(D')} \int_{D'} u \, dm = \int_{D'} u \, dm$$

In the standard definition of BMO the supremum is taken either over balls or cubes in Ω . It is a well known fact that these two give equivalent norms in \mathbb{R}^n ; that it is also true for arbitrary domains is an elementary consequence of the main result of this paper. We denote the usual BMO norm over balls by $||u||_{*,B^n} = ||u||_*$. The question naturally arises for which types of domains D can we say

(1.1)
$$c_1 \|u\|_* \le \|u\|_{*,D} \le c_2 \|u\|_*$$

where c_1 and c_2 are constants independent of u.

The first half of (1.1) holds for all bounded domains D. This fact follows directly from the inequality

(1.2)
$$\sup_{B \subset D} \frac{1}{m(B)} \int_{B} |u - u_B| \, dm \le c \sup_{\tau B \subset D} \frac{1}{m(B)} \int_{B} |u - u_B| \, dm, \qquad c = c(n, \tau).$$

^{*} This work has appeared in the author's doctoral dissertation written at The University of Michigan. This research was supported in part by a grant from the U.S. National Science Foundation and by an American Association of University Women Dissertation Fellowship.

Here the supremum on the right hand side is taken over balls B satisfying $\tau B \subset D$ for some constant $\tau > 1$ and c is a constant independent of u [RR].

We determine which domains D satisfy the latter half of (1.1) by reformulating this question more generally as a localization problem. Let D be a domain with $m(D) < \infty$. The bounded domains in question are precisely those for which $u \in BMO(D)$ implies $u \in L^1(D)$ and the following inequality holds for p = 1:

(1.3)
$$\left(\frac{1}{m(D)}\int_{D}|u-u_{D}|^{p}\,dm\right)^{1/p} \leq c\left(\sup_{B\subset D}\frac{1}{m(B)}\int_{B}|u-u_{B}|^{p}\,dm\right)^{1/p}$$

where c is a constant independent of u and B is any ball in D. We say that D is an L^p -averaging domain if it satisfies (1.3). Bounded L^1 -averaging domains then satisfy (1.1).

In Section 2 we characterize these domains in terms of the quasihyperbolic metric on D, k(x, y). In particular, we show that for $p \ge 1$, D is an L^p -averaging domain if and only if k(x, y) is L^p integrable over D. In the proof for sufficiency we actually prove the stronger result, namely that for each $\tau > 1$

(1.4)
$$\left(\frac{1}{m(D)}\int_{D}|u-u_{D}|^{p}\,dm\right)^{1/p} \leq c\left(\sup_{\tau B \subset D}\frac{1}{m(B)}\int_{B}|u-u_{B}|^{p}\,dm\right)^{1/p},$$

where $c = c(\tau)$. Since balls are L^p -averaging domains (1.2) is a special case of this result.

Properties and examples of L^p -averaging domains are examined in Section 3. For example, we show that L^p -averaging domains satisfy a Poincaré type inequality and that John domains are L^p -averaging domains. We also prove that the class of L^p -averaging domains is preserved under quasi-isometries, but not under quasiconformal maps.

We can regard the quantity

$$\frac{1}{m(D)} \int_D |u - u_D| \, dm = \underset{D}{\operatorname{avg osc}} \, u$$

as a seminorm for u over D. The BMO seminorm

$$\sup_{B \subset D} \frac{1}{m(B)} \int_{B} |u - u_B| \, dm = \sup_{B \subset D} (\operatorname{avg osc} u).$$

then gives a corresponding local seminorm. By definition L^1 -averaging domains have the local to global norm property given by (1.3), namely

(1.5)
$$\operatorname{avg osc}_{D} u \leq c \sup_{B \subset D} (\operatorname{avg osc}_{B} u).$$

We can also ask which types of domains satisfy the same type of inequality for seminorms other than the one given by average oscillation. Gehring and Martio [GM] have answered this question for the Lipschitz class of mappings, denoted by $\operatorname{Lip}_{\alpha}(D)$.

A mapping $f: D \to \mathbf{R}^n$ is in $\operatorname{Lip}_{\alpha}(D), \ 0 < \alpha \leq 1$ if for some $m < \infty$,

(1.6)
$$|f(x_1) - f(x_2)| \le m|x_1 - x_2|^{\alpha}$$

in D. The mapping f belongs to loc $\operatorname{Lip}_{\alpha}(D)$ if there exists a constant $m < \infty$ such that (1.6) holds whenever x_1 and x_2 lie in any open ball which is contained in D. The seminorms $\|f\|_{\alpha}$ and $\|f\|_{\alpha}^{\operatorname{loc}}$ are defined as the smallest m for which (1.6) holds in the respective sets. Gehring and Martio have characterized the domains which satisfy

$$\|f\|_{\alpha} \leq c \|f\|_{\alpha}^{\log \alpha}$$

for all $f \in \operatorname{loc} \operatorname{Lip}_{\alpha}(D)$.

In Section 4 we consider the domains D which satisfy (1.5) with average oscillation replaced by the maximal oscillation of u over D, namely

(1.7)
$$\operatorname{osc}_{D} u = \sup_{D} u - \inf_{D} u.$$

The corresponding local norm is given by the maximal oscillation of u over balls in D. We call domains satisfying

(1.8)
$$\underset{D}{\operatorname{osc}} u \leq c \sup_{B \subset D} (\operatorname{osc} u)$$

oscillation domains.

Finally we study the geometry of such domains D. If D is an oscillation domain it is necessary that each point in the boundary of D is contained in the closure of some ball B in D. Moreover if each point in D lies in a ball $B \subset D$ of fixed radius $\delta > 0$ then D is an oscillation domain.

2. L^p -averaging domains

We establish some notation and definitions first. We let D denote a proper open subdomain of \mathbf{R}^n with $m(D) < \infty$; here m(D) is the *n*-dimensional Lebesgue measure of D, $d(z, \partial D)$ is the distance from z to the boundary of D, and dm represents Lebesgue measure. We let B and B' denote open balls in \mathbf{R}^n , ω_n the volume of the unit ball in \mathbf{R}^n , Q any cube in \mathbf{R}^n and l(Q) the side length of Q, and τB (similarly σQ) that ball with the same center as B and expanded by a constant factor of $\tau > 1$. **Definition.** The quasihyperbolic distance between x and y in D is given by

$$k(x,y) = k(x,y;D) = \inf_{\gamma} \int_{\gamma} \frac{1}{d(z,\partial D)} ds,$$

where γ is any rectifiable curve in D joining x to y. Gehring and Osgood have proven that for any two points x and y in D there is a quasihyperbolic geodesic arc joining them [GO].

In this section we determine which domains satisfy (1.3).

2.1. Theorem. If D is an L^p -averaging domain, then

(2.2)
$$\left(\int_D k(x,x_0)^p \, dm\right)^{1/p} \le a$$

for each x_0 in D where a depends only on $d(x_0, \partial D)$, n, p, m(D), and the constant c in (1.3).

Proof. Let B be any ball in D with center x_1 and radius r. We first show

(2.3)
$$\left(\int_{B} k(x,x_1)^p \, dm\right)^{1/p} \le \alpha,$$

where α is a constant depending only on n and p. We may assume that $x_1 = 0$. Then for each $x \in B$, $d(x, \partial D) \ge r - |x|$ and thus

$$\int_{B} k(x,0)^{p} dm \leq \int_{B} \left(\log \frac{r}{r-|x|} \right)^{p} dm.$$

Switching to polar coordinates and integrating one verifies (2.3). Let $u(x) = k(x, x_0)$. From the triangle inequality we obtain

$$\left(\int_{B} |u(x) - u_B|^p \, dm\right)^{1/p} \le 2\left(\int_{B} |u(x) - u(x_1)|^p \, dm\right)^{1/p} \le 2\alpha.$$

Since D is an L^p -averaging domain, we have

(2.4)
$$\left(\int_D |u(x) - u_D|^p \, dm\right)^{1/p} \le 2c\alpha.$$

Let $r = d(x_0, \partial D)$ and $B = B(x_0, r/2)$. Assume $u_D \ge 2$, and then on B,

$$u(x) \le \log \frac{r}{r - |x - x_0|} \le \log 2 \le u_D/2,$$

so that

(2.5)
$$\int_{D} |u(x) - u_{D}|^{p} dm \ge \int_{B} |u(x) - u_{D}|^{p} dm \ge \frac{(u_{D})^{p} \omega_{n} r^{n}}{2^{n+p}}$$

Combining (2.4) and (2.5) yields

$$u_D \leq 4c\alpha \left(2^n m(D) \, d(x, \partial D)^{-n} / \omega_n\right)^{1/p}.$$

By Minkowski's inequality we also have

$$\left(f_D |u(x)|^p dm\right)^{1/p} \le \left(f_D |u(x) - u_D|^p dm\right)^{1/p} + \left(f_D u_D^p dm\right)^{1/p} \le (2c\alpha) + 4c\alpha \left(2^n m(D) d(x, \partial D)^{-n} / \omega_n\right)^{1/p} = a. \Box$$

2.6. Theorem. Suppose D satisfies

(2.7)
$$\left(\int_D k(x,x_0)^p \, dm\right)^{1/p} \le a$$

for some fixed point x_0 in D. Then D is an L^p -averaging domain and the constant c in (1.3) depends only on n, p and a.

Note that the choice of the fixed point x_0 is immaterial.

In proving Theorem 2.6 we use the following three lemmas and obtain the stronger conclusion, namely that if (2.7) holds then D satisfies (1.4) where c depends only on τ , n, p, and a.

2.8. Lemma. If

(2.9)
$$\sup_{\tau B \subset D} \left(\frac{1}{m(B)} \int_B |u - u_B|^p \, dm \right)^{1/p} \le c_0,$$

then there exist positive constants s and $q = q'/c_0$ with s and q' depending only on n such that,

(2.10)
$$m\left\{x \in B : |u(x) - u_B| > t\right\} < se^{-qt}m(B)$$

for all balls B satisfying $n\tau B \subset D$.

Lemma 2.8 follows from elementary geometry and the John–Nirenberg theorem [JN] and the observation that for $p \ge 1$,

$$\frac{1}{m(B)} \int_{B} |u - u_{B}| \, dm \le \left(\frac{1}{m(B)} \int_{B} |u - u_{B}|^{p} \, dm\right)^{1/p}$$

The key step in the proof of Theorem 2.6 involves comparing the average of u over various balls in D. Lemma 2.11 gives an estimate in terms of the quasihyperbolic metric alone.

2.11. Lemma. Suppose that s, q, τ are constants with $\tau > 1$ and that

(2.12)
$$m\{x \in B : |u - u_B| > t\} \le se^{-qt}m(B)$$

for each t > 0 and each B satisfying $\tau B \subset D$. Then there exists a constant $c = c(\tau, s, q, n)$ such that

(2.13)
$$|u_{B(x)} - u_{B(y)}| \le c(k(x,y)+1),$$

for all x and y in D; here B(x) and B(y) denote the balls $B(x, d(x, \partial D)/\tau)$ and $B(y, d(y, \partial D)/\tau)$.

Proof. To simplify computations, assume $\tau \geq 3$; the same proof holds for $\tau \in (1,3)$ with minor changes. For each $z \in D$, let B(z) = B(z,r), with $r = d/\tau$ where $d = d(z, \partial D)$, so that $\tau B(z) \subset D$. Fix $x, y \in D$ and choose a quasihyperbolic geodesic arc γ joining x to y in D. We use induction to define an ordered sequence of points $\{z_j\}$ on γ as follows. First set $z_1 = x$. Next suppose that z_1, \ldots, z_j have been defined and let $\beta_j = \gamma(z_j, y)$ denote that part of γ from z_j to y and γ_j the component of $\beta_j \cap B(z_j)$ which contains z_j . Define z_{j+1} as the other endpoint of γ_j .

We simplify notation as follows: $B_j = B(z_j)$, $r_j = r(B_j)$, $d_j = d(z_j, \partial D)$ and $y = z_{m+1}$. From our definition of $\{z_j\}$, we see that

(2.14) $|z_{j+1} - z_j| = r_j$ for j = 1 to m - 1, and $|z_{m+1} - z_m| \le r_m$.

For j = 1, ..., m-1 pick $z'_j \in \partial D$ so that $d(z_j, \partial D) = |z_j - z'_j|$. If $z \in \gamma_j \subset B_j$, then

$$d(z, \partial D) \le |z - z'_j| \le |z - z_j| + |z_j - z'_j| \le 4d_j/3.$$

Hence

$$\int_{\gamma_j} \frac{1}{d(z,\partial D)} \, ds \geq \frac{3}{4d_j} \int_{\gamma_j} \, ds \geq \frac{3|z_{j+1}-z_j|}{4d_j} = \frac{3}{4\tau}$$

Summing the above over j gives

(2.15)
$$\frac{3(m-1)}{4\tau} \le \sum_{1}^{m-1} \int_{\gamma_j} \frac{1}{d(z,\partial D)} \, ds \le \int_{\gamma} \frac{1}{d(z,\partial D)} \, ds = k(x,y),$$

and we conclude $m < \infty$.

Consider now the relative size of neighboring balls. Fix j and choose z, $z' \in \partial D$ so that $d_j = |z - z_j|$ and $d_{j+1} = |z' - z_{j+1}|$. Then $d_j \leq d_{j+1} + r_j$ and $d_{j+1} \leq d_j + r_j$, with the first inequality yielding

$$r_{j+1} = d_{j+1}/\tau \ge (d_j - r_j)/\tau \ge 2r_j/3,$$

and the second yielding $r_j \ge 2r_{j+1}/3$ if $r_{j+1} \ge r_j$. Hence

$$(2.16) 2r_j/3 \le r_{j+1} \le 3r_j/2$$

Next we show that

(2.17)
$$m(B_j \cap B_{j+1}) > c_1(m(B_j) + m(B_{j+1})),$$

where $c_1 = 6^{-n}/2$. Fix j and set $w = (z_j + z_{j+1})/2$, $s = (\max(r_j, r_{j+1}))/6$ and B = B(w, s). In the case $r_j \ge r_{j+1}$ we have $s = r_j/6 \le r_{j+1}/4$; similarly if $r_{j+1} \ge r_j$ we get $s \le r_j/4$. Thus for $z \in B$ we have,

$$|z - z_j| \le |z - w| + |w - z_j| \le s + \frac{1}{2}|z_j - z_{j+1}| \le r_j;$$

a similar argument shows $|z - z_{j+1}| \leq r_{j+1}$. Hence we conclude $B \subset B_j \cap B_{j+1}$ and (2.17) follows.

Now for j = 1, 2, ..., m + 1 let

$$E_j = \{x \in B_j : |u(x) - u_{B_j}| > t\},\$$

where $t = (\log 2s/c_1)/q$. By (2.12),

$$(2.18) m(E_j) \le c_1 m(B_j)/2$$

and combining (2.17) and (2.18) yields

 $m\bigl((B_j\cap B_{j+1})\setminus (E_j\cup E_{j+1})\bigr)>0.$

Therefore there exists $x \in (B_j \cap B_{j+1}) \setminus (E_j \cup E_{j+1})$ and hence

$$|u_{B_j} - u_{B_{j+1}}| \le |u(x) - u_{B_j}| + |u(x) - u_{B_{j+1}}| \le 2t.$$

Summing and using (2.15) we obtain

$$\left| u_{B(x)} - u_{B(y)} \right| \le \sum_{1}^{m} \left| u_{B_{j}} - u_{B_{j+1}} \right| \le 2mt \le 8\tau \left(k(x,y) \right) t/3 + 2t.$$

Then (2.13) follows with $c = 8\tau \log(4s6^n)/3q$.

2.19. Lemma. Suppose s, q, and τ are constants with $\tau > 1$ and that (2.20) $m\{x \in B : |u(x) - u_B| > t\} \le se^{-qt}m(B)$

for each t > 0 and each ball B satisfying $\tau B \subset D$. If D satisfies (2.7), then

(2.21)
$$\left(\frac{1}{m(D)}\int_{D}|u-u_{D}|^{p}\,dm\right)^{1/p}\leq b,$$

where $b = b(s, q, \tau, n, p, a)$.

Proof. Let $\lambda(t) = m\{x \in D : k(x, x_0) > t\}$. Then by (2.7),

$$\int_0^\infty p t^{p-1} \lambda(t) \, dt = \int_D k(x, x_0)^p \, dm \le a^p m(D).$$

Let c be the constant in (2.13), fix t > 0 and let

$$E_t = \left\{ x \in D : |u(x) - u_{B(x_0)}| > t \right\},\$$
$$F = \left\{ x \in D : k(x, x_0) \le t_2 \right\}.$$

Here t_2 is a function of t to be chosen later. We estimate $m(E_t)$ by first noting that

(2.22)
$$m(E_t \setminus F) \le m(D \setminus F) = \lambda(t_2).$$

By Lemma 2.11, for each $x \in F$ we get a closed ball B(x) with $\tau B(x) \subset D$ such that

$$|u_{B(x_0)} - u_{B(x)}| \le c(k(x, x_0) + 1) \le c(t_2 + 1).$$

The set F is bounded since for any points $x, y \in F$ we have $k(x, y) \le 2t_2 < \infty$ [GP]. Here for each $x \in F$,

$$d(x,\partial D) \leq \operatorname{diam} F + d(x_0,\partial D) = d,$$

so that the radii of the balls B(x) are uniformly bounded. The union of all such balls covers F and we can apply a well known covering theorem from page 9 of [S] to obtain a subcover of balls $B_j = B(x_j), x_j \in F$ with the following properties:

(i) $F \subset \bigcup_{j} B_{j}$,

(ii) The balls $B'_j = B_j/5$ are pairwise disjoint.

This gives the useful relation:

(2.23)
$$\sum_{j} m(B_{j}) = 5^{n} \sum_{j} m(B'_{j}) \le 5^{n} m(D).$$

Now fix $x \in E_t \cap B_j$. Then since $x_j, x_0 \in F$,

$$|u(x) - u_{B(x_j)}| \ge |u(x) - u_{B(x_0)}| - |u_{B(x_j)} - u_{B(x_0)}| \ge t - c(t_2 + 1) = t_1,$$

and hence

(2.24)
$$m(E_t \cap F) \le \sum_j m(E_t \cap B_j) \le 5^n s e^{-qt_1} m(D),$$

110

by (2.20) and (2.23). Combining (2.22) and (2.24) then yields

$$m(E_t) \le 5^n s e^{-qt_1} m(D) + \lambda(t_2).$$

Let $t_2 = (t/2c)$ so that $t_1 = (t/2) - c$, and then

$$m(E_t) \le 5^n s e^{qc} e^{-qt/2} m(D) + \lambda(t/2c).$$

As

$$\left(\frac{1}{m(D)}\int_{D} \left|u(x) - u_{B(x_{0})}\right|^{p} dm\right)^{1/p} = \left(\frac{1}{m(D)}\int_{0}^{\infty} pt^{p-1}m(E_{t}) dt\right)^{1/p}$$

we have

(2.25)
$$\left(\frac{1}{m(D)}\int_{D} \left|u(x) - u_{B(x_{0})}\right|^{p} dm\right)^{1/p} \leq (c_{1}q^{-p} + c_{2}a^{p}c^{p})^{1/p},$$

where c_1 and c_2 depend only on n, s, τ , and p. Now (2.21) follows with $b = 2(c_1q^{-p} + c_2a^pc^p)^{1/p}$.

We prove Theorem 2.6 by recalling the definitions of the appropriate constants in each of the three lemmas. Only $q = q'/c_0$ and the constant c in (2.13) depend on c_0 in (2.9) and (2.21) can be rewritten to give

$$\left(\frac{1}{m(D)}\int_D |u-u_D|^p \, dm\right)^{1/p} \le c'c_0,$$

where $c' = c'(n, \tau, a, p)$.

2.26. Corollary. Let $\tau > 1$ be a constant. If

$$\sup_{\tau B \subset \Omega} \frac{1}{m(B)} \int_{B} |u - u_B| \, dm \le c_0$$

for some constant c_0 , then $u \in BMO(\Omega)$, with $||u||_* \leq cc_0$, $c = c(n, \tau)$.

Proof. From the calculations in Theorem 2.1 we see balls satisfy (2.7) for p = 1. Theorem 2.6 then gives

$$\sup_{B \subset \Omega} \frac{1}{m(B)} \int_{B} |u - u_B| \, dm \le c \sup_{\tau B \subset \Omega} \frac{1}{m(B)} \int_{B} |u - u_B| \, dm.$$

3. The Poincaré inequality and examples of L^p -averaging domains

We begin this section by observing that L^p -averaging domains are preserved under quasi-isometries. This result will aid our computations in proving the Poincaré inequality theorem and other theorems throughout Section 3.

Definition. A mapping f defined in D is said to be a K-quasi-isometry, K > 1, if

$$\frac{1}{K} \leq \frac{\left|f(x) - f(y)\right|}{|x - y|} \leq K,$$

for all $x, y \in D$.

3.1. Theorem. If $f: D \to D'$ is a quasi-isometry and D is an L^p -averaging domain, then D' is an L^p -averaging domain.

Proof. If f is a K-quasi-isometry, then $1/K^n \leq J(f) \leq K^n$ a.e., where J(f) is the Jacobian of f. Let γ be a quasihyperbolic geodesic joining x to y in D and set $\gamma' = f(\gamma)$. We can easily check that

$$k(f(x), f(y); D') \leq \int_{\gamma'} \frac{ds'}{d(f(z), \partial D')} \leq \int_{\gamma} \frac{K^2 ds}{d(z, \partial D)} = K^2 k(x, y; D).$$

Combining these observations yields

$$\left(\int_{D'} k(f(x), f(x_0); D')^p dm\right)^{1/p} \le a(K^{2n+2p})^{1/p},$$

where a is as in (2.7).

Using Theorem 3.1 we can easily estimate the integral of $k(x, x_Q)$ over a cube Q with center x_Q . This result will be needed when we cover the domain D with cubes, such as in the Whitney cube decomposition of D.

3.2. Corollary. For any cube Q with center x_Q , we have

(3.3)
$$\left(\int_{Q} k(x, x_Q)^p \, dm\right)^{1/p} \le c, \qquad c = c(n, p).$$

Proof. For any cube Q there exists a quasi-isometry f mapping Q to $B(x_Q, l(Q)/2)$ with $f(x_Q) = x_Q$. By the calculations done for balls in Theorem 2.1 and by Theorem 3.1 we have (3.3).

 L^{p} -averaging domains constitute a large class of domains in \mathbb{R}^{n} which satisfy a Poincaré type inequality [H], [M]. **3.4. Theorem.** If D is an L^p -averaging domain, $p \ge n$, then there exists a constant c, such that

(3.5)
$$\left(\frac{1}{m(D)}\int_{D}|u-u_{D}|^{p}\,dm\right)^{1/p} \leq cm(D)^{1/n}\left(\frac{1}{m(D)}\int_{D}|\nabla u|^{p}\,dm\right)^{1/p}$$

for each function u in the Sobolev class $W_1^p(D)$.

Proof. For each ball $B \subset D$, we see from (7.45) in [GT] that

$$\left(\frac{1}{m(B)}\int_{B}|u-u_{B}|^{p}\,dm\right)^{1/p} \leq c_{1}m(B)^{(1/n)-(1/p)}\left(\int_{B}|\nabla u|^{p}\,dm\right)^{1/p}$$
$$\leq c_{1}m(D)^{1/n}\left(\frac{1}{m(D)}\int_{D}|\nabla u|^{p}\,dm\right)^{1/p}.$$

Thus (3.5) follows from (1.3).

The following shows that the hypothesis $p \ge n$ is essential in Theorem 3.4.

3.6. Theorem. If p < n, there exists a domain $D \subset \mathbb{R}^n$ which is L^q -averaging for all $q < \infty$, such that (3.5) does not hold for any constant c.

Proof. Construct D by alternately adjoining large cubes, $\{Q_i\}$, with small cubes, $\{R_i\}$, with centers x_i and y_i respectively, so that

- (i) Q_0 is centered at the origin,
- (ii) each cube is centered on the positive x_1 axis, and
- (iii) the x_1 coordinates of the centers form an increasing sequence when the centers are ordered as follows:

$$\{x_0, y_1, x_1, y_2, x_2, \ldots, x_i, y_{i+1}\}.$$

Next join this domain to its reflection in $x_1 = 0$ to get a symmetric domain. The sidelengths of the cubes in D are

$$l(Q_i) = l(Q_{-i}) = q_i = 2^{-(i+1)}$$
 for $i = 0, 1, 2, ...$

and

$$l(R_i) = l(R_{-i}) = r_i = 2^{-ai}$$
 for $i = 1, 2, \dots$ with $a > 1$,

where Q_{-i} and R_{-i} are the reflections of Q_i and R_i respectively.

We show first that D is an L^q -averaging domain for each finite q. Decomposing D gives

(3.7)
$$\int_D k(z,0)^q \, dm \le 2 \sum_{1}^{\infty} \left(\int_{Q_{i-1}} k(z,0)^q \, dm + \int_{R_i} k(z,0)^q \, dm \right).$$

By (3.3) we have

(3.8)
$$\int_{Q_i} k(z,0)^q \, dm \le \int_{Q_i} \left(k(z,x_i) + k(x_i,0) \right)^q \, dm \le 2^q \left(c_1 + k(x_i,0)^q \right) m(Q_i).$$

We get a similar statement for each R_i with center y_i . Now estimating the quasihyperbolic metric geometrically we get

$$k(x_{i-1}, 0) \le k(y_i, 0) \le 2\left(\sum_{0}^{i} 2 + \log \frac{q_j}{r_{j+1}}\right) = c_2 i + c_3 i^2$$

Thus

(3.9)
$$k(x_{i-1}, 0)^q \le k(y_i, 0)^q \le c_4 i^{2q}.$$

Substituting (3.8) and (3.9) in (3.7) yields

(3.10)
$$\int_D k(z,0)^q \, dm \le 2 \left(\sum_{1}^{\infty} 2^q \left(c_1 + c_4 i^{2q} \right) \left(2^{-ni} + 2^{-nai} \right) \right) < \infty,$$

so that D is an L^q -averaging domain for each $q < \infty$.

Now we construct a function u so that (3.5) does not hold in D. Define u to be the piecewise linear function in x_1 which satisfies u = 0 on Q_0 and

$$\frac{du}{dx_1} = \begin{cases} 2^{b|i|} & \text{on } R_i \text{ for all } i, \\ 0 & \text{on } Q_i \text{ for all } i \end{cases}$$

so that $u_D = 0$. Here b is chosen so that

(3.11)
$$\frac{n+pa}{p} < b < \frac{na}{p}.$$

This is possible if and only if we choose a so that a > n/(n-p).

Now let us estimate each of the integrals in (3.5). On the right hand side we have,

(3.12)
$$\int_D |\nabla u|^p \, dm = 2 \sum_{1}^{\infty} 2^{(bp-an)i} < \infty,$$

by (3.11).

We get a lower bound on the left hand side by noting,

 $|u| \ge 2^{bi-ai}$ on Q_i and Q_{-i} for i > 1.

114

Thus

(3.13)
$$\int_{D} |u - u_{D}|^{p} dm \ge 2 \sum_{1}^{\infty} 2^{(bp - ap - n)i} = \infty,$$

by (3.11). Therefore (3.5) does not hold in the case p < n.

John domains, studied by Martio and Sarvas [MS] in their work on injectivity, are a subclass of L^p -averaging domains. Many well known domains are John domains including bounded convex domains, bounded quasidisks and bounded uniform domains. Martio has recently shown that John domains satisfy a Poincaré inequality for exponents $p \geq 1$ [M].

Definition. Let $0 < \alpha \leq \beta < \infty$. A domain $D \subset \mathbb{R}^n$ is called an (α, β) John domain, if there is an $x_0 \in D$ such that every $x \in D$ has a rectifiable path $\gamma: [0, d] \to D$ with arclength as parameter such that $\gamma(0) = x, \gamma(d) = x_0, d \leq \beta$ and

$$d(\gamma(t),\partial D) \ge rac{lpha}{d}t \qquad ext{for all} \quad t\in [0,d].$$

We prove that John domains are L^p -averaging domains.

3.14. Theorem. If D is a John domain, then D is an L^p -averaging domain.

Proof. By a result of Boman [B], there exist constants $\tau > 1$, $N \ge 1$, and a covering Γ for D consisting of open cubes Q and a distinguished cube Q_0 with the following properties:

- (3.15) $\sum_{Q \in \Gamma} \chi_{\tau Q}(x) \leq N \chi_D(x), x \in \mathbf{R}^n$, and
- (3.16) Each cube Q in Γ can be connected to Q_0 by a chain of cubes $Q_0, Q_1, \ldots, Q_s = Q$ from Γ such that for each $j = 0, 1, \ldots, s 1, Q \subset NQ_j$, and there exists a cube $R_j \subset Q_j \cap Q_{j+1}$ which satisfies $Q_j \cup Q_{j+1} \subset NR_j$.

We proceed using integration techniques found in [IN] and the notation

$$k_Q = \oint_Q k(x, x_0) \, dm.$$

Let x_0 be the center of Q_0 . From (3.3) we deduce (3.17)

$$\left(\int_{Q} \left|k(x,x_{0})-k_{Q}\right|^{p} dm\right)^{1/p} \leq 2\left(\int_{Q} \left|k(x,x_{0})-k(x_{0},x_{Q})\right|^{p} dm\right)^{1/p} \leq 2c.$$

Now using the cover Γ and the elementary inequality

$$|a+b|^{p} \le 2^{p} (|a|^{p} + |b|^{p}),$$

we have

(3.18)
$$\int_{D} \left| k(x, x_{0}) - k_{Q_{0}} \right|^{p} dm$$

$$\leq 2^{p} \left(\sum_{Q \in \Gamma} \int_{Q} \left| k(x, x_{0}) - k_{Q} \right|^{p} dm + \sum_{Q \in \Gamma} \int_{Q} \left| k_{Q} - k_{Q_{0}} \right|^{p} dm \right).$$

Estimating the first term using (3.15) and (3.17) gives,

$$\sum_{Q \in \Gamma} \int_{Q} \left| k(x, x_0) - k_Q \right|^p dm \le \sum_{Q \in \Gamma} (2c)^p m(Q) \le (2c)^p N m(D).$$

For the second term, fix a cube $Q = Q_s$ and let Q_0, Q_1, \ldots, Q_s be the chain given in (3.16). Since $Q_j \cup Q_{j+1} \subset NR_j$,

$$\int_{R_j} \left| k(x, x_0) - k_{Q_j} \right|^p dm \le \frac{m(Q_j)}{m(R_j)} \int_{Q_j} \left| k(x, x_0) - k_{Q_j} \right|^p dm \le (2c)^p N^n,$$

and thus

$$|k_{Q_j} - k_{Q_{j+1}}|^p \le 2(4c)^p N^n.$$

Property (3.16) gives

$$|k_{Q_j} - k_{Q_{j+1}}|^p \chi_Q(x) \le 2(4c)^p N^n \chi_{NQ_j}(x),$$

so that

$$|k_{Q_0} - k_Q|^p \chi_Q(x) \le \left(\sum_{0}^{s-1} |k_{Q_j} - k_{Q_{j+1}}| \chi_Q(x)\right)^p \le 2(4c)^p N^n \left(\sum_{R \in \Gamma} \chi_{NR}(x)\right)^p.$$

Now any point x is in at most N cubes Q in Γ by (3.15); thus

$$\int_{\mathbf{R}^n} \sum_{Q \in \Gamma} |k_{Q_0} - k_Q|^p \chi_Q(x) \, dm \le 2(4c)^p N^{n+1} \int_{\mathbf{R}^n} \left(\sum_{R \in \Gamma} \chi_{NR}(x) \right)^p dm.$$

By Lemma 4 of [IN],

$$\int_{\mathbf{R}^n} \left(\sum_{R\in\Gamma} \chi_{NR}(x)\right)^p dm \le c_1 \int_{\mathbf{R}^n} \left(\sum_{R\in\Gamma} \chi_R(x)\right)^p dm,$$

with $c_1 = c_1(N, n, p)$ so that

$$\sum_{Q \in \Gamma} \int_{Q} |k_{Q_0} - k_Q|^p \, dm \le 2c_1 (4c)^p N^{n+1+p} m(D).$$

Substituting these two estimates in (3.18) and using (3.3), we obtain,

$$\left(\int_D k(x,x_0)^p \, dm\right)^{1/p} \le a, \qquad a = a(N,n,p).$$

John domains may have internal cusps, but no external cusps. Certain outwardly directed spires are allowed in L^p -averaging domains and the following theorem characterizes such finite spires.

3.19. Theorem. Let D be the domain $Q \cup S \subset \mathbf{R}^n$, where Q is the cube

$$Q = \{(x_1, x_2, \dots, x_n) : |x_1 - 2|, |x_2|, \dots, |x_n| < 1\},\$$

and S is the spire

(3.20)
$$S = \left\{ (x_1, x_2, \dots, x_n) : \sum_{i=1}^{n} (x_i)^2 < g(x_1)^2, \quad 0 \le x_1 < 1 \right\}$$

and where g(x) satisfies the following properties:

 $\begin{array}{ll} ({\rm i}) & g(0) = 0, \; g(1) \leq 1, \\ ({\rm ii}) & 0 < g'(x) \leq M, \; {\rm for} \; 0 < x \leq 1, \\ ({\rm iii}) & g''(x) \geq 0, \; {\rm for} \; 0 \leq x \leq 1. \\ \\ Then \; D \; {\rm is \; an \; } L^p \text{-averaging domain if and only if} \end{array}$

(3.21)
$$\int_0^1 g(x)^{n-1} \left(\int_x^1 \frac{1}{g(t)} \, dt \right)^p dx < \infty.$$

Proof. We take $z_0 = (1, 0, 0, ..., 0)$ for our fixed point and estimate $k(z, z_0)$ for $z = (a_1, a_2, ..., a_n) \in S$ as follows. We let $z_1 = (a_1, 0, ..., 0)$ and obtain an upper bound on $k(z, z_1)$ by examining the cross section of S where $x_1 = a_1$. This gives

(3.22)
$$k(z, z_1) \le \log \frac{R}{R-r}$$
, where $R = g(a_1)$ and $r^2 = \sum_{i=1}^{n} (a_i)^2$.

For any point $y = (x_1, 0, ..., 0)$, note that the distance to the boundary satisfies

$$g(x_1) \ge d(y, \partial D) \ge g(x_1) \cos \theta$$
, where $\tan \theta = g'(x_1)$.

Thus

(3.23)
$$\frac{1}{g(x_1)} \le \frac{1}{d(y,\partial D)} \le \frac{1}{g(x_1)} \left(g'(x_1)^2 + 1\right)^{1/2} \le \frac{c}{g(x_1)},$$

by (ii).

Combining (3.22) and (3.23) yields

$$\left(\int_{a_1}^1 \frac{1}{g(t)} \, dt\right)^p \le k(z, z_0)^p \le 2^p \left(\left(\log \frac{g(a_1)}{g(a_1) - r}\right)^p + \left(c \int_{a_1}^1 \frac{1}{g(t)} \, dt\right)^p\right).$$

By a change of coordinates, we have

$$\int_{S} k(z, z_{0})^{p} dm \leq c_{1} \int_{0}^{1} \int_{0}^{g(x)} \left(\log \frac{g(x)}{g(x) - r} \right)^{p} r^{n-2} dr dx + c_{2} \int_{0}^{1} \int_{0}^{g(x)} \left(\int_{x}^{1} \frac{1}{g(t)} dt \right)^{p} r^{n-2} dr dx.$$

The first integral is finite for all $n \ge 2$ and $1 \le p < \infty$, so we need only consider the behavior of the second integral. After integration with respect to r this reduces to (3.21). By (3.3) we can get a bound on the integral of $k(z, z_0)^p$ over Q, thus completing the proof. \Box

Similarly we can prove that an infinite spire of revolution S in \mathbb{R}^n given by

$$S = \{(x_1, x_2, \dots, x_n) : \sum_{i=1}^{n} (x_i)^2 < g(x_1)^2, \quad 0 \le x_1 < \infty\}$$

is an L^p -averaging domain if and only if

(3.24)
$$\int_0^\infty g(x)^{n-1} \left(\int_0^x \frac{1}{g(t)} dt\right)^p < \infty$$

The above two results can be applied to get specific examples. For instance, finite spires S of revolution generated by $g(x_1) = x_1^{\alpha}$, for $\alpha > 1$ and p+1 > n, are L^p -averaging domains if and only if

$$(3.25) \qquad \qquad \alpha < \frac{p+1}{p+1-n}.$$

Similarly the infinite spire S generated by $g(x_1) = x_1^{\alpha}$, for p + 1 < n is an L^p -averaging domain if and only if (3.25) holds.

These examples serve to differentiate L^p -averaging domains from John domains in another way. Using these domains we can show that the class of L^p averaging domains is not preserved under quasiconformal maps.

118

3.26. Theorem. L^p -averaging domains are not invariant with respect to quasiconformal self mappings of \mathbb{R}^n .

Proof. We use spires of revolution S in each of the following three cases and the quasiconformal mapping, $f(z) = |z|^{k-1}z$. Denote f(S) by S'.

Case i: p + 1 > n. Here consider the finite spire S generated by

$$g(x_1) = x_1^{\alpha}, \quad \text{with} \quad \alpha > \frac{p+1}{p+1-n},$$

so that S is not an L^p -averaging domain. The spire S' is an L^p -averaging domain for large values of K.

Case ii: p + 1 < n. We take the infinite spire S generated by

$$g(x_1) = x_1^{\alpha}, \quad \text{with} \quad \alpha < \frac{p+1}{p+1-n},$$

so that S is an L^p -averaging domain. Now S' is not an L^p -averaging domain for large values of K.

Case iii: p + 1 = n. In this case consider the infinite spire S generated by

$$g(x_1) = x_1^{1-K} e^{-x_1^K}, \quad \text{with} \quad K > \frac{n}{n-1}$$

so that by (3.24) S is an L^p -averaging domain. By means of (3.24) again, we see that S' is not an L^p -averaging domain. \Box

Also in contrast to the situation for John domains, the boundary of an L^p -averaging domain can have positive *n*-dimensional measure. Specifically, for $p \leq n-1$, we can construct an L^p -averaging domain satisfying $m(\partial D) = \infty$. Since the class of L^p -averaging domains is a decreasing set with respect to p, an example for the case p = n - 1 will suffice. We give the proof here for the case n = 2 and p = 1 and sketch the idea for the generalization to p = n - 1, $n \geq 2$.

3.27. Example. We construct an L^1 -averaging domain D in \mathbb{R}^2 with $m(\partial D) = \infty$. Let Q be the unit square centered at $z_0 = (-1/2, 0)$ and let F be the edge x = 0.

On F we choose a countable dense set of points as follows. Let F_i denote the dyadic decomposition of F into 2^i intervals and define C_i as the set of all centers of F_i . The set of all centers,

$$C = \bigcup_{1}^{\infty} C_i$$

is dense in F and the number of points in each C_i is

$$|C_i| = 2^i$$
.

Now for each point z_{ij} in C_i , we take the closed interval B_{ij} of length $r_i = 2^{-2i-1}$ centered at z_{ij} . The lengths are thus chosen so that

$$m(B_{ij})|C_i| = 2^{-i-1}.$$

We define the set E as

$$E = F \setminus \bigcup_{i} \left(\bigcup_{z_{ij} \in C_i} B_{ij} \right).$$

(Note that for all future unions over both i and j as above the notation will be abbreviated $\bigcup_{i,j}$.) We have

$$m(E) \ge m(F) - \sum_{i} 2^{-i-1} = 1/2.$$

We attach the spire S_{ij} to base B_{ij} where S_{ij} is a suitable translation of the spire S_i generated by

$$g(x) = e^{-tx}(2t)^{-e^{tx}}$$
, with $t = (r_i)^{-1}$.

Finally define D as

$$D = Q \cup \bigcup_{i,j} S_{ij}.$$

The boundary of D contains $[0,\infty) \times E$, so that $m(\partial D) = \infty$.

Now we show that D is an L^p -averaging domain. In the following computations, c denotes any positive constant depending only on the dimension n.

First by using the technique in Theorem 3.19 we obtain

$$\int_{S_{i}} k(z,0) \, dm \le M \int_{0}^{\infty} \int_{0}^{g(x)} \left(\log \frac{g(x)}{g(x) - r} + \int_{0}^{x} \frac{1}{g(s)} \, ds \right) \, dr \, dx,$$

where

$$M = \max_{x \ge 0} \left(g'(x)^2 + 1 \right)^{1/2} \le 2 + \log 2t.$$

After performing the integration the above simplifies to

(3.28)
$$\int_{S_i} k(z,0) \, dm \le ct^{-2}.$$

We have the following inequality, (3.29)

$$\int_{D}^{\prime} k(z_{0},0) \, dm < \sum_{i,j} \left(\int_{S_{ij}} k(z_{0},z_{ij}) \, dm + \int_{S_{ij}} k(z_{ij},z) \, dm \right) + \int_{Q} k(z,z_{0}) \, dm.$$

L^p -averaging domains and the Poincaré inequality

We can obtain the following estimates for $k(z_0, z_{ij})$ and $m(S_{ij})$,

$$k(z_0, z_{ij}) \leq 1 - c \log r_i$$
 and $m(S_{ij}) \leq ct^{-2}$.

Substituting these and the value of r_i into 3.29, and using (3.3), we see that the sum in (3.29) converges or that D is an L^1 -averaging domain.

To generalize to the case p = n - 1 for all $n \ge 2$, we take the countable dense set of centers generated by the dyadic decomposition of the face $x_1 = 0$ in the *n*-dimensional cube Q. Define balls B_{ij} of radius

$$r_i = 2^{(-ni-1)/(n-1)} (\omega_{n-1})^{-1/(n-1)}$$

and attach spires of revolution generated by the function $g(x_1)$. The desired conclusions follow after similar but more involved computations. \Box

The classical case of the Poincaré inequality, with p = n = 2, has been studied more extensively. For this case we can get the following stronger version of Theorem 3.4.

3.30. Theorem. Let D be a simply connected domain in \mathbb{R}^2 . If D is an L^1 -averaging domain, then there is a constant c, such that

(3.31)
$$\left(\frac{1}{m(D)}\int_{D}|u-u_{D}|^{2}\,dm\right)^{1/2} \leq cm(D)^{1/2}\left(\frac{1}{m(D)}\int_{D}|\nabla u|^{2}\,dm\right)^{1/2},$$

for each function $u \in L^2(D) \cap W_1^2(D)$.

Proof. Hamilton [H] has shown that if there exists a point $z_0 \in D$ and constant c such that

(3.32)
$$\int_D |f|^2 \, dm \le c \int_D |f'|^2 dm,$$

for all f analytic in D normalized so that $f(z_0) = 0$, then D satisfies (3.31).

Also note that the quasihyperbolic metric, k(x, y; D), and the hyperbolic metric, h(x, y; D) are equivalent metrics in simply connected domains D in \mathbb{R}^2 [G].

With the above two results the proof of Theorem 3.30 can now be reduced to showing that for some $z_0 \in D$ and for all f analytic in D we have

(3.33)
$$\int_{D} |f(z) - f(z_{0})|^{2} dm \leq \frac{1}{\pi} \left(\int_{D} |f'|^{2} dm \right) \int_{D} h(z, z_{0}; D) dm.$$

We show (3.33) as follows. Let B denote the unit disk, choose $\varphi: B \to D$ conformal with $\varphi(0) = z_0$, and set $g = f \circ \varphi$.

Next suppose that

$$g(w) = \sum_{0}^{\infty} a_n w^n.$$

Then

$$|f(z) - f(z_0)|^2 = |g(w) - g(0)|^2 = \left|\sum_{1}^{\infty} a_n w^n\right|^2.$$

By Hölder's inequality we have,

$$\begin{split} \left| f(z) - f(z_0) \right|^2 &\leq \left(\sum_{1}^{\infty} n |a_n|^2 \right) \left(\sum_{1}^{\infty} \frac{|w|^{2n}}{n} \right) \\ &= \left(\frac{1}{\pi} \int_{B} \left| g'(w) \right|^2 dm \right) \left(\log \frac{1}{1 - |w|^2} \right) \\ &\leq \left(\frac{1}{\pi} \int_{D} |f'|^2 dm \right) \log \frac{1 + |w|}{1 - |w|} \\ &= \left(\frac{1}{\pi} \int_{D} |f'|^2 dm \right) h(w, 0; B) = \left(\frac{1}{\pi} \int_{D} |f'|^2 dm \right) h(z, z_0; D) \end{split}$$

This pointwise estimate clearly gives (3.33).

Combining Theorem 3.30 with Example 3.27 gives us a domain D with infinite boundary measure that satisfies the Poincaré inequality. Theorem 3.30 also clearly shows that the hypothesis that D is an L^p -averaging domain in Theorem 3.4 is not necessary.

Finally we observe that L^p -averaging domains can be characterized in terms of their covers by Whitney cubes [S].

3.34. Theorem. If the Whitney cube cover F of D consists of cubes Q_j with centers x_j , then the following two conditions are equivalent:

(3.35)
$$\left(\frac{1}{m(D)}\int_D k(x,x_0)^p \, dm\right)^{1/p} < \infty,$$

(3.36)
$$\left(\frac{1}{m(D)}\sum_{Q_j\in F}k(x_j,x_0)^p m(Q_j)\right)^{1/p} < \infty.$$

Proof. Assume (3.35) holds. Then by (3.3),

$$\left(\int_{D} k(x,x_{0})^{p} dm\right)^{1/p} \leq 2^{1/p} \left(\left(\sum_{Q_{j}} \int_{Q_{j}} k(x_{j},x)^{p}\right)^{1/p} + \left(\sum_{Q_{j}} \int_{Q_{j}} k(x_{j},x_{0})^{p}\right)^{1/p} \right) \leq (2m(D))^{1/p} c_{n} + 2^{1/p} \left(\sum_{Q_{j}} k(x_{j},x_{0})^{p} m(Q_{j})\right)^{1/p}.$$

Thus (3.36) follows clearly. The implication in the other direction is proven similarly. \square

3.37. Corollary. If D is an L^p -averaging domain and if N_j denotes the number of cubes of side length 2^{-j} in the Whitney decomposition F of D, then

(3.38)
$$\sum_{j} j^{p} 2^{-nj} N_{j} < \infty.$$

Proof. From Gehring-Palka [GP] we have the inequality

$$k(x_0, x) \ge \log \frac{d(x_0, \partial D)}{d(x, \partial D)}$$

Let Q_0 with center x_0 be the largest cube in F, and let Q_i with center x_i be of side length 2^{-j} . From the Whitney cube cover properties,

$$k(x_0, x_i) \ge \log \frac{d(x_0, \partial D)n^{-1/2}}{5l(Q_i)} = c + j \log 2.$$

Substituting this estimate in (3.36) we deduce (3.38).

3.39. Remark. An example exists proving condition (3.38) is not sufficient.

4. Oscillation domains

We now turn our attention to the class of oscillation domains, i.e. the analogues of L^p -averaging domains with the average oscillation,

$$\left(\frac{1}{m(D)}\int_D |u-u_D|^p \, dm\right)^{1/p}$$

replaced by the maximal oscillation,

$$\operatorname{osc}_{D} u = \sup_{D} u - \inf_{D} u.$$

Definition. We say that D is an oscillation domain if D satisfies

(1.8)
$$\operatorname{osc} u \leq c \sup_{B \subset D} (\operatorname{osc} u).$$

These domains can be characterized by a special chaining property.

4.1. Theorem. A bounded domain $D \subset \mathbb{R}^n$ satisfies (1.8) if and only if for some constant N each pair of points x and y in D can be joined by a chain of balls B_0, B_1, \ldots, B_s in D such that $x \in B_0, y \in B_s, B_j \cap B_{j+1} \neq \emptyset$ and $s \leq N$.

Proof. Assume first that D does not have this chaining property. We assign each ball B in D to an open set L_j as follows. Let B_0 be the largest ball contained in D and set $L_0 = B_0$. Next suppose that $L_0, L_1, \ldots, L_{j-1}$ have been defined for some $j \ge 1$ and let L_j be the union of all balls B contained in D which satisfy:

(i) $B \cap L_{j-1} \neq \emptyset$, (ii) $B \setminus \bigcup_{0}^{j-1} L_i \neq \emptyset$. Clearly $D = \bigcup_{0}^{\infty} L_j$.

Next define u so that

$$u = \begin{cases} 0 & \text{on } L_0, \\ j & \text{on } L_j \setminus \bigcup_0^{j-1} L_i, \text{ for } j = 1, 2, \dots \end{cases}$$

Since D does not have the chaining property, $\operatorname{osc}_D u = \infty$.

To show $\sup_{B \subset D} (\operatorname{osc}_B u)$ is bounded, let B be any ball in D and set

$$k = \inf\{j : (L_j \cap B) \neq \emptyset\}.$$

Then

$$B \subset (L_k \cup L_{k+1}) \setminus \bigcup_{0}^{k-1} L_j,$$

and hence u assumes at most the two values k and k+1 in B. Thus

$$\operatorname{osc}_{B} u = \sup_{B} u - \inf_{B} u \le 1.$$

For the sufficiency, suppose that $\sup_{B \subset D} \operatorname{osc} u \leq m$. Next for any two points x and y in D, let B_0, B_1, \ldots, B_s be the chain of balls connecting them and choose x_j in $B_{j-1} \cap B_j$. Then

$$\begin{aligned} \left| u(x) - u(y) \right| &\leq \left| u(x) - u(x_1) \right| + \sum_{1}^{s-1} \left| u(x_j) - u(x_{j+1}) \right| + \left| u(x_s) - u(y) \right| \\ &\leq (s+1)m \leq (N+1)m. \end{aligned}$$

We have

(4.2)
$$\operatorname{osc}_{D} u \leq (N+1) \sup_{B \subset D} (\operatorname{osc}_{B} u). \Box$$

We conclude this paper by giving two geometric conditions, one necessary and one sufficient, for D to be an oscillation domain.

4.3. Theorem. If D is an oscillation domain, then each point in the boundary of D is contained in the closure of a ball $B \subset D$.

Proof. We proceed by induction on N, where N is the chaining constant given in Theorem 4.1. For the case N = 0, D itself is a ball and each $z \in \partial D$ is in the closed ball \overline{D} .

Assume that the result has been established for N = k. Consider all balls B in D and assign each to the open set L_j defined in the proof of Theorem 4.1. Let D be a domain with chaining constant k + 1. Each ball $B \subset D$ is then in some L_j for $j \leq k + 1$. We write

$$D = \bigcup_{1}^{k+1} L_j = D_k \cup L_{k+1}, \quad \text{where} \quad D_k = \bigcup_{1}^k L_j.$$

Choose $z_0 \in \partial D$. We want to show there exists a ball B, with

If $z_0 \in \partial D_k$, then (4.4) follows directly from the induction hypothesis. If $z_0 \notin \partial D_k$, then there exists a sequence of points $\{z_j\} \subset L_{k+1} \setminus \overline{D}_k$ which converges to z_0 . For each j choose a ball $B_j(y_j, r_j)$ which lies in L_{k+1} , intersects L_k , and contains z_j . By passing to subsequences we may assume that $\{y_j\}$ and $\{r_j\}$ converge. Setting $r_0 = \lim r_j$ and $y_0 = \lim y_j$, we have

$$|z_0 - y_0| \le |z_0 - z_j| + |z_j - y_j| + |y_j - y_0|;$$

hence given any $\varepsilon > 0$ there exists an M such that

$$|z_0 - y_0| \le r_0 + \varepsilon$$

for all j > M. We conclude $z_0 \in \overline{B(y_0, r_0)}$. If $r_0 > 0$ we have (4.4); hence we assume that $r_0 = 0$ or $y_0 = z_0$. To show $r_0 = 0$ implies $z_0 \in \partial D_k$, we let $\varepsilon > 0$ be given and choose j such that both $|y_j - z_0| < \varepsilon/3$ and $r_j < \varepsilon/3$. Then $B(y_j, r_j) \subset B(z_0, \varepsilon)$, so that $B(z_0, \varepsilon)$ intersects L_k for all $\varepsilon > 0$, i.e. $z_0 \in \partial D_k$.

Domains with outwardly directed corners or spires are not oscillation domains. In particular the slit domain formed from a disc by removing an arc containing a right angle is not an oscillation domain, even though it does satisfy the conclusion of Theorem 4.3. The following theorem provides a sufficient condition.

4.5. Theorem. Let D be a domain in \mathbb{R}^n and suppose each point in D lies in a ball $B \subset D$ of fixed radius $\delta > 0$. Then D is an oscillation domain.

Proof. We show D has the chaining property of Theorem 4.1 with $N = N(n, m(D), \delta)$. Consider the cover Γ of D given by taking all balls $B \subset D$ such that the radius of $B \geq \delta$. Let $\tau < 1$ be a constant, define

(4.6)
$$E = \bigcup_{B \in \Gamma} \tau B,$$

and let m denote the number of components of E. As each component of E contains at least one ball of radius greater than or equal to $\tau\delta$,

(4.7)
$$m \le \frac{m(D)}{\tau^n \delta^n \omega_n}$$

We show now that the set E can be covered by M balls $B \subset D$ where $M = M(n, m(D), \delta)$. Observe first that

(4.8)
$$E \subset \{x \in D \mid d(x, \partial D) \ge r\}, \quad \text{where} \quad r = (1 - \tau)\delta.$$

For each point $x \in E$, we define the ball B(x) = B(x, r). By (4.8) $B(x) \subset D$ and the union of all such balls covers E. We again use the covering lemma [S] as in the proof of Lemma 2.19 to extract a subcover $\{B_j\}$ such that

(4.9)
$$\sum 5^{-n} m(B_j) = \sum 5^{-n} r^n \omega_n \le m(D).$$

Thus $\{B_j\}$ contains at most M balls, where

(4.10)
$$M \le \left(\frac{5}{r}\right)^n \left(\frac{m(D)}{\omega_n}\right).$$

Denote the components of E by E_1, \ldots, E_m and define

(4.11)
$$F_i = \bigcup_{B \subset E_i} \frac{1}{\tau}(B)$$

The union of the sets F_i covers D by hypothesis and since D is connected each F_i must intersect some F_j for $i \neq j$. Observe that if F_i intersects F_j , then we can find balls B_i , B_j in D such that B_i intersects E_i , B_j intersects E_j , and B_i intersects B_j ; this gives us a means to chain across the components of E.

Consider any two points x and y in D and take for B_0 and B_s any balls of radius δ containing x and y respectively. Then B_0 intersects E_i for some i and B_s intersects E_j for some j. Connecting component E_i to E_j requires at most 2m balls and E itself can be covered by M balls. Therefore a chain B_0, B_1, \ldots, B_s exists joining x to y with

(4.12)
$$s \le 2m + M + 1. \Box$$

The condition in Theorem 4.8 is not necessary as can be seen in the following example.

4.13. Example. Let B_0 be any ball, take a sequence of disjoint balls B_j intersecting B_0 , but not contained in B_0 , whose radii tend to zero and define $D = \bigcup B_j$. Clearly D has the covering property of Theorem 4.1 with N = 2, but the hypothesis of Theorem 4.5 is not satisfied. \Box

Acknowledgement. I would like to thank Professor F.W. Gehring for suggesting this problem and for his advice and constant encouragement.

References

- [B] BOMAN, J.: L^p -estimates for very strongly elliptic systems. - J. Analyse Math. (to appear). [G] GEHRING, F.W.: Uniform domains and the ubiquitous quasidisk. - Jahresber. Deutsch. Math.-Verein. 89, 1987, 88-103. GEHRING, F.W., and B.G. OSGOOD: Uniform domains and the quasihyperbolic metric. [GO] - J. Analyse Math. 36, 1979, 50-74. GEHRING, F.W., and O. MARTIO: Lipschitz classes and quasiconformal mappings. - Ann. [GM] Acad. Sci. Fenn. Ser. A I Math. 10, 1985, 203-219. [GP]GEHRING, F.W., and B.P. PALKA: Quasiconformally homogeneous domains. - J. Analyse Math. 30, 1976, 172–199. [GT]GILBARG, D., and N.S. TRUDINGER: Elliptic partial differential equations of second order. - Springer-Verlag, Berlin-Heidelberg-New York, 1977. [H]HAMILTON, D.H.: On the Poincaré inequality. - Complex Variables Theory Appl. 5, 1986, 265 - 270.[IN] IWANIEC, T., and C.A. NOLDER: Hardy-Littlewood inequality for quasiregular mappings in certain domains in Rⁿ. - Ann. Acad. Sci. Fenn. Ser. A I Math. 10 (1985), 267-282. [JN] JOHN, J., and L. NIRENBERG: On functions of bounded mean oscillation. - Comm. Pure Appl. Math. 14, 1961, 415-426. [M] MARTIO, O.: John domains, bilipschitz balls and Poincaré inequality. - Rev. Roumaine Math. Pures Appl. 33, 1988. [MS] MARTIO, O., and J. SARVAS: Injectivity theorems in plane and space. - Ann. Acad. Sci. Fenn. Ser. A I Math. 4, 1978/1979, 383-401. [RR] REIMANN, H.M., and T. RYCHENER: Funktionen beschränkter mittlerer oszillation. -Lecture Notes in Mathematics 487. Springer-Verlag, Berlin-Heidelberg-New York,
- [S] STEIN, E.M.: Singular integrals and differentiability properties of functions. Princeton
- [5] STEIN, E.M.: Singular integrals and differentiability properties of functions. Princeton University Press, Princeton, 1970.

University of Texas Department of Mathematics Austin, TX 78712 U.S.A.

Received 26 November 1987