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AREA THEOREMS AND FREDHOLM EIGENVALUES

Erich Hoy

1. Introduction

In this paper we shall derive an area theorem for conformal mappings onto
a domain whose Fredholm eigenvalue is bounded from below. Furthermore, we

will prove the following extremum property of circular rings: The smallest non-
trivial Fredholm eigenvalue of a doubly connected domain having a fixed conformal
modulus attains its maximal value if, and only if, the boundary of the domain
consists of two circles.

Let G be an unbounded plane domain bounded by n closed analytic Jordan
curves such that the complement Gc of G consists of simply connected closed

regions. We denote UV D(C) the class of analytic and univalent functions f (r)
(z e G \ {*}) having the Laurent series expansion

(1)

at infinity. Let »( G, ol
for which the domain G*

^2 
satisfyirrg

(2)

f(r)-z*o,o +o] +++"'

be the subclass of »(G) containing all functions f (r)

- f (G) has the smallest non-trivial Fredholm eigenvalue

where the positive number rc < 1 is fixed.
A classical definition of the Fledholm eigenvalue )2 is contained in [a; p. 3 tr.].

For our purposes we need the generalized definition of .\2 given by G. Springer.
We denote by G* an unbounded domain of finite connectivity bounded by closed
pairwise disjoint Jordan curves. Then the Fredholm eigenvalue ),2 of. G* is the
greatest number ) > 1 satisfying

I I*.[vä(r)]2 du du
(3) (*-u+ir),

{ [*."1v H(r)] 2 du du

for all continuous functions fl(tr) which are harmonic in G* and in the interior
of. G*c and have a single-valued harmonic conjugate (see [2i] and cf. [1], [3], [10]
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and [19]). Note that If(u.,) may be a real or a complex harmonic function. In the
latter case the expression [VH(w))2 means ln"@)l' +1U,1w112.

tet {9,Q),A,Q)}, (, : 7,2,...) be the orthonormal system of functions
fulfilling

on the boundary 0G of G. The functions gr(z) are analytic in the closure of G.
The functions O"(z) have a pole at infinity and are analytic for all finite z in the
closure of G. This system of functions is introduced in [16]. The functions of this
orthonormal system are closely related to mappings onto parallel slit domains. For
example, O1(z) * 9{z) and §{r) - 9{z) rnap G univalently onto parallel slit
domains.

Besides (4), we need another main property of this system. If T(to) is an
analytic function in the complement of /(G) for all mappings f (r) e »(G), then

(4)

(5)

(6)

{'vQ)l }'

llr,(G)r "l'1') l'dud'' - 7t (å

_ 
år'ö',(') 

+ 7 r9'r(,)

on the domain G . Besides, o2t,

the exact range of the coeffi cient

(w - u * iu).

å
holds for ill z e G in a sufficiently small neighbourhood of points on 0G and
for all mappings f(") e »(G). A simple example of such a function 7(u.,) is
T(o) : to. In this case we have

f, e) : ale\(z) + i t,v,,e),
v:l

represents the radius of that circular disk which is
a1 in (1) when f (r) belongs to the class »( G).

Finally, it should be noted that

lf, l'- å tt.r)
This follows from (5) for all mapping" f (r) € »(G) (see [16; Theorem 4.13]).

2. Derivation of an area theorem

The basic idea of the following investigations is taken from [13]. We consider
a continuous function l/(to) defined by
(7)

if u € (lG»',vH(w): 
{Y Xl:-"iö?)] - t t,e,(z)) 1 ei.lr,e,(z)) ir tp : r(z) e r(G),



where 0 is an arbitrary given number satisfying 0 < 0 < r and I, are the

coefficients in (5). Since /(z) € »(G, rc), we write (3) in the form

(8) I |,,,"r.(va1*1)'audu 
) # I 1,,.,{vr{.,))' 

d,ud'u.

The first integral in (8) is the same as

t t lr'1-11' au a,.
J J6PY''

BV (6) the value of this integral is equal to

"(ålf'l'-it"t')
After a transformation into the z-plane we find for the other integral in (8) that

r [ (v u1.1)'au d,u : *ilr, - s2ior,lz .(10) 
J r,r, v:t

Now we state our first result.

Theorem L. Let 0 and n be arbitra,ry numbers satisfying 0 < 0 I r and
0 < rc < !, respectively. If f(r) € »(G, rcl then

Area theorems and Fredholm eigenvalues 139

(11) Dl.r,+ ä(r - n)f ,e2i0l' 
= iO + n)211r,12

v=l v=\

holds for the coefr.cients I ,, 'y, (u : 1,2,. . . ) in (5)'

In the next section we shall give some examples for Theorem 1'

3. Examples

Let G be the exterior of the unit circle and ?(ta): ur' In this case we write

!(rc) instead of !(G, rc) (see also [13] and [17; p. 287 ff.])' Then (11) has the
form

(12) (lo,l + *0 - d)' +i,lr.,l2 < å(r + n)'.

The coefficients o, (u : 1',2, . . .) are given in (1). The same inequality was proved

by L.V. Ahlfors in [2] for the mappings of the known class !(Q) where n and Q
satisfy

(13) .:3i1.
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But our class !(rc) is much wider than »(a) (see [13]). A better inequality for
the class l(rc) than (12), namely

has been derived in

( 15)

oo

v:1

[13]. (14) and also (12) imply that

(14)

( 16)

Equality in (I2), (14) and (15) holds for the mappings

f*( z\ - [ z + xe2io fz * const if lzl > 1,t"'- \ z+ne2ioz*const if lzl < 1,

where a is an arbitrary number satisfying 0 ( a 1 r. It should be noted that
f .(r) e !(rc) because the Fredholm eigenvalue )2 (in the classical sense) of an
ellipse

(.2u2)E:{(r,y),ffi+ft:t}
is exactly 1/rc (see [19]).

Now let G be a doubly connected domain. In this case it is more difficult to
consider an explicit example because the system {V"Q1,O"(z)} (u : 1,2,...) is,
in general, not available. Therefore, we shall investigate conformal mappings of an
annulus {z : R < lrl < 1,lR} (0 < .E < 1) onto an unbounded domain having the
trbedholm eigenvalue ),2> 7f rc. For the sake of simplicity we propose /(1): *
and

f (,) -
oo

: §- 6,,2',./ ' "u
y:-@z-l

Furthermore, we need a modification of (7). Lettinl T(ur) : w, it is necessary
to find a harmonic function in the annulus with the boundary values ll! -1).
Starting from the following expression with some unknown numbers sl/) .116 s!2)
(u e Z)

1

z-7 i (rt')z'* s ?2")* s[')m vl+r['),
u:-@

u+0

lrl- R,tlR,

and making use of z . 2 : R2 or 7 f Rz on the boundary of the annnulus we get
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,t') - R2,
R4'-1'
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with u €z\{0}.

v H(ut)-

'y) _

Then we

vRe(,- n'(f (z) -

I ta-4v - 1)-,
I tt - P+")-',
define

1\
_l
z - 1) '9)'"))

when ?t) - f (r) € f (G). Thus we obtain

+ l0-"

R4,

-I

1- R4, I

R4,
1-R4,

åfr -n)#"2;e1z

åtr-K)#eziol ,)

( 17)

( 18)

( 1e)

oo o2v
r ,.\2 § ,,---.,!,,!-t ,o) L" I _ R4r,u:1

where the number d may be arbitrarily chosen as before.
Multiply connected domains provide another difficulty. We will show in Sec-

tion 4 that !(G,rc) is empty for too small numbers rc ) 0. To ensure that
»(G, rl *0, we choose rc) R2 because L/Rz is the Fledholm eigenvalue )2 of
the given annulus G (see [20]). This difficulty illustrates a remarkable property
of a circle, namely Äz : oo. Hence, the identical mapping is always a member of

!(rc) for all rc € (0, 1), consequentlv Db) * A.

In what follows we will investigate for which mappings f (r) e D(G, ") equal-
ity holds in (11).

We propose that for all mapping, f(r) e ! the function f (f @) -T(z) is

analytic in {z: lzl > 1}. In other words, the singularities of f(fQ\ do not
depend or f(z). Consequently, we have

oo oo

r(f @) -- » Q,z' + const + » auZ-',
v:l v:\

for r sufficiently close to 1. The numbers {lr, u : lr2r. . ., depend only on our
choice of ?(to), and (18) is rnlid for all functions f(r) e D. I" particular, the
area theorem for the class f,(rc) may be written in the form

v:1
(år1 + o))' »'l},l'

v:l
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Firstly, we give an example for a mapping /*(z) for which equality holds in
(19). In the following step it is shown that f *(z) belongs to f,(rc). Defining a
quasiconformal mappinS f*Q) of the whole plane by

(20) f r,(r)

circle. Hence,
interior of the

and f -(r) € », we conclude
quently, the function

(21) F(r) : Ir(f .(,)) - r(z) - "{1 21, if

\ r(/. (,)) - r() - "r(), if

is a solution of (20) which is analytic in the exterior of
F(r) must be a constant. Since T(r) is an analytic functi
unit circle, (18) implies that

co oo

r (t.Q)) : » {t,2" + const * rc» §,2-'
u:7 v:\

the unit
on in the

T'(r)- » u{t,z'-' ,

u:1

Because of (21) we obtain

(22)

By choosing 0:0 it is easy to see that equality in (19) holds for f-(r).Because
of (20) the inequality )2 > lln follows from a known result of L.V. Ahlfors (see

[1]); consequently f.(r) e D(").
Suppose now that equality in (19) holds for any mappinS f Q) e D(o). Then

the function H(w) in (7) must be a real eigenfunction belonging lo lf n. This
means that e-ie nT(r) - eieTlwl can be extended to an analytic function in the
complement of f ({z r lrl > t}) (see [12; Theore* 5]). Consequently, it follows
from (18) that

a, : K€2iodr, u : 7r2r....

It can be proved as above that a suitable continuation of f(z) satisfies

l'Q): o"'n'U'S'1"1'
Tt (z)r z\' )'

Summarizing these facts, we can state our next result.
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Theorem 2. If theana)yticfunctionT(.), w e (f ({z:lzl> 1}))", safisfies

T(f(r)): i {t,z'* const * f r,r-'
v=l v=l

for all mappings f (") e D("), where the numbers dl, a.re fixed, then equality in

(23) Drl,, + å(r - n)e2i0§.,1' S (+(r+ "))'DrloÅ'u=l v=!

holds only for the functions f -(r) e l(nl which can be extended to solutions of

tie) : *",,'ffif:e), l,l < t.

4. Considerations of multiply connected domains

It will be shown that the inequality (11) is, in general, unsharp for multiply
connected domains. For the sake of simplicitS we investigate only the case TQo) :
tr. Suppose that equality (11) holds for any mapping f*Q) e X("). As before,
we conclude from (8) that ne-iq 7*Q) - eie 1*121* const can be extended to an
analytic function in G. This provides

(24) f"(r): alD{z) { na11e2i09rQ) * const, z € G,

where all is a positive constant depending only on the domain G (see [16; Chap-
ter 5, Section 2]).

Considering the example of an annulus (see Section 3), we get by using the
harmonic function with the boundary values llQ - 1)

I oo DAu ? DZv
(25) f. (z)- * : » he-" - z')* o""t » fuQ' - z-")+const.

u=7 v=l

It is easy to see that equality in (17) holds for f.(r). But the question whether

/.(z) belongs to the class !(G, rc) remains still open. To find an answer for this
question we shall prove an extremal property of circular domains.

Theorem 3. If the doubly connected domain G* bounded by two Jorda,n

curves is conformally equivalent to the annulus {w : R < l-l < llB} ,0 < .R < 1,
then the Fredholm eigenvalue Äz of G fulfiLls

(26) 
^, 

< l.R2'

Equality can occur in (26) if, and only if, G* is a circular domain.
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Proof. Denoting by SQ) a homeomorphic and conformal mapping of G* onto

{w : R < lrl < llR}, we shall estimate the quotient of Dirichlet's integrals in (3)
for the function

( sQ) + LlsQ), lf z e G*,
(27) h(z): \ nrQ) if z € 81,

|tr(r) ifze82,

where .B1 is the component of G*c bounded by the inverse image of {tu : ltol : rB}
and 82 is the other component of G*c. It follows from the definition of g(z) that

(28) I |".(to^,)l' + lh,(41')d,x d,y : * (#- ,B') .

Let h{z) be the harmonic function in .B1 \ 0.B1 which satisfies

tu(z) : sQ) + LlM : sQ). Q. + tl R2)

on the boundary of 81. This implies that

on the boundary of Bz, then

I 1,,(r, z,(z) l'+ lh,,(41')a* ao

(Bo) -7r(,*#) 'R'

I 1,,(r, r,(z)l' + lh,,(41')a, a,

(2e) - 7r(,* #)' u'

If hr(r) is the harmonic function in the interior of Bz which fulfiI1s

hz(,)-stz)+#:(r*#) #
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Because of (28), (29) and (30) an application of the second inequality in (3) leads

to
2n(1 - Rn)lR'

rR2(1 + LIR ), + rR2(1 + 7lR')'
This proves (26). Equality in (26) can occur if, and only if, hr(r) : 0 and
hr,(r):0 holds in 81 and 82, respectively. Consequently, ä1(z) and h2(z) ate
analytic functions. Since å2(z) : (r + t/R2)lgQ) on the boundary of. 82, it
follows from the argument principle that h2(z) has only one simple zeroin 82.
Hence g(z) is a linear fractional transformation. This completes the proof.

Now we consider again our example of an annulus. By choosing n: R2 we

conclude from Theorem 3 that D(G, r) consists only of the mappings

1

f (r): z _ l+ const.

On the other hand, equality in (17) can occur only for the mappings /.(z) in
(25). This contradiction shows that (17) provides an unsharp estimate for all rc

(1 > r > R') sufficiently close to r?2. Furthermore, the condition n ) R2 is
also necessarSr for !(G, ") + 0 when G is a doubly connected domain having the
conformal modulus llR' .

År-1
)z*1

5. Remarks

estimations of functionals defined on »(G, *l may
numbers lr,, u - 1,2,..., ir (5) do not depend on
Then the expression

1. From Theorem 1 some
be derived. Suppose that the
the mapping f (r) € »(G, Kl .

(31)

defines a functional

(32)

in fact, Schwarz's inequality

ilt,*åtr-
v:l

i r.1.
y:l

for all mappings f (r) € »(G, *) . I{ow Theorem 1 leads to

u:1

»lr,l'
u:1

lå,.^,.1
yields

n)e2ioF ulz

- K)szieå lr, fl'

årr.,'))'å(t -
1',

lå ^t'r'*

(o" ("-'n'» ^{'T' *
u:1

rc)
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and thus we get from ( 11)

Erich Hoy

"i rr,r'
v:1

- #K(k)(K(k)-E(k)),

v:t

(r[/.(,)] ) ,: 
rce," (r[/.( 4)) 

,,

R"(,

In general, (32) is an unsharp inequality' For simply connected domains
G, however, this estimate becomes a sharp one. The inequality (32) generalizes

the inequalities (4), (6) and (7) in [13] which were proved in a similar way. It
should be noted that the representation (31) is valid for some known functionals,
for instance for the coeffcient o1 in (1), for the Schwarzian derivative and for
Golusin,s functional (see [6], [7] and [8]). The estimate of the range of a1 has the
form

(33) lo, - *l I Ka?r,

where m, a?J are the centre and the radius of the circular disk which belongs to
the class »(G). Note that the extremal mapping f .(z) in Theorem 2 also fulfills

2. In Section 3 we have considered the example of an annulus. We point out
that the series on the right-hand side of (17) satisfies

u Rz',
1- R4,

where E(&) and K(&) are the known complete elliptic integrals (see [18; p. 693,

5.1.29.31) and k fulfills

The last term is closely related to the conformal modulus of Grötzsch's domain
(see [5] and [L5, Chapter II, Sections 1 and 2]).

3. In this paper the derived inequalities do not contain coefficients of some

unknown (extremal) mappings unlike the area theorems in [6] and [7]. On the
other hand, the area theorems in [6] and [7] are also sharp for multiply connected

domains G. This illustrates the shortcoming of the area theorem in Section 2. A
common property of these area theorems in [6], [7] and in this paper is, however,
that the area theorem for mappings /(z) € »(G) (see [16; Theorem 5.1]) can be

interpreted as a special case of them.

»
u:1
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