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ON NUMBER SYSTEMS .WITH NEGATIVE DIGITS

Juha Honkala

Abstract. We study a"rbitra.ry number systems which allow negative digits. We show that the

set of nonnegative integers represented by a number system -lf = (n,rn1,. . . ,mo) is n-recognizable.

Using the theory of [-recognizable sets, we prove that the equivalence problem for number systems

is decidable. We show that the degree of ambiguity of a given number system can be eflectively

computed.

1. Introduction

Recent work in the theory of codes and .L codes (see Maurer et al. (1983))
has led to problems relating to the representation of positive integers in arbitrary
number systems. Here "arbitrary" means that the digits may be larger than the
base and that completeness is not required, i.e., every integer need not have a
representation in the system.

Because we do not require completeness, our work differs from the classical
theory of number systems (see Knuth (1981) and Matula (1982)). Thus, classical
results do not seem to be applicable. However, also this research area is well
motivated for several reasons. The main motivation comes from -t codes and
related topics in language and automata theory. Undoubtedly, the study of general
number systems also increases our understanding of number systems in general.
For further motivation, the reader is referred to Maurer et al. (1983) and Culik-
Salomaa (1983).

Some basic facts about number systems were established in Culik-Salomaa
(1983). A natural generalization is to consider number systems having negative
digits, too. This generalization was briefly discussed in Culik-Salomaa (1983).
This paper continues the work. We study ambiguity, bases and equivalence of
number systems.

The reader is assumed to know the basic facts concerning gsm-mappings (see

Salomaa (1973)) and &-recognizable sets (see Eilenberg (1974)).

2. Definitions and examples

By a number systemwe mean a (u* 1)-tuple N : (n, Tn.r). . .,mr) of integers

the base and the numbers mi as the digrts of the number system ÄI . If rnt ) 0,
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then ,Af is called a posi tive number system.
called }-free. We denote (n,,-ffia1-m?)-t). .

A nonempty word

If 0 is not a digit of lf , then ..Af is
. , -mt) by --ntr.

(1) rrlihm;h-t"'TmiLrnio) 7( ii 1u,

over the alphabet {*r,. . . ,mu} is said to represent the integer

(2) l^or"'m;of :rnio'fl *rnix-t'nk-7 + "'+ rnil'n*mio'

The word (1) is said to be a representation of the integer (2). The set of all integers
represented by N is denoted by S(N). We denote by Pos.9(N) the set

s(,v) n {0,1,2,...}

and by Neg,S(,^f) the set

s(N) n {0, -1, -2,...}.
Whenever in S(N) ) zero is included in Pos,S(If). (Otherwise, zero should be

treated separately in each case.) The same applies to Neg S(If). It is convenient
to include zero in both sets, e.g., in the proof of Corollary 3.2.

A set .4 of integers is said to be representable by a number system, RNS
for short, if there exists a number system /[ such that L : S(I[). An integer
n is called a base of an RNS set A if there is a number system with base n
representing A.

The degree of ambiguity of a number system is defined as follows: A number
system N is ambiguous of degree m ) 'J, if at least one integer has rn distinct
representations and no integer has more than rn representations. If no such rn
exists, .l[ is ambiguous of degree oo. A number system is called unambiguous (or
ambiguous) if its degree of ambiguity is 1 (or > 1).

An RNS set is termed unambiguous if it is represented by an unambiguous
number system. Otherwise it is termed inherently ambiguou*

Example 2.1. The only finite RNS set is {0}.
Example 2.2. We show that Z \ {0} is not representable by any number

system.
Assume, on the contrary, that Z \ {0}: S(l[) for a number system N -

(n,*r,. . . ,mo). Then there exists an index i such that m;: 0 modulo n. Thus
mifn e Z\{0} atd -m;fn: ao*ar.n*...*ax.nk, where & 2 0 and
c,o,a1,...;etc are digits of N. Hence, 0: mi+ao'n+a;n2 +."+ ak'nk*r,
which is impossible.

This example shows that there are cofinite subsets of Z which are not repre-
sentable. On the contrary, it is known that every cofinite set of positive integers
is representable by a positive 0-free number system (see Culik*Salomaa (1983)).
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Example 2.3. If ,4 is an RNS set and 0 is an element of A, then .4

is inherently ambiguous. Thus, for example, the sets Z : S(2, -L,0, 1) and
22 : 5(2,-2,0,2) are inherently ambiguous. (We omit double parenthesis in
the notation.)

It is an open question whether or not the inherent ambiguity of RNS sets is
decidable.

3. Pos^9(N) is n-recognizable

In this section we prove a generalization of the translation lemma of Culik-
Salomaa (1983).

Let w : dodt...d* be a word over the alphabet {0, 1,...,lc - 1}, where
it is assumed that eadt d; is a letter and that k > 2. Denote \iod;k*-i by

"*(-). The notation 27, is extended to languages in the obvious way. A subset
,4. of the set of nonnegative integers is lc-recognizable if there exists a regular
language .L over the alphabet {0,1, ...,lc - 1} such that .4 : vx(L). A subset .4

of the set of nonnegative integers is recognizabie if A is a finite union of arithmetic
progressions.

Theorem 3.1. Tåe set Pos S(lV) is n-recognizable for every number system
N : (nrrnt)...rmu).

Proof. Let t denot" *.x{l*rl,*,\. When r is an integer and c : a*bnt
where 0 ( a ( n, denote aby f(x) and å by 9(r).

We construct a generalized sequential machine M as follows. The state set

of. M is {q-rrq-r+r,...sQytQtrgz,...,,et,gr},where 96 istheinitialstateand gp
is the only final state. The input alphabet is {m1, ...tffia;f } and the output
alphabet {0,1,. . . )n - 1}. The transitions are (we use the formalism of Salomaa
(1e73))

Qjm;+f(j*mt)AgU**;)
qj# + w j{lF

(i :1,. . .,u;j - -t,-t *7,
(j - 0,. . . ,,t),

. . . ,t)

ui: ).) Thewhere w i is the reversed n-ary representation of j . (If j - 0, then
transitions are well defined because

s(i + mi)- i +rn,;- f(i +mi)
(1)

(2)

and because the right-hand side of (1) is at most (t +t -0)1" < l, since n) 2,
and at least (-t - t - (n - t))/"> -t - (n - l)ln > -t - l.

Assume that

rTLiorTlit " ' mio#



752 Juha Honkala

is a word over the input alphabet of M and that

(3) QOrniaffih . . . TTL;r# +* ooal . . . a7al#

is a computation of. M, where dotdt,...tctk € {0, 1,...,n-l}. M accepts(2)
exactly when i > 0 in (3). By the definition of, M , l*t**ir_r...*ro) equals
ao* qr.n*...*a*.nk +i.nk+r. This is easily seen by an inductive argument.
F\rrthermore, i ) 0 if and only if ao * ar. n *... * a*. nk + i. nk+r ) 0, since
ao*at.n*...*ax.nk < (n-1)(1 *n*...*re) - nk+-t -1. Hence M accepts
(2) exactly when [rn;* Trtri*-t .. . -no] ) 0.

Thus z, (miM({m1,. . . ,*o}*#)) : p". S(,nf ). o

If A is a subset of Z,let -ä denote {-rl" €,4}.
Corollary 3.2. The set - N"g S(N) is n-recognizable for every number

system .l[ : (n, rrttt... rmr).

Proof. The assertion follows from Theorem 3.L, because - N"g S(If) :
Pos,9(-N). o

Remark 3.1. Theorem 3.1 and the results established later on can be gen-
eralized to the case of a negative base.

4. Corollaries

We say that integers å > 0 and / > 0 are muJiiplicatively dependent if. kp : lq
for some integers p ) 0, q > 0. Otherwise /c and / are said to be multipJicatively
independent.

For a proof of the following theorem, see Cobham (1969).

Theorem 4.L. If k attd I a.re multiplicatively independent, every set which
is both k- and l-recognizable is recognizable.

Theorem 3.1, Corollary 3.2 and Theorem 4.1 imply the following result.

Corollary 4.2. Let N: (n,rntt...,mu) be anumber system. Let m be
the least positive integer such that n : mt for some positive integer t. If either
Pos S(,nf ) or - Neg S(If ) is not recognizable, every base of S(.nf ) is of the form
mk,k>0.

It is decidable whether or not PosS(.nf) is recognizable (see Honkala (1986)).
For a positive 0-free number system N : (n, rrtrt...,mo), the set ^S(N) has

only the base n if S(.^[) has arbitrarily long gaps (Honkala (i984)). This result
does not hold for arbitrary positive number systems because, by Lemma 4.3 below,
the set ,9(3,0,1) has arbitrarily long gaps and has bases 3å, & ) 0.

Lemma 4.3. Let N : (nrTrttt...rmr) be a number system having the
digit 0. Then the set ,5(.0[) possesses af least the bases nk , k ) 0.
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Proof. Let .l[7, denote (nk rorr... rau), where {or,,... rau} : {åo * ör' n +
.. - * b*q' nk-t I å0,år, ...,b*-t are digits of I[]. Clearly S(N) :,S(Nr). o

Example 4.L. In this example we show that the positive part of an RNS set is

not always representable by a positive number system. (A trivial counterexample
is obtained with Pos ^9(N) : 0.)

Let If - (3, -1, 2) . Then Pos ^9(If ) : {2,5,8,14,17,23,26,4'J',44,50, 53, . . .} .

Because PosS(N) has arbitrarily long gaps, the set PosS(N) is not recognizable.

Suppose Pos S(l[) : S(trr) for a positive number system nf1 :
(n,*r,...,mr). Then n:3k for a positive integer &. Assume first that /c > 1.

Then -I[r must have the digits 2, 5 and 8. This is impossible because it is easily

seen that for every p > 2 the closed interval lp,p + 6] contains at most two ele-

ments of .9(.nf). Thus lc:7. Then .lfr must have the digits 2 and 5. But this is
also impossible because 5+2' 3:11 is not an element of S(.nf)'

The following lemma is a straightforward generalization of the same result for
positive 0-free number systems (see Maurer et at. (1983), Honkala (1984))'

Lemma 4.4. Let .l[ : (n, rrtrt. . . rmo) be a number system. l[ is unam-
biguous if the digits m; lie in different residue classes modulo n and 0 / ,S(N).
If u ) n, N is ambiguous of degree a.

Tlreorem 4.5. The degree of a,rnbiguity of a given number system N :
(nr*rr...rmo) ca.n be effectively computed.

Prcof. Let M1 be the generalized sequential machine constructed in the proof
of Theorem 3.1 and Mz be the generalized sequential machine constructed in the
proof of Corollary 3.2. Lel M; have u1 states, i:1,2.

Claim 1. It is decidable whether or not there is an integer having at least
two representations of the same length.

Proof. We decide first whether or not there are two words of equal length
mapped into the same word by Mr. We claim that such words exist if and only if
there exist such words of length at most u!+t. This condition is clearly decidable.

To establish our claim, we let u1fi ar.d w2ff be words of equal and minimal
Iength mapped into the same word by Mt. Let p1;,p2i,... be the states M1 is

brought to when reading the word to; letter by letter. If ltr.,1l : l,r.r,,rl > ul, there
are j1 a,nd j2 such that 1 a rt < jz and (pjr,t,pjr,z): (pjr,t,pjr,z). This means

that we can remove from each uri every letter between and including the (j1* 1)st
letter and j2th letter, and the resulting words w';ff arc still mapped into the same

word by M1 . Because the first letters of u1 and w2 ore different, the words tll
and w', a"re different. This contradiction establishes our claim.

In the same way we can decide whether or not there are two words of equal

length mapped into the same word by M2. o
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If there is an integer having two representations of the same length, the degree
of .l/ is m. In what follows we suppose that no integer has two representations
of the same length. (This assumption is needed in the proof of Claim 2.)

Claim 2. Given k € N, it is decidable whether or not there exists a,n integer
having at least lt representations.

Proof. Proceeding as in the proof of Claim 1 (see Honkala (1984), p. 67), we
see there to be ,t words rot#r. . . ,wx# such that the translations of ur#r. . . ,w*#
are the same when zeros in the ends of the translations are disregarded if and only
if there are k words with the mentioned property such that the length of one of
them is at most uf +t. This condition is shown to be decidable after the proofs of
two more claims. (At this stage we could show the decidability using inverse gsm
mappings. Below, however, we get a faster decision method with no extra effort.)

The same holds when M1 is replaced by M2. o

Denote K : maxlrn;1. Define An: ir e ^S(If)lr has a representation of
length n] and Bn: AnO{-K,-K + 1,..., 0,...,1{}, fl:1,2,....

Claim 3. It is decidable whether or not there is an integer r such that

lrl S I{ and u has infrnitely many representations.

Proof. We first show that B;: B j, i < j, implies Bt+r: B j*r.
Suppose Bt: Bj, i < j. Let z: zt*nz2be an element of B;+1, where z1

is a digit arrd z2 € ,4;. Hence lzl I K . If lz2l were greater than ,I(, we would
have z1 *nzz ) *t+K.n) K or z1 *nzz lrno-K.n 1-K. Hence

lrrl< K, which implies that z2 belongs to B;. Consequently, z2 belongs to Bi,
which implies that z2 €,4i. Hence z belongs to Biq1. This shows, by symmetry,
that B;: Bj implies B;-p1 = B j+r.

Now the claim immediately follows: Form sets B,; until i and 7 are found
such that Bt: Bj and i < l. An integer r with the properties mentioned in
Claim 3 exists if and only if B.; * 0. o

In what follows we assume there to exist an integer g such that Bo:Q.
Claim 4. There exists (effectively) an integer .R(N) sucå that no positive

integer has more tåan rB(If) representations according to N .

Proof. Denote äo : min(.Aq n N) and .81 : maxy'o. Suppose that z ) 0

belongs to A" and A1, where s > t ) q. Hence
(1)
mr*mt.n*. . . *mt.n"-tt-r *y.ng-q a z I mu!ma.n*. . . *mu.nt-I-r * Rr.rt-t,

where A € Ac. Because z ) 0, we obtain U ) Ro. Hence (1) implies

(u, *
ml \

"-1)
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Consequently,
s-t(.Rt,

where E' : tog, ((4, * m,l(n- i))(s0 * rnll(n- 1))-') . Hence we can

choose -R(N) : .B'iS. "
Denote .R: max{R(.nr),.8(-.Ar)}. By Claim 4, no integer has more than

R representations. F\rrthermore, if an integer has a representation of length t, it
does not have representations of length greater than t * B. Hence the condition
in the proof of Claim 2 is decidable. Theorem 4.5 now follows from Claim 2. o

5. Decidability of equivalence

We need the following two lemmas from Eilenberg (L974).

Lemrna 5.1. If.k>7 andp>l areintegersand L isaregularlanguage
overthealphabet {0, 1,. ..,k-1}, one caneffectivelyconstruct aregularlanguage
L' over the alphabet {0, L, ...,kp - 1} such that up(L) : uxp(L').

Lemma 5.2. If m ) 1 is anintegerand A isarecognizablesetof nonnegative
integers, one can effectively construct a regular language L over the aJphabet

{0,1,. .. )n1, - 1} sucå that A: u*(L).

Lemma 5.3. Let le > 1 and m >'J, be integers. If L1 is a regular language
over the alphabet {0, 1, . . ., k - l} and L2 is a regular language over the alphabet

{0, 1, . . . )rn - 1}, ii is decidable whether or not u*(Lr) : u*(L2).

Proof.If -r?1 and R2 are languages, denote {.lR VnRz# 0} tV Rr'Rr.
If & : rn, construct the languages .D'1 : 0.((0.)-l-[1) and L'z:0* ((o-)-'zr) .

Clearly, ,x(Lr): u*(Lz) if and only if L\: L'2.
If there are integers p, g, r such that lc : rP ar..d m : r{: construct regular

languages .L3 and .La such that up(L1) = u,ro(Ls) ar,d u*(L2): u,rr(L+). Then
continue as in the case of lc : m.

Assume finally that k and rn are multiplicatively independent. By Cobham's
theorem, u*(Lt) # ,*(Lr) or both u*(Lt) and u*(L2) are recognizable. To
decide which is the case run two algorithms concurrently. First, try to find an

element from the symmetric difference of up(L1) and u*(L2). Second, try to find
a recogrizable set ,4. such that A : ux(Lr). To check whether / : up(L1), form
a regular language .t over the alphabet {0,1-,...,k- 1} such that ,4. : rx(L),
Lemma 5.2, and check whether or not up(L) : up(L1). If a recognizable set ,4.

such that A : u*(Lr) is found, form a regular language L' over the alphabet

{0,1,. .. )Tn, - 1} such that A : u*(L'), Lemma 5.2, and check whether or not
u*(L') : u^(Lz). o

Theorem 5.4. It is decidable whether or not two given number sysfems N1

and Nz a.re equivalent.
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Proof. By Theorem 3.L, Corollary 3.2 and Lemma 5.3 it can be decided
whether or not

Pos ^9(I[1) : Pos S(Nr)

and
Neg^9(N1) - N"sS(Nz)."
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