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ON THE TYPE OF SEWING FUNCTIONS
WITH A SINGULARITY

Juhani V. Vainio

When a Riemann surface is defined by identifying boundary arcs of plane re-
gions, the process is called a conformal sewing. A permissible identifying homeo-
morphism can be termed a sewing function, or a function with the sewing property
(the terms are from [5]). In the case of sewing along real intervals, the question
arises: when does a function with the sewing property on two adjacent intervals
possess the global sewing property. This is a removability problem, with the com-
mon endpoint taking the role of a singularity.

Our assumptions are as follows: Suppose that ¢ is an increasing homeomor-
phism between two bounded open intervals; let the situation be normalized by the
condition ¢(0) = 0. Suppose further that the function ¢ is locally quasisymmetric
off the point zero. The latter assumption guarantees that 1) the restrictions of ¢
to both sides of zero admit sewing (of the lower and upper half-planes), and 2)
the conformal structure of the resulting (doubly connected) Riemann surface R is
essentially unique.

The surface R has a parabolic or hyperbolic end at zero. Accordingly, the
function ¢ is called parabolic or hyperbolic. The former case occurs exactly when
@ is a global sewing function. The type is determined by the values of ¢ in an
arbitrarily small neighborhood of zero. In this paper, we will study the type of ¢
mainly in the special cases where ¢ is locally bilipschitz or analytic off the point
zero, by applying and modifying some results of [5].

Let us first cite a few earlier results. There exist hyperbolic functions ¢ which,
for  — 0, approach an arbitrary increasing zero-preserving homeomorphism arbi-
trarily rapidly ([1]), as well as symmetric (¢(z) = —p(—=z)) hyperbolic functions
¢ with analyticity and positive derivative off the point zero (Example 2.9 of [5]).
A sufficient parabolicity condition is

-1 -1
p(z) | le(=2)] 2 |(=2)]
1 / z + + 1+ In® —— dz = oo,
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which was obtained in [5] (p. 13) as a re-formulation of a condition of [4]. The
function ¢ defined in a neighborhood of 0 by the expressions z, zexp(—|Inz|?)
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for z <0, z > 0, respectively, is parabolic for p < 1/2, fulfilling (1); for p > 1/2
the function is hyperbolic ([5] p. 18). However, there also exist parabolic functions
¢ “arbitrarily asymmetric”, that is, vanishing arbitrarily rapidly for ¢ — 04,
arbitrarily slowly for z — 0_ (Example 2.10 of [5]; the situation implies the local
quasisymmetry).

The latter remark implies that there exist parabolic functions ¢ satisfying,
for instance, ¢(z) < z for z <0, ¢(x) < z? for > 0. However, such functions
neither satisfy the condition (1) (the asymmetry being too great) nor, it seems,
the other parabolicity conditions of [5] (Theorems 2.1, 3.8). In order to obtain
an explicit parabolic example where the asymmetry of the three values ¢(z),
0, p(—z) is, at least on separate intervals, essentially greater than in the above
example in the case p = 1/2, we will introduce the following function.

Example. Let f:]0,a[— R be a function satisfying 0 < f(z) < z, and define
a function ¢ as follows. Let ¢ coincide with the identity for + < 0. Then let us
take positive points an, bn, cn, n € N, with an > by > ¢n, ant1 < f(cn) < cn,
converging to 0, and such that the series Y In(an/by,) diverges. Set ¢(z) = z for
z € [bn,an], ¢(cn) = f(cn), and let ¢ be linear elsewhere. As the convergence
f(z) — 0 can be arbitrarily rapid, the definition permits a large oscillation between
symmetry and asymmetry. The function ¢ clearly satisfies the condition (1), and
it is thus parabolic.

As a further application of the same criterion, we can easily prove a proposi-
tion which is of course a classical result if ¢'(0) # 0.

Theorem 1. An analytic o is parabolic.

Proof. For a function ¢ analytic at zero, the Taylor development gives
p(z) = az?(1+41(z)),  ¢'(2) = apa? ™ (1 + ¥a(2)),

with @ > 0, p > 1, 11(0) = ¥2(0) = 0, where p is the order (odd) of the zero of
¢. Clearly ¢ satisfies (1). o

Our next theorem is a slightly generalized version of Theorem 2.8 of [5] (by
which the above-mentioned hyperbolicity for p > 1/2 was established). The con-
vexity assumptions have been weakened to the bilipschitz property, which made
it necessary to add the separate condition (needed in the proof) for the derivative
¢ ; in the condition for the derivative ¢f, the equality sign is allowed. As the
purely analytic proof remains essentially the same, we will only state the result.

Theorem 2. If ¢ is locally bilipschitz off zero, then it is hyperbolic if the
functions , o defined by the formulae

p1(z) = —p N (~z),  @a(z) = p(e1(x))
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satisfy the following three conditions (the latter two a.e.) in an interval |0, qa]:

o) < z,
pi(z) > csolT(z), c>0,
k
Aoz 228 () gy

A function with ¢(z) = z? for 2 > 0, ¢(z) = —|z|? for 2 <0 (p, ¢ € Ry)
is hyperbolic for p # ¢ ([5], originally [4]). For p = ¢, the function is parabolic,
by (1). A similar correspondence holds even in a more general case, shown below
by means of Theorem 2 and (1).

Theorem 3. If ¢ is locally bilipschitz off zero, and there exist finite positive
one-sided limits , .
lim f_@, lim ¢'(z)

z—04 7 z—0_ |:L'|3

for some r, s > —1, then ¢ is parabolic for r = s, hyperbolic for r # s.

Corollary. If the restrictions of ¢ to non-negative and non-positive values
are analytic at 0, then ¢ is parabolic if and only if the zeros at 0 are of the same
order.

Proof of Theorem 3. We use the notation f(z) ~ ¢(z), meaning that
f(z)/g(z) — 1 for @ — 0. The assumptions on the limits in the theorem can
be written in the form

o'(z) ~az” forz >0, ¢'(z)~Dblz|® forz <0,

with @, b > 0. In our situation, the integral of ¢'(x) from 0 to z equals ¢(z).
It follows that

o(z) ~cz? forz >0, ¢(z)~—d|z|? forz <0,

p=r+1>0, c=a/p>0, g=s+1>0, d=1"b/q>0.

For r = s, the above formulae for ¢ and ¢’ imply that the parabolicity condition
(1) is fulfilled. Suppose r > s, implying p > ¢q. (If r < s, consider the function
z +— —p(—z)). The functions of Theorem 2 now satisfy for z > 0

T

o1(z) ~ (2)1/41 7 oa(2) ~ ¢ (E)p/q _ Carlt

ei(z) =1/¢" (7 (-2)) =1/¢' (—¢1(x)),
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ey(z) = ¢ (¢1(z)) pi(z) ~ a (E) - (E) —s/a _ pe (w)l’/q,

T gz d
k z\P/1 (p k E
pr@nea(@)] ~e(5)" (2) el

which shows that the assumptions of the theorem are fulfilled (with k¥ < 1). Hence
¢ is hyperbolic. o

The rather complicated Theorem 3.10 of [5] gives a condition necessary for
the parabolicity of ¢; by converting the condition, one can obtain a hyperbolicity
criterion. Our bilipschitz assumption allows us to simplify the original expression
of the auxiliary function £.

Theorem 4. If ¢ is locally bilipschitz off zero, then it is hyperbolic if there
exist functions 7, n such that the condition

/Oﬂ-—-dm<oo

z?|Inz|2*
is fulfilled, where the function £ is defined by the formulae

() 4 (e 4 TE) @)
€@) = (@) + (=2 + T + s + ey

"/):‘POT’

and the functions T, 1 are zero-preserving increasing homeomorphisms of inter-
vals, locally bilipschitz off zero, satisfying for > 0 the conditions

7(z) = —1(-z), n(z) < z,

n'(z) > M(m)k, k> 1

z Inz 2

Proof. (We will merely outline the proof, since the original one applies to the
present situation, with the exception of a few details.)

Let ¢ be locally bilipschitz off zero, and 7, n as in the latter part of the
theorem. As in [5], the real functions 7, ¢ = ¢ o 7 are extended into domains in
the lower and upper half-planes, respectively, denoting the locally quasiconformal
extensions by wj, wy. The original definition wl(geie) = 7(0)e'? is retained.
In the general case of [5], the expression of wy contains an integral, whereas our
case, with ¢, 1 bilipschitz, allows us to define a locally quasiconformal map w,
as follows: set wq(z +1y) = u(z,y) + iy, where the function u has the value ¢ (z)
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for both z > 0, y < n(z) and z <0, y < |z|, and is linear in z for each y in the
region @ € [, 77 (y)].

Assume that ¢ is parabolic, i.e., a sewing function. There then exists a
homeomorphism f of a neighborhood of the origin, whose complex dilatation
coincides with that of w; for y < 0, with that of ws for y > 0; the map f is
now locally quasiconformal off 0. Using the function n, a homeomorphism h is
defined as in [5], to be locally quasiconformal off 0 in a neighborhood of 0. Also
the map foh is then locally quasiconformal off 0. Its complex dilatation therefore
satisfies an asymptotic integral condition, derived in [2] and applied in [5]. The
new definition of the function u simplifies some expressions. At the very end of
the proof, use is made of the condition for the derivative n'; the equality sign can
be added (even in the general case of [5]). The integral condition turns out to be
equivalent to the divergence of the integral in our theorem. As the parabolicity
assumption thus leads to a contradiction with the convergence assumption, the
assertion thus follows. o

Theorem 2 is a corollary of Theorem 4: the assumptions of the former imply
those of the latter, with 7 = ¢1, n = @3 for £ > 0 (one obtains £(z) = O(z)).
Let us state a further special result:

Corollary. If ¢ is locally bilipschitz off zero, and the functions @1, 2 of
Theorem 2 satisfy for a value p > 1 the condition

z7¥lnz|"% (2 M zt/ il T < 00
femtmer (o4 55 o + 5 ) o<

then ¢ is hyperbolic.

Namely, the condition implies that the assumptions of Theorem 4 are fulfilled,
with 7 = ¢y, n=2P for £ >0 (k=1).

As a conclusion of this paper, we will present a parabolic example function
which is very asymmetric in spite of being analytic off zero. The idea is similar
to that of Example 2.10 of [5]. Our example suggests that there exist “arbitrar-
ily asymmetric” parabolic functions which are analytic or locally bilipschitz off
zero; for the classes of functions with either property, there would then exist no
hyperbolicity criterion regarding only the amount of the asymmetry.

Example. There exists a parabolic ¢ which is analytic off zero, with positive
derivative, and satisfies the conditions

@(z) > |Inz|™' for z >0, le(2)] < e!'* for z <0.

We define a sewing function ¢ as follows. Let D;, D, be the lower and upper
half-planes, G;, G5 the domains below and above the Jordan curve C = C UC_,
where the arc C is defined by

y= f(z)(1+sinl/z),
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f(z) = (ln|lnx|)_p, p €]0, 3]

for z € [0,z¢], and continued to oo along the positive real axis from a zero
zo < 1/e of the function 1+sin1/z, and the arc C_ is obtained by reflecting Cy
with respect to the origin. Let fi: D; — G; (¢ = 1,2) be two conformal maps,
with f;(0) =0, fi(o0) = 00, fi(a) = f2(b) =c€ C4, a,b >0, Re c < zg. The
boundary function ¢ = f; ' o f; sews D; to D,. It is analytic, with ¢'(z) # 0,
in a neighborhood of 0, for z # 0; this is implied by the local analyticity of C'.
Denoting the module of a quadrilateral by M, we have, for 0 < z < a,

M (G1(e, fi1(2),0,00)) = M(Dl(a,:c,O,oo)) = M (Dy(-a,—z,0,00))

2 x 2 4
=—p —]<=In < |lnz|
7r T

a \/g;/_a

for z small (cf. [3], p. 61). On the other hand (by [3], p. 23),

M (G1<C, fl(IL‘),O, OO)) = 1/M (Gl (fl(lf),O,OO,C)A) Z l/F(31/32)7

where

F(s1/s2) = 7r(1 +2In(1 + 231/32)) (ln(l + 231/32)) _2,

and s;, sy are the distances of the opposite sides. For the quadrilateral G;(f;(z),
0, 00, ¢), we have
$1 > dy, s2 < kRe fi(z)

for z small, where dy, k are positive constants. For z small, the ratio s1/s2 is
large, and
F(s1/s2) < K/lnsy/s,

(K a constant). We thus obtain

|lnz| > 1/F(s1/s2) > K~ 'lnsy /s,

implying
e8> 51/s0 > di/(kRe fi(z)),

that is,
Re fi(z) > (di/k)z¥.

For G, (oo,O,fl(:c),c), we now have
81 > f((l —¢) Refl(x)) > (1—e1)f(2),
where €, €; are small for z small, and further

S < dz, 31/32 > I{lf(:v)a
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M (G3(0,0, fi(z),c)) < F(s1/s2) < F(K1f(z)) < Kyf(z)™?
for z small. On the other hand,

M (G2(00,0, fi(z),¢)) = M (D2(00,0,¢(z),b)) = 1/M (D2(0,¢(z),b,00)),

M (D2(0,99($),b,00)) = %/’L ( b—T(p(m)') = %/" ( 1- (P(x)/b2
= -7-2;%2 ( cp(:c)/b)_l < Ix"3|lngo(:1c)|_1

(by [3], p- 61). We thus obtain
|ln<,p(:1:)| < K4f(z)? <In|lnz|,

implying the required inequality ¢(z) > [lnz|™! in a neighborhood of 0, for
z>0.

The inequality required for z < 0 is obtained by similar arguments applied
to ¢!, starting with the domains D,, G;.
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