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QUASISYMMETRIC EMBEDDINGS OF A
CLOSED BALL INEXTENSIBLE IN

NEIGHBOURHOODS OF ANY BOUNDARY POINTS

Boris N. Apanasov

1. Introduction

The problem of the extension of a quasiconformal or quasisymmetric embed-
ding /: X --+ R, X C -B', onto a large domain Y ) X is well known. A
quasisymmetric embedding here is an embedding / such that there is a homeo-
morphism c: [0, m) --+ [0, m) with the property

vry) - f@l < c(r) . lfQ) - /(,)l
for all n,U,z e X such that ly - *l 1rl, - "1 

. Then

lf (v) - /(,)l > c'1r) .lf (z) - f @)l

if ly - al >- rlz - ol and c'(r) : c(r-t;-t, 
"'(0) 

: 0. Quasisymmetric embed-
dings are the natural generalization of quasiconformal mappingsl see, for instance,

[18]. In particular, a homeomorphism E" is quasiconformal if and only if it is
quasisymmetric.

We are interested in the case where X : B C E" is a closed ball. The fact
that every quasisymmetric embedding of a closed disc .B2 --+ .R2 is extended up
to a quasiconformal automorphism of E2 (see [9, 18]) is the well-known corollary
of the M-condition of Ahlfors [1, Chapter IV].

A new phenomenon emerges with the growth of dimension. Namely, there ap-
pear quasisymmetric (even bi-Lipschitz) embeddings of a closed three-dimensional
ball -B3 .* R3 which cannot be extended to an embedding of an open neighbour-
hood U, Bs Ctl C R3. After this paper was completed, Jussi Väisätä pointed
out to me that this phenomenon was discovered for the first time by F.W. Gehring
[11], who constructed such an embedding with two singular points on the bound-
ary of the ball (see detailed proof for this construction in the paper by G. Martin
[15] ) .

The main result of this paper gives the construction of quasisymmetric embed-
dings of the closed ball /: B3 ,-- R3 which are locally inextensible, i.e., inextensi-
ble to any neighbourhoods of any boundary points x e 083. The most important
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part of our construction is the construction of some geometrically finite (see [3, 4])
Kleinian group G on the sphere R3 : R3 u {*} (i.e., a discrete subgroup of the
Möbius group Möbs with the non-empty discontinuity set O(G) : R3 \ f(G)).
This construction was also used by the author and A.V. Tetenov in the study of
topological properties of hyperbolic 4-manifolds [7].

One can say that the embedding /: Bs -- f (B'): Oo (Oo being a compo-
nent of O(C)) is obtained as resulting from quasiconformal deformation of action
of some co-compact Fuchsian group on the ball-component .B3 of its discontinuity
set. Here the property of local wildness of the embedding 083 + R3 is an ob-
struction to extending the embedding / to any neighbourhood of any boundary
point c eAB3.

One can interpret our construction as an infinite process of iterative knotting
of a topological ball. It may seem possible to do this without using a group.
However, we believe that it is not a realistic possibility (due to the necessity of
having a wild knottedness of the ball on a dense subset of the boundary sphere).

I would like to thank Jussi Väisälä for his useful comments.

Kleinian groups with a wildly knotted limit sphere

We base our construction of geometrically finite Kleinian groups G C Möb,
whose limit set I(G) is a wild sphere on an idea of periodicity of knotting used
the author [2, 10] when constructing a wildly knotted limit curve I(G) C .R3.
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Figure 1.

Let us consider a wild Fox-Artin arc d C rB3 (knotted periodically) with
endpoints p and g; see Bing [9, Chapter IV.9]. By the word "periodically" we
mean here that the arc d is invariant for the action of some cyclic group generated
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by a hyperbolic transformation ä e Möbs such that h(p) : p .od h(q) : q, as

seen in Figure 1.

Moreover, if I(h) : {c € A3 , lOn@)l : t} and .t(h-l) are the isometric
spheres of å and ä-1, å(ext/(ä)) : int/(ä-1), then I(h)nd: {rr)o2)rt}
and 1(ä-r nd): {*1,*'z,r!}, where h(x6): r! and these points r; and x'; arc
placed on d in the following order:

fr1, t2, frg, f'L, f'2,, frL.

The intersection dn of the arc d and ext I(h) i ext I(H -1)
(*r,r2), (*r,n\), @L,"'r) and forms the knotted period of

Now take a neighbourhood Un of the three arcs
of dn in the exterior of I(h) and I(h-1) consisting of
three disjoint tubes. For our further needs we can form p

it by the union of a finite number of consequently over-
Iapping balls B p . Here, accordirrg to the periodicity

if r € B* ) I(h) and n'i - h(*n) e 81 n I( h-'). It
is easy to see that the closure of the spherical annuli
Xr : bd Bl oext .t(å) next t(n-t)nyxext B i (see Figure 2) and their å- -images,
rn € Z, yields the fattening boundary bd U(d) : U*,xh*(X*) U {p, g} of the arc
d which is a wild Fox-Artin sphere S* in -831 see Figure 3.

Now we will form a finite family C of sphere, Si, j € ,/, with the following
properties:

1. The union of the annuli X7, is covered by the interiors of ^9i.
2. For each k, j either BpnSi i 0 ", ^9; is orthogonal to the sphere bdB1,;

this also holds for /(ä) and I(h-') taken instead of bd .B7,.

consists of three arcs
d on Figure 1.

bd U(d)=S*

r (h-1 )

Figure
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3. If Si nSi * 0, the dihedral angle (exterior, i.e., containing oo) between
them equals r f m for some integer rn.

4. If ^9i n Si * 0, there exists a common annulus X3 for which Xx n St * 0

andXpnSjl 0.
5. There is a one-to-one correspondence between spheres 51 e C crossing

.I(ä), and spheres 51 e C crossing I(lu-t; so that Si: h(S j).
In other words, we will form a finite "bubble cover" of bd [4 with good angles

between the bubbles and right angles between the bubbles and spheres bd .B3, and
respecting the periodicity. One can easily see that the freedom of choice of the balls
B1 (as well as the arc d and the transformation h ) permits us to vary conformal
moduli of spherical annuli Xr and thus obtain the sought-for family C.

However, taking into account the Andreev-Thurston rigidity of the circular
covering of the sphere E2 (whi"h is connected with the rigidity of hyperbolic
space-forms and compact hyperbolic polyhedra; see [19, Chapter 13]), we do not
restrict ourselves by the above arguments of existence of the family C, and we
give its concrete construction for the chosen type of a Fox-Artin arc.

It will be obvious that our method is applicable for Fox-Artin arcs of any
ivpå.

Construction of the special spherical coverirg C

Let us consider a right prism P in
l?3 with the height \7 , whose base is a
polygon coinciding with a union of 55
equal regular hexagons with unit sides
and distinct interiors. These hexagons
cover the regular triangle with the side
9\fr whose vertices are the centres of
extreme hexagons; see Figure 4. Let us
enumerate all the hexagons line by line
so that the three extreme ones have
numbers 1 , 10 and 55, and the central
one has the number 31 . Divide the
prism P into (55 x 17) small hexago-
nal prisms P(k,,n) of unit height enu-

hexagonal projection of P(k,n) in the
base.

Now let us associate with the three tubes, making up the neighbourhood U7.

of the knotting period d4 : (r1,12) U (x'r,r!) U (r3,rl), three disjoint domains
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: "broken tubes" D(*r,x2), D(at2,r!) and D(*t,r'1) obtained by the union of
small prisms P(,t, n) with the number-pairs (&, n) from the following sets:

(17,33)

D("'*\) 
'

(e , 42) (e, 37) (e, 31) (e ,24) (e, 16)

(17,34) (t7,27) (17, 19)

(e, 7) (e, 8) (e, e)

( 17, 10

(16, 10

(15, 10

(14, 10

(13, 10

(12, 10

(11,10
(10, 10

(9, 10(9,46
(9, 46
(7 ,46
(6, 46
(5, 46
(4,46
(3, 46
(2,46
(1,46 (t,42)

(12,29)
(11,29)
(10,29)
(9, 28)
(9, 2g)
(7 ,28)
(6, 28)

(t2,29) (12,30) (12,31) (12,32) (12,33)

D(rr, rz) i

(6,20) (6, 11) (6, 1)
(5, 1)
(4, 1)

(3, 1)

(2, 1)
(1,3) (1,2) (1,1)

(t2,34
(11,34
( 10, 34
(9, 34
(9, 34
(7 ,34
(6, 34
(5, 34
(4,34
(3, 34
(2,34
(1, 34 ( 1, 33)(1, 14) (1,4)

(17 , 14) (17 , 4

(t6,4
(15,4
(r4,4
(13,4
(L2,4
(11,4
(10, 4
(9, 4)
(9, 4)
(7 ,4)
(6, 4)

D(*'r'xL);

(6, 14) (6,23) (6,31) (6,38)

(17, 55) (17, 53)
(16,55)
(15,55)
(14,55)
(13,55)
(12,55) (12,54)

(17,50) (r7,46) (17,42)

(12,52) (12,49)
(11,49)
(10,49)
(9, 49)
(8, 49)
(7 ,49)

(6 , 44) (6, 49)
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Let now S; be the spheres of radii /57S *itn the centres in vertices of prisms
P(k,n) forming the domains D('*,*). If such spheres ,S; and ^9i intersect, their
centres are the adjacent vertices of some prism P(k,n) C P and their angle of
intersection is rl3.

Denote bV BlrD the ball with the centre in the centre of the prism P(k,n)
and of radius \/11112. Its boundary sphere S(k,n) is orthogonal to each of the
spheres S; whose centres are the vertices of P(k,n). After that we may assume
that the balls .B1 whose union is the three components of. U7, are the balls B(i,n)
corresponding to the prisms P(i,n) from the domains D(,r.*).

For the isometric spheres I(ä) and I(h-') take the spheres S'(rr,\/$m)
ard 52 (217 , t/U iD, respectively, of the radii 1/83/ 12 and with the centres at the
points 21 and.217 whicharethecentresofthe lstandthe 17thfloors,i.e.,thecen-
tres of the prisms P(1, 31) and P(17,31). Here, the radius of these spheres is such
that they only intersect the spheres ,S(1,14), S(1,33), ,9(1,42), and,S(17,14),
S(17,33), ,S(17,42), respectively, and they are orthogonalto the spheres ,91 with
the centres at vertices of the prisms P(7,n) and P(17, n) which are nearest to z1

and zy, respectively.

Figure 5.

Note that the interiors of the spheres ,9; with the centres at the vertices of the
prisms P(k,n) do not cover the entire boundary bdUr,, i.e., not all the spherical
annuli X.i C S(h,n). The hexagonal and quadrangular domains on these annuli,
corresponding to sides of the prisms P(k,n), are still uncovered. Let us cover
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each hexagonal domain on X; C S(k,n) with the union of the interiors of seven

spheres orthogonal to the sphere s(k,n). six of them have equal radii, they are

orthogonal to the spheres ,9t and so intersect at the angles zr/3. The seventh
sphere intersects six others at the right angles and does not intersect the spheres

^9; with the centres at vertices of. P(k,n); see Figure 5.
'We cover each quadrangular domain on X; C ^9(&, ") by interiors of five

spheres orthogonal to the sphere -9(k, rz). Four of these spheres have equal radii,
they are orthogonal to the spheres ,9i and so intersect at the angles rl3. The
fifth sphere intersects four others at right angles and does not intersect the spheres

,9;; see Figure 5.

Direct calculation shows that the covering by the spheres of the boundary
bd U6 thus obtained has all the properties 1-5 of the family C. This completes
the construction of the family C.

Finally, let us note that properties 2 and 4 of the family C (where 2 in the
case ,S1 n B; * 0 and Sp f\ Bi f 0 means that ,Sr is orthogonal to the circle

ålj : bdB; obdB;) allow us to ,,bend" cylindrical surfaces forming bdul,, and

thus to bend the whole surface ,S* along the circles bounding the spherical annuli
h^(X;) without c.hanging dihedral angles between the spheres of our covering
(h*(C)) of the surface ,9*.

Denote by Gr , G2 and Ge three Möbius groups generated by reflections with
respect to spheres ,9j' whose interiors intersect the domains D(r1, a2), D(c|,at)
and D(r3, r', ) , respectively. These groups are discrete due to the property 3 of the
family C and to the Poincard-Aleksandrov theorem on fundamental polyhedra
(see [5]). The application in .83 of Maskit's first combination theorem (see [4,
Theorem 4.2]) shows that the groups G* are amalgamed free products:

G* - GkL *Hrz G*z *Hr" Gxg *Hrn " ' g G*rn* k : Lr2r3,

where, for all i, groups Gu are generated by reflections with respect to spheres of
the family C which intersect the ball Bt, B; fl D(*, *) # A, and every amalgam-
subgroup ä;; is generated by reflections with respect to spheres from C whose

interiors cover the circle ö;i - bd B; bd B j .

Then, using non-intersection of spheres ,9i covering disiinct domains D('i, *),
i.e, non-intersection of the groups Gr, Gz and G3 , we see from Klein's combina-

tion theorem ([4, Theorem a.1]) that the discrete (due to property 3 of C) Möbius
group Gs generated by reflections with respect to the spheres of C is the free
product of the groups Gk: Gs : Gr * G2 * Gs.

Denote by H; (respectively Hi), i : 7,2,3, the subgroups in Gs generated by
reflections in spheres of C , covering the circles I (h)nB j (respectively l(h-t)nB 1, )
inside which the points ri ate (respectively the points rl). And let

H:HtxHzxHs, H'--Hi*H;*H[.
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Then the group G generated by the group Gs and by the hyperbolic element
h, h(ext I(h)) : int /(ä-1), is a discrete group obtained Ly HNN-extension of the
group Go by means of the element ä conjugating the subgroups r/ and H' of.
the group Gs. This fact follows from Maskit's second combination theorem ([4,
Theorem 4.5]), since the closed balls cl(intr(ä)) and ct(intl(n-r)) *" precisely
invariant in the group Go with respect to the subgroups fr and ä7, respectively.
Thus, we have the following copresentation of the group G:

G - (G, * Gz * Gs,h: hH;6-t - Hl) i:1,2,8),
having, as a fundamental polyhedron, the following finite-sided spherical poly-
hedron -F which has four connection components: an unbounded one .Foo and
three bounded ones -F],

(2.2) F - |text,Si , Si € C\.ext I(h) r,-t ext l(h-l).
Note that if we extend the spheres I(h) , I(h-L ) and .s; € c up to hyperbolic

3-planes in Ha : RI , we obtain a finite-sided convex polyhedron F4 c H4 which
is similar to the polyhedron (2.2) and fundamental for the action of G in Ha .

This shows the geometric finiteness of the group G.
If in G, instead of the generators contained in the group G1 , we take their con-

jugations by the element h (i.e., the elements from the group hGrT-t ), we obtain
(by means of Tietze's transformationsl see [14, Section 2.2)) thar copresentation
(2.1) is rewritten in new generators in the following form:

(2.3) G - (G, 'FHL hGr6-r *u,, Gs,h : hHs6-t - Hl).

In other words, the copresentation (2.3) implies that the group G is the HNN-
extension of the group Gö bv means of the element ä, where G*s is generated
by reflections in spheres of the family c* : cz u cs u h(cr). Here, the subfamily
C; C C, i:1,2,3, consistsof spheres S14- C intersectingthe ith domain D(*,*)
(related to the group G;).

It can easily be seen that, instead of the polyhedron .F from (2.2) as a fun-
damental polyhedron of the group G, one may take the polyhedron

F* - .f,ro U Fz U .F,3 U h(r,r)

consisting of the unbounded component .t'- and of the connected bounded one
Fo: Fz U Iä U å(F1) containing the segment (*s,xL) of the arc d.

From the construction of the group G we see ([4, Lemma B.z]) that the
domains

(2.5) oo: Ut g@o) : s e Gj and ot - U{g(f,,") : s € G}

are G-invariant components of the discontinuity set o(g) and, due to the funda-
mentality of .t'* for the group G , O(G) : Oo U Ot .

Now it remains to be seen that the following statement is valid:
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Lemma 2.1. The limit set L(G) of the geometricilly finite group G C
Möb3, constructed above, is a two-dimensional spåere wildly embedded in Rg
and dividing the sphere R3 into two G -invariant components, one of them being
a quasiconformal baJl.

The proof of this fact will be given in the next section.

Construction of a wild quasisymmetric embedding of a ball

Our goal is to contruct a homeomorphism i , 0o : OoU L(G) - B of closure
of the connection component Oo C O(G) from (2.5) upon a closed Uall .B C
l?3. This homeomorphism should be quasiconformal in Oo, quasisymmetric on
its boundary and compatible with the group G of Section 2. Hence, in particular,
the fact from Lemma 2.1 follows that the limit set I(G) is a 2-sphere.

I

I

iiB

Figure 6.

Let Bi and B; be any two adjacent intersecting balls from our construction
in Section 2 (or å-images of such balls), and let åtj : bd B;n 81. Then there
exists a quasiconformal homeomorphism fiy transferring the domain B;U Bi to
the ball B; and conformal in a neighbourhood of the spherical discs (bdBl) \ Bi
and (bdBr)\Br. Namely, let B; and Bi be just half-spaces, theplanes (bdB,)
and (bdB;) containing the origin and intersecting at the angle w, 01u 1T,
on the third coordinate axis åni : {(0,0,t):t € A}. Let us also have the natural
complex structure (z : *1 * ir2) in the plane .82 : {r e R3 : xs : 0} and let u
be a fixed number such that

n
t<

i),
7

Then the quasiconformal homeomorphism ii is described by its behaviour (pro-

\

\

§, J..

,,J-.

\ r;l ( iR)
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jection) on the plane C - R2 where
(3.1)

if largzl ) r - n)
. exp(itr.,) if I arg zl ( u,
.exp(f*(1 - (arg(z) - ql(tr - Zr))) if u largz 1r -?),

and similar homeomorphisms transfer isometric spheres of ff to spheres orthogonal
to the boundary of B.

Considering the composition of the finite number of all such quasiconformal
homeomorphisms fii of. the (3.1) type, we obtain a quasiconformal homeomor-
phism /s of the polyhedron .Fo into a ball B C R3 which transfers the sides of
the polyhedron -F's to the sides of some polyhedron IX : /(.F'o) lying on spheres
orthogonal to the boundary sphere bdB. Here, due to the conformality prop-
erty of the homeomorphisms .fri it the neighbourhoods of the above-mentioned
discs and due to properties 2 and 4 of the family C , all dihedral angles W ar,d
W' : f (W) of the polyhedra .F'e and -F{ are equal. This proves the following
important fact:

Let G' be a Möbius group generated by reflections in the sides of the poly-
hedron .F[ (except for the sides on /0(/(ä)) and on /o(f1a-';; and by a hyper-
bolic transformation ho € Möbs which transfers /r(/(ä)) to /o(I(ä-1)). then,
applying Maskit's 1st and 2nd combination theorem ([4, Theorem 4.3 and 4.5]),
we find that the group G' is the HNN-extension of the group GI C G' generated
by all reflections in the sides of fii bV means of the element ä0. This subgroup
Gl (as the group Go C G) is the free product of its subgroups Gl, G| with amal-
gamated subgroups Gti i G'j. Thus, the information about the dihedral angles
W' : fo(W) of the polyhedron .t[, the property 3 of the family C and the cop-
resentation 2.3 of. the group G prove that G' C Möb3 is discrete and isomorphic
to the group G Möbius group in the ball B with a compact quotient B lG' .

Moreover, extending the mapping "fo: .t,o --+ -Ff, compatible with the actions
of the groups G and G' upon images G(4), i.e., upon the whole component
Oo C O(G), we obtain a quasiconformal mapping /: Os --+ B conjugating the
actions of the groups G ar,d G':

G, : fGf-r.
Now it remains to extend the mappings "f up to a homeomorphism i, Oo -- B

on closed domains. The mapping "f is obtained by the usual extension by conti-
nuity. This fact follows from Tukia's theorem ([17, Theorem 3.3 and Lemma 3.7])
about isomorphisms of geometrically finite Kleinian groups. We formulate this
result as

_Theorem 3.1 (Tukia). Let G artd G' be geometricilly finite Kleiniangroups
in R and let I: G --+ G' be an isomorphism preserved types of elements. Then

fi'Q) -[1
\:



Quasisymmetric embeddings of a closed ball

there exists a homeomorphism f r, L(G) + L(G') of the limit
and unique in the case of a non-elementary group G . Here,
quasi-symmetric if a / L(G) U L(G') or ft(oo) : oe.

Moreover,let X CO(G) beaG-invariantsetsucå that XIG iscompact,and
let f : X --+ O(G') be a continuous mapping inducing the isomorphism I. Then

f a;nd f 1 yield a continuous mapping i: t (G) U X --+ R, which is an embedding
if f is an embedding.

To apply this theorem directly to our situation, it suffices to note that the ge-

ometrically finite group G from Section 2 contains no parabolic elements. There-
fore, for the set X : Oo, its quotient XIG is a compact orbifold.-See [3,4].
Thus, we have constructed the sought-for homeomorphism

(3.2) i, OoU L(G)-00+B CE3,

which is quasiconformal in 06 and quasisymmetric on its boundary bd Oe : L(G).
Moreover, from Corollary 3.2 of Aseev's work [8] we immediately see that the
homeomorphism f is quasisymmetric on the whole closed domain Os.

Now, to complete the proof of Lemma 2.1, it suffices to prove that the topolog-
ical sphere L(G) :;-t1bd B) is wildly embedded in R3. This follows from AIe-
xander's theorem about the non-knottedness of any polyhedral 2 -sphere in -R3 and
from the fact that the second component 01 of the complement E3 \r(G) : O(G)
has the nontrivial fundamental group r{O1) I 0.

Indeed, consider a nontrivial (in F- ) loop / in the unbounded component
F- C 01 of the fundamental polyhedron -F'* from (2.4) of the group G; see

Figure 2. Suppose that / is contractible in Ot : G(F*). Then, due to Dehn's
lemma (see, for reference [4, Theorem 8.4]), there exists a topological disc D C Or ,

bd D : /. Due to the compactness of the disc D, it is covered by a finite number of
polyhedra O{F*1 , 9; e G . At the same time, due to the nontriviality of the loop I
in the complement E' \ d (see [10, Chapter IV.9]), we have D nd + 0. Therefore,
there exists 9o e G such that so(.F-) n d + 0. The obtained contradiction
wiih d C Oo U (p, q) completes the proof of the nontriviality of rr(Ot) and thus
completes the proof of Lemma 2.1.

From Lemma 2.1 and from our construction of the mapping f fto* (3.2) it
follows that / cannot be homeomorphically extended in any neighbourhood of the
points p and g which are the wild knotting points of the sphere L(G) : bd Oo .

This conclusion may be essentially strengthened:

Theorem 3.2. The quasisymmetric embedding i-', B - Oo C R3 of a
closed baJl B in Rs (which is quasiconformal insjde B ) cannot be extended up
to an embedding of any neighbourhood of any its boundary points x € 08.

To prove this statement, it suffices to note that a set of points z e L(G), irr
whose neighbourhood the topological sphere I(G) is wildly knotted, is a dense

253

sets, induced by I
fr I r(c) ) Rn is
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subset h L(G). This follows from the density on Z(G) of ihe G-orbit G({p, q}) of
the arc ends p and g, which are fixed points of the hyperbolic element ä e G (see

[12, Lemma 1]). Moreover, the points s(p) and SG) "f this G-orbit {s({p,S}) ,

S e G\ are fixed for the hyperbolic elements ghg-r .

In terms of the function theory of severaJ. complex variables, the embedding
from Theorem 3.2 may be called a quasisymmetric obstruction for the closed
balt B.

One may ask a question about the properties of closed domains admitting
quasisymmetric obstructions. Obviously, a class of such domains contains closed
domains which are quasisymmetric images of 3-dimensional ball. Using the au-
thor's methods of [6] one can construct contractible domains in .R3 which are not
quasisymmetric images of a ball, but have quasisymmetric obstructions.

Besides, three circumstances should be noted.
Firstly, though the method used in the paper is global, the property of a

domain to have quasisymmetric obstruction is likely to be a local property of its
boundary.

secondlg the domain oo c o(G) C ,83 with quasisymmetric obstruction
constructed in the paper is, as can easily be seen from,the construction, John's
domain (see Reshetnjak [16]), i.e, there exists .R ) 0 such that any point o € Os
may be connected in oo with a fixed point a € os by a rectifiable curve r(s),
0 S s ( I, (the parameter s being the length of the arc), for which u(0) : a,
x(l) : o and the inequality

2 sRlt

is valid for every s e (0, /).
Thirdly, the quasisymmetric embedding .B3 .-- .RB constructed in the paper

probably cannot be a limit of a sequence of quasiconformal self-maps of .R3 com-
patible with the action of the discrete group G' ir 83; compare [20, chapter b].
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