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1. Introduction and synopsis

Let A and C denote the unit disk {lrl < t} and the unit circle {lrl : t}.
Corresponding to each analytic function / on A, let /* denote the radiallimit
function associated with /; that is,let /.(O: Iirir-r/(rO for each point ( on
C for which the limit exists as a finite or infinite va.lue.

Definition. lf S is a mapping of some set into a space Y, we call a point
y h Y an uncountable-order va)ue for g provided the set S-r@) is uncountablel
we call the set of uncountable-order values for g the uncountable-order set for g,
arrd we denote itby U(g).

In [12], G.R. Maclane and F.B. Ryan exhibited a Blaschke product B such
that the set U(B-) coincides with an arbitrarily prescribed closed set on C. By
constructing appropriate Riemann surfaces over A, they proved the following
proposition.

Theorem A. Corresponding to each closed set W on the unit circle there
exists a Blaschke product B such that U(8.) : W and B.(O Jras modulus 1

wherever it exists.

Maclane and Ryan asked whether it is feasible to prove Theorem A by de-
scribing suitable Blaschke products in terms of their zeros. 'We answer this question
in the affirmative. AIso, we characterize the sets on C that serve as the set U(f.)
for some inner function 

"f , in other words, for some bounded analytic function
/ with l/.(()l : 1 almost everywhere on C (see Theorem 3). For the sake of
clarity we begin with an analogous problem in a larger class of functions.

Theorem L. A set W in the extended pla,ne Ö is the set t)(f*) for some
(bounded) analytic function f on A if and only if it is a (bounded) a^nalytic set.

(The class of analytic sets will be defined in Section 2.)
Our Theorems 1 and 3 resemble results published by Ryan in two papers ([19]

and [20]) devoted to the characterization of sets that serve as the sets of asymptotic
values of analytic functions of various classes.

In Section 2, we deal with topological aspects of Theorem 1. We prove the
necessity of the condition in the theorem, and we show, by modifying a result of
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S. Mazurkiewicz and W. Sierpiriski [13], that to each nowhere-dense perfect set P
on C there corresponds a continuous function g ot P (with appropriate range)
such that U(S):W.

In Section 3, we complete the proof of the sufficiency of the condition in
Theorem 1 (see the proof of Theorem 1'); we choose a thin perfect set P on C
and show that some analytic function / on Ä (bounded if. W is bounded) has
an analytic extension across each arc of C \ P and agrees with g on P. If. W
is bounded, the existence of the required function / follows from a theorem of
W. Rudin [18]. In the case where ?7 is unbounded, we invoke Lemma 7; this is
an analogue of Rudin's theorem for general analytic functionsl it is based on an
approximation theorem of N.U. Arakeljan [1]. In either case, the verification that
U(1"):U(s):W is easy. Using Lemma 7, we also prove the following result,
which overlaps with a theorem of F. Herzog and G. Piranian [7].

Theorem 2. To eaeh nowhere dense set H of type G6, on C there corte-
sponds an analytic function / on A such that /* exists everywhere on C\H a,nd
nowhere on H .

The problem of Maclane and Ryan calls for geometric estimates on Blaschke
products whose zeros approach the unit circle rapidly. In Section 4, we establish
Lemmas 9 and 10. The first of these deals with the behavior at a fixed point (
on C of a single Blaschke factor as its zero moves along a circular arc in A that
separates the points 0 and (. The second gives an upper bound for the quantity

11-B(z)l for a Blaschke product B whose zeros lie much nearer to C than to the
point z. In Section 5, we use Lemmas 9 and 10 to prove Lemma 11, an analogue
of Rudin's theorem for inner functions. By means of Lemma 1J, we then prove
the following extension of Theorem A.

Theorem 3. There exists a Blaschke product B such that for each analytic
set W on C some subproduct B of E satisfies the conditions (i) U(8.) : W
and (ii) lf.(e)l : L for each point ( on C.

Lemma L1 also serves in the proof of the following result, which contains an
analogue for Blaschke products of Theorem 2.

Theorem 4. To each uncountable anaJytic set E on C correspond a
nonempty perfect subset P of E and a Blaschke product E, analytic on C \ P,
suchthat if H is a Gon-set in P, then some subproduct of E hut aradiaJlimit
at each point of C \ ä and at no point of H .

FinallS Section 6 treats two variants of our central problem. If g: X --+ Y
denotes a function defined in a measure space X (or in a topological space X ), we
call a point y ia Y a, positive-measure vaJue for g (or a second-category vilue for g)
provided the set S-1 (y) has positive measure (or is of second category). A theorem
of F. Riesz and M. Riesz [16] asserts that the set of positive-measure values for the



Uncountable-order sets for radial-limit functions 293

radial-limit function associated with a nonconstant bounded analytic function is
empty, and a theorem of G.T. Cargo [2, Theorem L] a;i,erts that the set of second-
category values for the radial-limit function associated with a nonconstant inner
function is also empty. The additivity of Lebesgue measure implies that even in
the more general space of Borel-measurable complex-rralued functions mapping a
Borel subset of the circle C into Ö, each function can have at most countally
many positive-measurevaJues. Similarly, because every family of disjoint Borel sets
of second category on C is at most countable (see Lemma 5 in Section 2), each
function can have at most countably many second-category values. The following
two theorems are therefore sharp.

Theorem 5. Every countable set in Ö is the set of positive-measure values
for the radiaJ-Iimit function f * associated with some analytic function f on A.

Theorem 6. Every (bounded) countable set in 0 it th. set of second-
category vaJues for the radiaJ-limit function f* associated with some (bounded)
analytic function f on A.

The authors are grateful to Peter Colwe1l, whose survey of the literature on
Blaschke products [4] brought several relevant papers to their attention. Piranian
also thanks the Mathematics Department of the University of Maryland; its gen-
erous hospitality during fall term of 1983 provided an environment favorable to
the generation of Blaschke products.

2. Topological considerations

In this section we present five lemmas that will be used later in the paper.
Lemmas L and 2 are found in references [5] and [9]. The first deals with radial-
limit functions, and the second asserts the necessity of the condition in Theorem 1.
Lemma 3 states a classical result of M. Souslin concerning analytic sets. Lemma 4
generalizes to analytic sets in Ö and to complex-vatued functions a result by
Mazurkiewicz and Sierpiriski [13]; in Section 3 we shall use it to complete the
proof of Theorem 1 and to prove Theorem 3. Lemma 5 concerns sets of second
category. Finally, we give a modified version of a theorem of H. Hahn concerning
the pointwise limit of a sequence of continuous functions.

Let us begin with a topological space X. We shall denote the closure of
a subset W of. X by W. For the sake of completeness, we present some basic
terminology and baeJ<ground information found in [9, Sections 36-39]. The class of
Borel sets in X is the smallest family of sets in X that contains all closed sets and
is closed under the operations of forming complements and countable intersections.
Each Borel set has an order. Specifically the open sets and the closed sets are
Borel sets of order 0, sets of type F, and G6 arc Borel sets of order 1, and so
forth for all countable ordinal numbers [9, pp. 48, 344, 345). Borel-measurable
mappings also have orders. That is, if X and Y arc topological spaces and .E
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is a Borel set in X, then a mapping g: E --+ Y is Borel-measurable of class ot

provided for each closed set K in Y the inverse image C-r (K) is a Borel set of
order a [9, pp. 345, 373]. It is well known that the limit of a convergent sequence
of functions of class a is of class a + 1 [9, p. 386] and the limit of a convergent
sequence of Borel-measurable functions is Borel-measurable.

Here we pause to state our first lemma.

Lemma L. If f is a meromorphicfunction on L,, then the points on C where

/* exists constitute an Fo6-set, and f* is a Borel-measurablefunction.

For a proof of the first assertion, see [5, Section 44]; the second assertion
follows from the penultimate paragraph before the lemma.

Let us nolrv go to analytic sets.

Deflnition. The class of. analytic sefs (or Souslin sets) in a topological space
X is the family of images of Borel sets under continuous mappings of X into X
[9, p. 453].

We shall denote by "Å/ the space of irrational numbers in the interval / : [0, U.
Because every Borel set in a complete separable metric space is a continuous image
of ,A/ [9, Section 37, I, Theorem 1, p. 446), every analytic set in the extended plane
Ö i" tå" image of N under a continuous mapping. The italicized portion of the
preceding sentence will play a role in the second step of the proof of Lemma 4.

Lemma 2 (see [9, p. 496, Theorem 2]). Let X and Y be complete sepa,rable
metric spaces, and let gt E --+ Y be a Borel-measurable function defined on a
Borel set E in X . Then the uncountable-order set U(g) is an analytic set in Y .

Lemmas 1 and 2 imply immediately that if / is a meromorphic function in A,
then U(/.) is an analytic set in Ö. tt" necessity of the condition in Theorem 1

follows as a special case.

The following lemma was proved by M. Souslin (see [1L, p. 94] or [9, pp. 445,
47e)).

Lemma 3. Every uncouatable analytic set in a complete separable metric
space contains a homeomorphic image of the Cantor set.

If / is a meromorphic function on A and to is a point in Ö, th"n the points
on C where / has the radial limit ur constitute a set of lype Fo5. Together
with Lemma 3, this implies that each uncountable-order value for "f* has 2No

preimages.
Mazurkiewicz and Sierpiriski [13] showed that every analytic set on the real

line R, is the uncountable-order set for some continuous function g: R --+ R. By
means of a slight modification in their proof, we shall now obtain the following
result.
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Lemma 4. Let P be^a nonempty, perfect, nowhere-d.ense set on C , and let
W be an analytic set in C . If W f 0, then there exjsfs a continuous functjon
g: P -.+W suchthat U(g):W. If W:0,then correspondingtoeach uncount-
able analytic set ,9 jn Ö tåere exists a continuous function g: P +,S such tåat
U(c):0:W.

^In 
the special case where W : 0, let ,5 denote an uncountable analytic set

in C. By Lemma 3, there exists a homeomorphism g of P onto a perfect subset
of ^9. Because g takes no value more than once, U(g) : 0 : W .

For the case where W + 0, we shall divide the proof into four steps. In the
first step, we construct two continuous mappings p and /2. They are independent
of each other and of the sets P and W,, and they will remain fixed throughout
the remainder of the proof.

Let Å denote the standard continuous mapping of the Cantor set I( onto
the interval f (see [t7, pp.47-48]). Since the mapping I is at most 2-to-1, the
continuous mapping p: K4 --+ .[a defined by the formula

F(p,q,r, s) : (f(p), f(c), )(r),.\(s))

is obviously at most 16-to-1.
The radial projection of a cubical surface onto the Riemann sphere leads in a

natural way to a homeomorphism h of the set f x O.I3 in fa onto f x Ö.
The second step is the construction of a continuous mapping g: N -- Ö such

that U(9) - W. By a theorem of N.N. Lusin (see [13, p. 162] or [9, Remark 1 on
p. a97]), there exists a continuous mapping y N -.Å/ such that U(7) :,4/. Also,
by the italicized assertion following the definition of analytic sets, there exists a
continuous mapping B: N --+ 17. The composite mapping g : B o 7 of .Å/ onto
17 has the required properties.

The third step begins with the graph G of the function g constructed in the
second step. Clearly

c: {(r,/(r)) :t eN} cN xö c rx ö.

Let G denote the closure of G in I x Ö,let n: / x Ö -* Ö denote the usual
projection mapping, and let $: G - Ö denote the restriction of n to G. Because
p is continuous, G is closed relative to ,A/ x Ö. Therefore the countability of /\,4/
implies that U(t/) : U(v).

We begin the fourth step with the observation that because the set G in
.I x C is closed and uncountable, the inverse image ä-'(G) in fa is also closed
and uncountable. Flom this it follows that the set pr-1[ä-'(C)] in Ka is closed
and uncountable; let Q denote its perfect part. Because Q is not empty, some
homeomorphism z maps the perfect set P of Lemma 4 onto Q. Clearly, the set
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ho p,o z(P) ties in G. Using the function r! defined in the third step, we now
define the mapping 

^g:rbohoptou:P+C.
Since the set z(P) : Q contains all except at most countably many points of
p-Llh-t(G)] , lt ir clear that U(il : U(.D : U(p): W .

This concludes the proof of Lemma 4. The line

P', p-Llh-'(G)] c K4 ! 7a' )G
provides a summary of the four steps.

Next we shall discuss sets of second category.

Lemma 5. Every farnily of disjoint Borel sets of second category in a space
with a countable basis consists of at most countably marry elements.

Proof. By a theorem of H. Lebesgue ([10, p. 187], [9, Corollary on p. 88]),
every Borel set E in a space X is congruent to some open set G, modulo the
sets of first category (in other words, E : (G \ y) U 17, where I/ and W are
sets of first category). Because the interior of a set of first category is empty, two
disjoint Borel sets are congruent to disjoint open sets. It follows that in a space
with a countable basis every family of disjoint Borel sets has at most countably
many elements of second category.

Suppose now that .E is a Borel set in a space X with a countable basis and
that g: E + Y is a Borel-measurable function. Then there exist at most countably
many points y in Y for which S-r (V) is of second category in X. In particular,
it follows that the set of second-category values of the radial-limit function /* of
an analytic function / in A is at most countably infinite (see Theorem 6).

To close this section, we state without proof a slightly modified version of a
theorem of H. Hahn (see [5, Section 44, Theorem I)): Corresponding to each set of
type Fo6 on C , tåere exists a sequence of continuous mappings gr; C ---+ C such
that Limn-"" g"(O exists if and only if C e E .

3. Application of an approximation theorem of Arakeljan
and a theorem of Rudin

In this section we establish the sufficiency of the condition in Theorem 1. For
completeness, we shall state Arakeljan's theorem. In the following formulation, we
denote Alexandrov's one-point compactification G U {r-} of a domain G in Ö
by G-.

Lemrna6 (Arakeljan [1]). Let G be adomainin ö,let K be arelatively
closed, nowhere-dense set in G such that the set G* \ I( is connected and locally
connected, and let h denote a continuous, complex-vaJued function on K . Then,
correspondingto each positive continuousfunction e on K , therc exists an analytic
function f on G such that lt@ - h(r)l < e(z) for all z in K.

LÖL/xö
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The next lemma will enable us to progress from the construction of the con-

tinuous function g in Lemma 4 to the construction of an analytic function having
the same uncountable-order set as g. It will also allow us to prove Theorem 2.

We denote by o the spherical metric on C, that is, the metric on C induced by
the stereographic projection of C onto the Riemann sphere.

Lemma T. Let N be a nonempty, closed, nowhere-dense sef on the cfucle

C , a;nd let {g*} be a sequence of contiauous function s mapping C into Ö. Th"n
fhere exjsts a nonconstantt function f such that
(i) / is analytic on Ä\N, and
(ii) at each point ( of N the radial cluster set of f at ( contains tåe set of cluster

points of the sequence {g"(O} and is equal to it if

Iim
,?-+oo

ClearlS at each point ( on C , the function / described in the lemma has a
radial timit if and only if ( e C \ N or lim,*- 9"(O exists.

We start by making several reductions on the ."qn"t"" {9o}.
First, since we a,re concerned only with its behavior on -l[, we can suppose

that the functions 9a ä,r€ defined (and continuous) only on .l[.
Without loss of generality we may assume that the function 91 is constant

a.nd finite. Moreover, 'we ca,n choose a sequence {i" } of functions on .l[ satisfying
the following four conditions. (i) The function fr1 is identical with 91, and each

of the functions fo is continuous and assumes only finitely many different values,

all finite. (ii) For some point ( in .l[, the spherical distance o(gt(O,]r(O) has a
positive value os . (iii) For each point ( on .lf and each index n, every great circle
through the stereographic images of the two points 0"(O *d A"+tG) avoids the
north pole of the Riemann sphere. (iv) For each point ( in N and each index n,

Condition (iv) ensures that for each point ( in N the two sequences {g"(O}
and {7"(()} have the same set of cluster points. In the remainder of our proof,

we assume without loss of generality that the original sequence {o,r} satisfies
conditions (i), (ii), a,nd (iii), with the tildes deleted.

To use Lemma 6 in the proof of Lemma 7, we need an appropriate domain
G, a relatively closed subset K of. G, and a function h on K whose behavior
reflects in a suitable sense the behavior of the sequence {r"}. Cottespondingto
each point ( or C, we denote bV p(O the ray {r( : 0 ( r ( oo}; similarlV,
corresponding to each sel M on C we write

a(M): U p(O.
eeM

olo,(O, en*1 (O] : Q.

o(o*(o, i"(())
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We now define the set G and its subset K by the formulas

G : A, u a(C \ Ir) and K : An p(Ir).

Because /v is closed, G is a domain, and because r[ is nowhere-dense on C, the
set .K is nowhere-dense in G; also, .K is closed relative to G, and the set G- \/(
is connected and locally connected.

We begin the construction of the function å by choosing for å(0) the constant
nalue of gt. To construct å on the remainder of the set K, we recall that K is
the union of the radial segments [0,() (( € lr). corresponding to each ( in .l[
and each index n (n : !,2r. . .), we require the function h to effect the Möbius
mapping of the segment [(L - llde,Q - t/1n + 1))(] onto rhe circular arc in
C whose stereographic projection into the Riemann sphere is the geodesic joining
the stereographic projections of the two points g"(() und s.+r({). Because thä
set .lf is closed and nowhere dense on C, the function ä is continuous on .I(. The
condition h * Sz guarantees that å is not constant.

If we define the function e on K by the formula

e(z):(t-1zl)oo,

and if / is an analytic function in G with the property described in Lemma 6,
then / is not constant, and for each point ( in tr/ the radial cluster set of /at ( contains the set of cluster points of the sequence {g"(C)}. If in addition
lim,*- olg*(C),9*+r(O] :0, the radial cluster set of / at ( coincides with the
set of cluster points of {0"(O} . This completes the proof of Lemma 7.

Part (i) of Lemma 7 easily leads to a proof of the following.

corollary. rf .l[ is a nonempty, closed, nowhere-dense set on c and g is a
mapping of c into Ö, th", the ristriction glx is of Baire class 7 (in other åords,
is the limit of a pointwise conver_gent sequence of continuous functions) if and only
if some function f analytic on Ä \ .ly' satisfies at each point ( in N the conditiin
gG): /.(O.

In passing, we note that a modification of the proof of Lemma 7 enables us
to prove a related result: if g is a Baire-class-7 mapping of c into ö, then there
exisfs an analytic function f on A, such that the radial-limit function f* agrees
with g on a prescribedfirst-category set (of measure 2zr). However, considerations
of zero-sets show that it is not possible to ensure that /* is defined at every point
of C, or even on a subset of second category.

Next we prove a supplement to Theorem 1.

Theorem Lt . rf E is an uncountable analytic set on c and w is a (bounded)
anilytic set in Ö, then there exists a (bounded) analytic function f on L, *hose
radia,l limit exists at each point of C , with U(f.) : W and U (f.lrld :0.
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First we prove the theorem without the hypothesis that the set ?7 is bounded.
By Lemma 3, the set E contains a perfect nowhere-dense set P. By Lemma 4,
there exists a continuous function g: P -+ C such that U(g) : W . The corollary
of Lemma 7 implies the existence of a nonconstant function /, analytic at each
point of Ä \ P, having a radial limit at each point of C , and satisfying the
condition "f.(() : 9(() everywhere on P. Because / is analytic on C \ P and is

not constant, the inverse image (/.1q")-'(to) is countable, for each ur in Ö. It
follows that U(.f.lc\a) : 0. ttre behavior of / on radii ending in P implies that
u(f-):u(g):w.

Late addition: F. Bagemihl and W. Seidel [Some boundary properties of
analytic functions, Math. Z. 61, 1954, 186-199; Math. Rev. 16, p. 460; see

Theorem 11, p. 198] proved our Theorem 1' without its parenthetic restriction to
bounded sets 1Ir and bounded functions /.

To prove the theorem under the hypothesis that the set ?7 is bounded, we
proceed as before, except for two alterations: we require the perfect set P in E
to have measure 0, and we replace the corollary of Lemma 7 with the following
version of a result of Rudin [18].

Lemma 8. Let g be a continuous, complex-valued function defined on a
nonempty, closed set .lf of measure 0 on the circle C . Then there exists a non-
constant, bounded function f , continuous on Ä and analytic on Ä \ N, sucå tlrat
flN : s.

Rudin's result is usually stated without the requirement that / be analytic
on C \ N and not constant. To bridge the gap between the standard version and
Lemma 8, let G denote a starlike domain containing the disk A and having a
boundary that is the image of C under a mapping 7 with the three properties
(i) r(():(if (e N,
(ii) r(()/l.y(Ol :(.,,dlz(Ol >1if (€c\trr,
(iii) 7 has a continuous second derivative with respect to arclength on C.

Let cp denote a conformal mapping of Ä onto G, together with its continuous
extension to Ä. By a theorem of O.D. Kellogg (see [8] or 121, p. 361]), the radial-
limit function g* has a nonvanishing second derivative with respect to arclength.
In particular, because the set N on C has measure 0, its inverse image p-1(If)
also has measure 0. Now let (s denote the midpoint of a component of C\g-1(lf )
having maximum length. Obviously, we can extend the function g o g to the set
.p-'(If) U {(o} so that it is not constant. By the standard version of Rudin's
theorem, there exists a function ä, analytic on A and continuous on Ä such that
h(O: sop() foreach ( in 9-1(N)u{(o}. Therestriction / to Ä of the
function h o g-' has the required properties.

This completes the proof of Lemma 8, and the lemma in turn completes the
proof of Theorem L' and with it the proof of Theorem L.
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We note that for the case where the analytic set W is bounded, we ca.n
choose the function / in Theorem L' from any class of bounded analytic functions
for which a suitable a.nalogue of Lemma 8 is available. For exa,mple, a theorem
of V.V. Peller and S.V. Khrushchäv [14] (with a modification similar to that in
Rudin's result) allows us to use functions having a finite Dirichlet integral over A.

our method also permits the following extension of Lemma 4: rf E and w are
attalytic sefs in Ö and E is uncountable, then tåere exists a continuous function
g; C + C such that U(g) : W and tåe uncountable-order set of the restriction
of g to Ö\.E isempty.

To prove this extension, let JV denote a nowhere-dense perfect subset of E
(Lemma 3 ensures the existence of such a subset), and let 7 denote a Jord.a,n curve
passing through each point of N. Then some homeomorphism ä of Ö onto itself
maps ? onto C (see [6, p. L55, Theorem 3]).

If ?7 is bounded, there exists a continuous function / on Ä such that U(f) :
17 and U(.flatr,fO) : 0 (r"" Theorem 1' and its proof). Let

g(r) -
if€
ifz

Ä,
€Ö\n,

I f "h(r)
t r [n(r tz))

with the convention that 1/0 : oo. Then the function g has the required proper-
ties.

We now sketch a proof of the extension for the case where the set 17 is un-
bounded; it requires the construction of the quotient g : gr/gz of two bounded
functions. To achieve this, we first observe that we can modify the proof of The-
orem 1' to show that if W* is abounded analytic set in Ö and P1 and, p2 are
disj2nt perfect sets of measure 0 on C , then tåere exists a function f , continuous
on Ä and analyticin Ä\ (a ua), sucå that f(O : t for alt ( in p2 and the
uncountable-order sets of the restrictions of f to P, and Ä \ P2 coinci de with
w*.

In particular, let P1 and & be disjoint perfect subsets of measure 0 of the
set ä(I[) on C (see the first paragraph after the statement of the extension).
Let the relation of 91 to / be similar to the relation of g to / in ihe modified
version of Theorem 1' except that the role of the bounded set lI* in the modified
version is played by the bounded set W I-l A. Let 92 be chosen similarly, except
that the roles of P2 ar.d Pr are reversed and W* is now replaced with the set

{t/z: z e W \ 
^}. 

Then the function g: hf gz has the .equir"d properties.
We close this section by noting that Theorem 2 follows directly from Lemma 7

and the modified result of Hahn stated at the end of Section 2.

4. Blaschke factors and Blaschke products

In this section, we prove two lemmas that will provide technical support for
our construction in Section 5.
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The Blaschke factor corresponding to a point a in 
^ 

is the function

b(z,a)- 
{*,lot) @ - ,)l(1 - ar) :lrl- ,(o - z)(rla,- z)-1

If. a € C, then lfa: o, and therefore the function b(zra) degenerates to the
constant 1. In Section 5, it will be convenient to admit degenerate Blaschke
factors into the construction.

A sequence {o3} in Ä is a Blaschke sequence if it satisfies the BJaschke
condition »(1 - lrrl) < m. Each finite or infinite Blaschke sequence {a;} in Ä
determines a Blaschke product

B(r) - B(r, {"*}) b(, , ak).

Every Blaschke product B(2,{a}) is an innerfunction, and it has an ana-
lytic extension across each arc of the circle C that contains no limit point of the
sequence {a1}. For basic information on Blaschke products, we refer the reader
to [3, pp. 28-35] and to [4].

Lemma 9. Let I denote the intersection of Ä witå some circle whose center
( lies on C and whose radius is Iess than !. Then, as the point a describes the
arc I in the counterclockwise direction, the vaJue of b((,a) describes the circle C
from 7 to 7, also in the counterclockwise direction.

To prove the lemma, we observe that inversion in C maps the arc I onto a
circular arc l' such that the point ( lies inside the Jordan curve I U f'. If a is
one of the endpoints of l, the function b(z,a) is the constant 1. As the point o
moves counterclockwise along l, from C to C , the two quantities

arg(a-() and -ars(tl"-()

increase, the first by some quantity 0 (0 < 0 < n), the other by 2r - d. This
concludes the proof.

Ourproof of Lemma9 males it evident that if 0 < lrl < 1 and l(l :1,.rrd
if the distance la - (l ir small, then argbG,") is approximately twice the angle
from the half-tangent to C a,t ( to the vector a - (.

Lemma 10. For every Blaschke sequence {ap} the inequality

lr - B (,,{,n})l <2f -1 - l"o!
'/'lor-zl

if a - 0,
if a*0.

-fI
k

holds at each point z in A.
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First we prove the auxiliary inequality

It-t1r,r)l<2#.

If o:0, rhen lt-t1r,,a)l : lt -zl<Z/lzlfor alt z in Ä. lf o*0,wewrite
o : Qeio and z- rei(a+r). Then

and therefore

t - b(z,oy : (1 -_p)(1 +.'ri)) : t_- l!-(r + rei^).' |-Qrei^ a-z L-az'

The third factor in the last member has modulus at most 1 * r, and the second
factor has modulus la(z,o)1. Therefore the auxiliary inequality holds everywhere
in A.

Finally we consider the identity

t - f[ bQ,a1,):t -b(z,ar) *(1 -b(r,a2))b(z,ar) *...
I

n-1
+ (1 - b(z,a*))f!bQ,"x\,

1

recall that lfII a(r, 
"o) I S 1 for each rn, and complete the proof by applying the

triangle inequality and our auxiliary inequality.

5. Special Blaschke products

This section's centra,l result, Lemma LL, is an analogue for Blaschke products
of Lemma 7 in Section 3. It wiII serve in the proofs of Theorems B and 4.

Lemma 11. corcesponding to every uncountable analytic set E on the
circle C , there exist a nonempty perfect subset P of E and a Blaschke product
B, the latter analytic on Ä \ P, such that if {sr} it a sequence of continuous
mappings of P into C, then some subproduct B of E has at each point ( of
P the following properties: the radial cluster set of B lies on C and contains
the set of subsequential limit points of the sequence {s"(()} ; moreover, in case
lim,,*oo(9'(() - s"+r(O) : O, the two point sets coincide.



Uncount able-order sets for radial-limit functions 303

By Lemma 3 of Section 2, we can assume without loss of generality that the
set E is perfect and nowhere dense. From E we shall now select a perfect set
P thin enough to permit the construction of the master-function å promised in
Lemma 1.1. Our procedure will lead to a natural representation P: {(.}, where
the index o ranges over the set of all infinite dyadic sequences, that is, all infinite
sequences of 0's and L's.

At the rnth stage of the construction of P, we shall select a set of 2* points
in .8. We shall denote the points by (B or (2, where the symbols p ard 7 range
over the 2- dyadic sequences of length lgl: * or l7l : rn. Our choice of these
points will guarantee that if a is an infinite dyadic sequence and if for m : 'J., 2,. . .
the symbol o(rn) denotes the rn-element initial segment of o, then the sequence

{(.t*l} converges;its limit point will serve as the point (o in the set P.
The placement of the zeros of the master function 6 is based on a simple

geometric procedure. Corresponding to each point ( on C and each number 6
(_0 < 6 ( 1), we denote by d((,6) and 

"((, 
6) the intersection of Ä with the disk

{z:lz - (l < 6} and the circle {z:lz - (l :6}, respectively.
Corresponding to the dyadic one-element sequences ,6 : {0} a\d B: {1},

we choose any two distinct points eB (l0l: 1) in E. In the interval (0,"-r)
we choose a number 6r small enough so that the two arcs c((g,6r) 0gl : t)
are disjoint. On each of the two corresponding shorter arcs c(epr6!) we assign to
the master-product .6 exactly two zeros aBn (h : 1,2) in such a way that the
corresponding Blaschke factors åpr satisfy the conditior bBn(eil - exp2rihl2.
(This is possible, by Lemma 9.)

Suppose that for each of the indices le : 7,2,...,m - I we have chosen 2&
points CB (l0l: å) in .8, together with a positive number 61, and that each 61
is smallenough so that the 2& arcs c((B,ao) (lBl : &) are disjoint. Supposealso
that correspondingto each 0 (l/l: å) we have selected as zeros the 2h points

aph (h :7,2,. . . ,2k)

on c(Co,6f) in such away that the correspondingBlaschkefactors äBr, satisfy the
condition

bpn(Cil - exp 2rih/2k.

Let, 1 denote one of the 2* dyadic sequences of length m, and let B be
its (rn - l)-element initial segment. For (, we choose the point (B if the rnth
element of 7 is 0 , a different point of E on the boundary of. d(e o,al,_, ) if the rn th
element of 7 is L. We then choose the number 6- small enough .o ihut the 2*
arcs c((rr 6*) ( lzl : m) are disjoint. On each of the 2n a"rcs 

"(e,.,, 
Ar*) lll : *)

we assign to the master-product E exactly 2* zeros a1n (h : Lr2,. . . ,2 ) in
such a way that the corresponding Blaschke factors å7r, satisfy the condition

btn((r) - exp Zrih 12*
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By virtue of our construction , 26^ ,,-6*,-, . Together with the restriction
61 ( e-3, this implies that

log 62 < S log 61 - log 2,

lo963 < Slo962 - log2 < 9log6r - (1* 3)log2,

:

log6* < -g- - (t + g + ". +B*-2)togz,

in other words, that

6* I 2-(s^-' -t) tzexp(-B-) < exp(-B*).

Because 2m- (3 -r -1)lz ( 3 when rn:1r2r...,we can also assert that

(2^)'6* < sexp(-B-).

Corresponding to each index
of the zrn arcs 

"(C0,6,*) lpl -
m ) olJr master-product B has 2* zeros on each
m), and each of these zeros lies in the annulus

oo

l{z*1't'^ . *,
1

the product å i. . genuine Blaschke product. Moreover, the set of limit points of
the set of its zeros coincides with the set P. Therefore the product B, together
with aII its subproducts, is analytic on C \ P.

Our next step is to construct, corresponding to each sequen"" {gr} of contin-
uous mappings of P into C, a subproduct B of 6. Our product B wilt have the
desired properties, provided S"+r (() - g"G) --+ 0 uniformly on P, as r, --+ oo, and
provided the maximum w(263*,,9.) of. the quantity p"(O- S"((')l , taken over all
point pairs ((, (') in P x P for which l( - ('l < 26'^, tends to 0 as n --+ @ .

Not all admissible sequences {g"} satisfy these conditions; but we shall show
how to embed every admissible sequence in an expanded sequence that satisfies
the two conditions and is for our purpose equivalent to the original sequence.

Let Bo denote the constant function whose value is 1 . Suppose rn is a positive
integer and we have constructed a finite subproduct B-- 1 of E whose zeros lie
on the *"t 

"((B, 
fi) Wl: k; lc:7,2r...tffi- L; exactly one zero on each of

the arcs).
Corresponding to each dyadic sequence I (lll: rn) we choose for b, one of

the2* simpleBlaschkefactors b1n of.6 with azeroonthe ur" "(ey6|). More
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precisely, we choose one of the factors ä^16 that minimize the quantity lS-((r) -
B*-r(C)br6((r)l (there are at most two), and we observe that by virtue of our
choice of the points a1n (h: 1,2,... ,Zltl), the factor b, we have chosen satisfies
the condition

(*) lg,*((r) - B*-r( e)b*(Cr)l I r2-lzl

We define the provisional finite product

B^: B*-r fI a,
lrl:-

and the possibly unsatisfactory infinite product B : lim-- * B*.
To see that the Blaschke product B does not necessarily have the desired

properties, suppose for example that for each positive integer n and each dyadic
sequence B of length n the function go satisfies the condition S"(Cp): (-1)".
Then, for each dyadic sequence B offinite length, the value of the factor bB of. B
at (p must lie near -L, and therefore the zero ap of. bp must lie near the midpoint
of the arc c((r,61). Consequently, at eadr point ( of P the radial cluster set of
B contains the point 0, even if lim,r*oog"(() exists.

'We overcome this difficulty by inserting certain additional functions into the
sequence {g"}. T" choose the functions to be inserted between the elements g,
md go+r (n : 1,2,...), we divide the circle C into finitely many arcs C,;.
(h : 7,2,...,ä") whose endpoints lie in C \ P. Because 9z and ga*r are
uniformly continuous on P, we can choose the arcs C"t short enough so that
for each index ä the images gn(Cnhn P) and 7n+r(Cn1,o P) have diameter less

than 1. Because for each of the indices h : 1,2,,.. . rä," the complement of the
set

oo(C.nn P) u s.+l(C*hn P)

then contains an a,rc on C oflength greater than 2rf3, there exists an interval I,6
of length less than 4r /3 and with the property that we can regard the restrictions
to Cnn fl P of the two functions

9n : ar89n and Qn*L - arg |n+t

as continuous functions whose range lies in In1. For each of the indices j :
0, 1, . . . ,n - L we define the function gnj ot Cnnfl P by the formula

gnj : exp (;((" - il*gs* I i a4s,a1) ln) ,

and we replace the element g. in {g.} with the finite sequence

{g*otlnlr.. . t9n,r-1 }.
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For the sake of clerical convenience, we revert to single indices; that is, we now let
the symbol {go} r"pr"rent the sequence

Fhom the formula »';=, i : n(n + 1)/2 we see that at each point ( in p the new
sequence satisfies the inequality

lo "(0 - s"+, (0 I < 2" l,/-",

In our proof of Lemma 11, we shall also need the hypothesis that w(26lrg*)
--+ 0 as n't. -+ @. To modify {g"} to that this condition is satisfied, we replace
each element g,, with a finite block that repeats the element g, so many times
that if the element 9241 first appears in the rnth position, the corresponding
number 6- is small enough to guarantee that

w(zt3^_r,9n+r) 4 ztrl@ + t).

We again supply new indices, and we denote the modified sequence by {g"}.
Because the sequence {5"} is now adjusted to the constraints arising from

properties of the sequence {6-}-which in turn reflect geometric properties of the
set E-we can safely replace the letter n in {gn} with the letter rn. We can not
ma,ke the corresponding replacement in the numerical bounds achieved in the two
preceding paragraphs; but we can assert that there exists a sequence {e-} such
that

lo*G)

{gr0 t gzo ) g2r ) ggo) ggr) ggz ) g40, . . . }.

(**)

('r'r 'r)

- em*r(OI I €,n (( e P),

,,,(26L_1, g*) 1 €rnt

and e- --+ 0 as rn + @. How slowly €m + 0 depends on the sequence {6r} and
certain qualities of the original sequence {s,}. w" do not attempt a quantitive
description of the sequence {e-}, for such a description would not simplify the
computations that are stil necessary in our proof of Lemma 11.

It remains to show that after the imposition of our two modifications the
sequence {g*} g"rr"rates a subproduct B of. B with the properties described in
Lemma 11. Since the original sequence is a subsequence of the modified sequence,
the set of limit points of the new sequen"" {s-(O} includes (for each ( in p) the
set of limit points of the original sequence {s"(O} I inspection shows that the two
sets coinciCe if the original sequence satisfies the condition 9"(() - gr+r(() - 0.

With each positive integer /c we associate the set

D1,_ U dGB,6*),

l§l:k
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and corresponding to each finite dyadic sequence B we define the sector

su: {, :la;a;!/g) I . zdr'Br,lrl . 1}.

If e is an infinite dyadic sequence u;d 0 : p(o,rn) is its rn-element initial section,
we write

S*(a,m) : Sb : S B n d'((8,6*) \ D*+r.

Clearly, ,9! consists of a terminal portion of ^5B minus two nearly complete

semidisks of radius 6lpl*r. Because 61 < e-3 and

a|+a|*, +...<263*,

(o lies on the boundary of. d,((p,26|) and each point of each radial segment
((t - A P)eo, (o) lies in one of the regions Si (lBl: 1, 2, . . . ).

The proof of Lemma 11 will therefore be complete when we have shown that
for each o the supremum of the quantities

{ls,"((") - aQ)l : z e s*(a,m)\

tends to 0 as rn --+ oo. By the triangle inequality,

ls*((") - aQ)l < lo*((") - s*«il|+p*(cil- a^(eill
+ lB*Gil - s*Q)l + lB^(z) - aQ)l

:er*e2!qlea.

Because l(" - (el <26?^-r, it follows from the relation (* * r) that e1 1€rnt
and therefor€ €1 --+ 0 as rn --+ oo.

To estimate the term €2, wa note that

lo*(Cil - a*(eill Slo-((o) - B^-r(CiltB3ill
+ lB*-rGpYpGil\ - B*((illB^-r(Cilbp3il)l .

By virtue of the inequality (+) and our choice of the zero ap of the Blaschke factor
äp, the fi.rst term on the right is not greater than r2-*. In the second term, each
of the first two factors has modulus 1, and the third factor is

lr- II a,,,((B)l

ti;tr

If l7l : rn, then 7-lorl< 6'^; if inadditiorl'y + B,ther lCp-"rl> 6*. It
follows from Lemma 1.0 that the third factor in the second term is less than

2*+r 62^16* : 2**1 6*.
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Therefore €2 + 0 as rrl + oo.
Our treatment of as is based on the two identities

and
B,*: \ {a*lu,)tr.

ltl<*
Using as path of integration the rectilinear segment , : lCp, z) and observing that
each of the coeff.cients B*f b, is a Blaschke product, we see that

here we use the symbol !, for the sum of the terms in which the index 7 has
length less than rn, the symbol !, for the sum of the terms in which dl : *
and 7 I B; the symbol !, represents the single term [,lb'ulldwl.

If lo.rl :1, then åf is the constant function 0. If larl < 1, then

and therefore the maximum modulus of åf in the closure of A is (t + larl)
/ (t -1"-rl); clearly, this is less than 2/(l - larl) . To obtain a positive lower bound
on 1 - larl for the cases where lorl <1, we use the identity

1_a((,o:# #.(r+",'^)
from the proof of Lemma 10. The second factor on the right has modulus 1 when
( e C , and the third factor has modulus less than 2. It follows that

Because br(e) is one of the 2ltl - 1 numbers

exp (nn;2l-lzl) (h : 1,2 ,2dl - 1)

and a.y lies on the arc c(et,6?rt) , it follows further that

B*(r) - B*(CB) - lr'rB'*(w) 
d,ut

ltl<*

lort*ll- (r - lorl2) ll1 - dr*|, ,

1 - lo^,1 > (21")2n .2-lrl 6?rtl2 : 2l-lrl 6?rt;
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therefore lai(.)l <z/(t- l"rl) <zt tl6?rt.

Since z e S! c d(CB,6*), the segment o has length at most 6-, and it
follows that

X, < 6*(z+22 +24 +...q22n-z)16'*-t < (0'*-r/z)rz*-r /62*-t:22*-26*-t.

C1early, I, + 0 as rrl -> oo.
To estimate D, , w€ observe first

maps the segment o one-to-one onto
and the distance between the points
Therefore

f 
r - a,,1,,;l < zo2*1 0* - 26*i

in other words, the arc ä.r(a) Iies in a circular disk of radius less than 26*. Tts

length (which is equal to the integral !"lb!rl ldtol ) is therefore less than 416*, ar,d
consequently the sum of the 2^ -l intägrals it D, is less than 2**216-. Again,
this tends to 0 as na --+ @.

Our estimate of !, requires additional information on the position of the
zero ap of the Blaschke factor åB, information equivalent to the assertion that
bB(ee) --+ 1 as lfl - *. Let q denote the (rn- 1)-element initial segment of B.
By the triangle inequality,

By (**), the first term on the right is less than e-.
By (* * *), the second term on the right is less than e--r .

By our choice of the zero o,t, of the Blaschke factor ä, (see (*)), the third
term on the right is less lhan r f 2*-r .

'We can write the fourth term in the form

lll:rn_t

The first factor is 1, and by Lemma 10 the second factor is less than

2 .2*-L 62*-tl6rn-t : ztn 6*-t.

The last of the five terms is less than

that each of the corresponding functions b-l

a1 and the segment o is greater than 6*.

lg*(e B) - B*-1((B)l s lg*GB) - e,,"-,((B)l

+ lg*-1(eil- e*-1((r)l + lg*-1((r)- B*-z(e)bn((r)l

+ lB*-2(e)br((r) - B*-1((r) I + ls*-l((r) - B*-1((B) l.

ls*-z(e)br((r) I lt - br((, ) I '

I ,,,Ult,lS m-t
la:,t.ll ld*|.
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We integrate along the rectilinear segment [(r,(p], and we note that this has
length less than 6*r-r. Again we use the inequality

laif.,ll <zt,t/6?,t.
Corresponding to each of the index lengths lZl : 1, 2,. ..,m - !,our sum contains
2lzl i6"gru1s. consequently, the final term on the right side oi or. inequality is
less than

tl-r(z' + 24 + . . . a 2z(*-r)) / a'*_, < 22*-r 6*-t.
We have shown that 9-((p) - B*-{Cil --+ 0 as * : l0l + oo. By virtue of

(*), this implies that arg be(Cil + 0 as l0l * *, and from the comment after the
proof of Lemma 9 it follows that (1 - l"eD l6?et---+ 0 as l0l * *. By Lemma 10,
the maximum modulus of 1 - bB(w) oa the segment o is small, and therefore
Dst0asrr-t+oo.

Finally

"n 
:ln*1,)(1 - B(z)/a*e)) 

| 
: lr-r,lll, - I[ a,r,ll.

l'rl>*
Because 11 - rrl < 6lrf Td l, - orl > 6frtl2 for all z outside the set D;.y;ar, it
follows from Lemma 10 that

"n' D 2k+26x'
k)m

This completes the proof of Lemma 11.
Theorem 3 is a direct consequence of Lemmas 4 and 11 (compare the proof

of Theorem 1'). Theorem 4 follows from Lemma 11 and the result of Hahn stated
at the end of Section 2.

The following is a corollary of Lemma 11.

Corollary. If E is an uncountable analytic subset of C , then there exists a
nonempty perfect subset P of E with the following property. For every function
g: C ---+ C , the restriction Slp of g to P is of Baire class 1 if and only if there
exists a nonconsta,nt Blaschke product B, analytic at each point of Ä \ p, sucå
that B.(O : s(O for each ( in P.

In analogy to the cardinality of the set on c where the radial limit /- of
a function / on Å has a specific value ?r0, we can consider the cardinality of
the set on C where the radial cluster set of / consists of a specific continuum
/(0. unfortunately, the space of continua in Ö is the Hilbert cute. But the space
of subcontinua of C is topologically equivalent to Ä. Consequently, moderate
changes in the proof of Theorem 3 will lead to the following proposition.

Theorem 3'. There exisäs a Btaschke product E such that each a,nalytic
set W of (possibly degenerate) arcs on C is the uncountable-order seä of radiaJ
cluster sets of some subproduct of B .
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6. Positive-measure values and second-category values

We shall establish an assertion slighily stronger than Theorem 5: To each
countable set W in C there corresponds an analytic function f on L, such that
f* exists everywhere on C\{1} and the set {( r /.(() :.} h*positiverr,ea*ure
if w €W and is at most countably infinite if u /W.

If W :0 and f (r): z fot all z,the function / has the required properties.
All other cases we treat simultaneously by regarding W as an infinite sequence

{to1.} of finitely or infinitely many distinct values.
Corresponding to each positive integer lc, we choose on the open arc

{('( e C,1l& + 1) < al€< <7lk}

a closed, nowhere-dense set l[* of positive measure. By N we denote the closure
of the union of the sets Ny. (k : 1,,2,. . .). On N we define the functions ä, by
the formula

h,«): 
{?r:.,

Obviously, each of the functions hn is the
gn on C . By Lemma 7, some function f
e of each of the sets l[* the condition

s(z) -

I/r and k - 7r2)... )n)
Ui"*r rflr u {1}.

restriction to .nf of a continuous function
analytic on 

^ 
\ If satisfi.es at each point

"f.(O:,I$r"(e)-wk.

This completes our proof.
We now turn to the proof of Theorem 6. Again, the function f (r) = z serves

in the case where W : 0. In the remaining cases, let W : {w.} denote a finite
or infinite sequence of distinct points in Ö.

Let E denote a residual set (that is, the complement of a first-category set)
of measure 0 on the interval (-",0), and let p denote a nondecreasingfunction
on [-zr, zr], constani in (0, z') and with pr' : oo ev€rywhere in E (see [15, p. 21a]).
Then the bounded analytic function

if(€
if(€

exp l:"
is nonvanishing on A and has the radial limit 0 everywhere on the residual subset

{eit : t e E} of the lower half of C; on the upper half of C, the function is
analytic and has modulus L. Let

r I g +Wn if. wn is finite,
r n \t I n if usn is infinite.
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Reverting to the method by which Maclane and Ryan solved their problem
in [12], we describe the function / in terms of its Riemann surface. We begin with
the simply connected, unbranched sheet s consisting of (i) one copy of the disk
A; (ii) one copy sn of the disk {1.-..1< 1}, correspondingto each positive
integer nlin case t n: oo, we replace this disk with the annulus {t < 1u; < Z},
slit along the negative real axis for the sake of simple connectivity; (iii) narrow
ribbons rrr, each connectingthe diskin (i) to the domain s" in (ii).

For each index n, the Riemann surface ,9* for the function /, overlies either
the disk s" in (ii) or the domain lrl > 1, depending on whether ta,. is finite or
infinite. In each of the surfaces §r, we make one short radial boundary slit ending
at the image (under the mapping f") of some point eta where /, is analytic;
without loss of generality we may assume that the endpoint of the slit does not
lie over the juncture of the disk (or annulus) s,, with the ribbon r,r. We make a
corresponding slit in s,r, and we attach the surface .9r, to s by a crossconnection
along the slit.

If f is a conformal mapping of A onto
obtained, and if P denotes projection onto
P o f has the desired properties.

the Riemann surface s U (U S ") thus
C, then the composite function f _

t1l

t2l

t3l

t7l

t8l

[4]

t5l

t6l
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