A NOTE ABOUT AN AHLFORS INEQUALITY AND INNER RADIUS OF UNIVALENCE

Delin Tan

1. Introduction and main results

Let f(z) be a holomorphic function defined on unit disc $U = \{z : |z| < 1\}$ and $S_f = (f''/f')' - \frac{1}{2}(f''/f')^2$ be its Schwarzian derivative. In 1973, Ahlfors [1] showed that the inequality

(1)
$$\left| \frac{1}{2}S_f + v^2 - v_z \right| \le k |v_{\bar{z}}| \qquad (0 < k < 1)$$

together with $v \to \infty$ for $|z| \to 1$ and $v_{\bar{z}/v^2} \neq 0$ is sufficient to imply the existence of a quasiconformal extension of f(z).

Writing $\frac{1}{2}v$ instead of v, (1) becomes

(2)
$$\left| S_f - (v_z - \frac{1}{2}v^2) \right| \le k |v_{\bar{z}}| \qquad (0 < k < 1).$$

If f(z) is defined on the upper half plane $H = \{z : \text{Im}(z) > 0\}$, it is easy to see that (2) together with $v \to \infty$ for $\text{Im}(z) \to 0$ and $v_{\bar{z}}/v^2 \neq 0$ also is a sufficient condition for quasiconformal extension of f(z).

Let A be any simply connected domain of hyperbolic type in $\overline{\mathbb{C}}$. We define the Poincaré density ρ_A of A by

$$\rho_A = \frac{\left|h'(z)\right|}{1 - \left|h(z)\right|^2},$$

where h(z) is any conformal mapping of A onto the unit disc U. For complexvalued functions ϕ on A we set the norm

$$\|\phi\|_A = \sup_{z \in A} \frac{\left|\phi(z)\right|}{\rho_A(z)^2}.$$

Let F(z) be any meromorphic function on A. Letto [2] has defined the inner radius of univalence $\sigma_I(A)$ as the supremum of the numbers $a \ge 0$ with the property that F(z) is injective whenever $||S_F||_A \le a$.

doi:10.5186/aasfm.1989.1430

Delin Tan

Let g(z) be defined in U (or in H) and A = g(U) (or g(H)) be a quasidisc. Let $\sigma_I(A)$ be the inner radius of univalence for A. Assume that f(z) is any meromorphic function on U (or in H). It is clear that the inner radius of univalence $\sigma_I(A)$ is also the supremum of the numbers $a \ge 0$ with the property that f(z) is injective whenever $||S_f - S_g||_U \le a$ (or $||S_f - S_g||_H \le a$).

In this note we want to show that the Ahlfors inequality is a very powerful tool for investigating $\sigma_I(A)$. Some special choices of v can yield valuable lower bounds for $\sigma_I(A)$ including some well-known results. In fact we obtain the following results:

Theorem 1. Let g(z) be holomorphic in U and A = g(U). Then

(3)
$$\sigma_I(A) \ge 2 - 2 \sup_{|z| < 1} \left| z \left(1 - |z|^2 \right) \left(\frac{g''}{g'} - \frac{2g'}{g + c} \right) \right|$$

and

(4)
$$\sigma_I(A) \ge 2 \inf_{|z|<1} \left| \frac{zg'}{g} \right| \left(1 - \left| \frac{zg'}{g} - 1 \right| \right),$$

where c is any complex number.

Theorem 2. Let g(z) be holomorphic in H and A = g(H). Then

(5)
$$\sigma_I(A) \ge 2 - 4 \sup_{\operatorname{Im}(z) > 0} \left| y \left(\frac{g''}{g'} - \frac{2g'}{g+c} \right) \right|$$

and

(6)
$$\sigma_I(A) \ge 2 \inf_{\mathrm{Im}(z)>0} \left| \frac{zg'}{g} \right| \left(1 - \left| \frac{zg'}{g} - 1 \right| \right),$$

where c is any complex number.

2. Proofs of theorems

Because the proofs are routine, we omit the details. (i) In the case of A = g(U), for any complex number c, choose

$$v = \frac{g''}{g'} - \frac{2g'}{g+c} + \frac{2\bar{z}}{1-|z|^2}.$$

Then (2) becomes

$$\left|S_f - S_g + \frac{2\bar{z}}{1 - |z|^2} \left(\frac{g''}{g'} - \frac{2g'}{g + c}\right)\right| \le \frac{2k}{(1 - |z|^2)^2}.$$

352

 \mathbf{So}

(7)
$$\sigma_I(A) \ge 2 - 2 \sup_{|z| < 1} \left| z \left(1 - |z|^2 \right) \left(\frac{g''}{g'} - \frac{2g'}{g + c} \right) \right|.$$

Let $c = \infty$. We have

(8)
$$\left|S_f - S_g + \frac{2\bar{z}}{1 - |z|^2} \left(\frac{g''}{g'}\right)\right| \le \frac{2k}{\left(1 - |z|^2\right)^2},$$

and

(9)
$$\sigma_I(A) \ge 2 - 2 \sup_{|z| < 1} \left| z \left(1 - |z|^2 \right) \frac{g''}{g'} \right|.$$

The inequality (8) was first obtained by Epstein under some additional assumptions and was proved by Pommerenke later [4].

Now choose

$$v = \frac{g''}{g'} - \frac{2g'}{g(1-|z|^{-2})}.$$

Then (2) becomes

$$\left|S_f - S_g - \frac{2\bar{z}g'(zg' - g)}{g^2(1 - |z|^2)^2}\right| \le \left|\frac{2kzg'}{g(1 - |z|^2)^2}\right|.$$

Thus

(10)
$$\sigma_I(A) \ge 2 \inf_{|z|<1} \left| \frac{zg'}{g} \right| \left(1 - \left| \frac{zg'}{g} - 1 \right| \right).$$

(ii) In the case of A = g(H), choose

$$v = \frac{g''}{g'} - \frac{2g'}{g+c} - \frac{2}{z-\bar{z}}.$$

Then (2) becomes

$$\left|S_f - S_g + \frac{2}{z - \bar{z}} \left(\frac{g''}{g'} - \frac{2g'}{g + c}\right)\right| \le \frac{2k}{|z - \bar{z}|^2}.$$

We get

(11)
$$\sigma_I(A) \ge 2 - 4 \sup_{\operatorname{Im}(z) > 0} \left| y \left(\frac{g''}{g'} - \frac{2g'}{g+c} \right) \right|$$

.

Delin Tan

and in the special case for $c = \infty$

(12)
$$\sigma_I(A) \ge 2 - 4 \sup_{\operatorname{Im}(z) > 0} \left| y\left(\frac{g''}{g'}\right) \right|$$

If we choose

$$v = \frac{g''}{g'} - \frac{2g'}{g(1-\bar{z}/z)}.$$

Then (2) becomes

$$\left|S_f - S_g - \frac{2\bar{z}g'(zg' - g)}{g^2(z - \bar{z})^2}\right| \le \left|\frac{2kzg'}{g(z - \bar{z})^2}\right|.$$

Thus

(13)
$$\sigma_I(A) \ge 2 \inf_{\mathrm{Im}(z)>0} \left| \frac{zg'}{g} \right| \left(1 - \left| \frac{zg'}{g} - 1 \right| \right).$$

This inequality makes sense only for |(zg'/g) - 1| < 1. If we take

$$g(z) = z^k = \exp(k \log z)$$
 $(z \in H, |k-1| < 1, \log i = \frac{1}{2}\pi i),$

A = g(H) is a spiral-like domain for non-real k. Because zg'/g = k, we have

(14)
$$\sigma_I(A) \ge 2|k|(1-|k-1|).$$

When k is real, Lehtinen and Lehto obtained [3]

(15)
$$\sigma_I(A) = 2k(1-|k-1|).$$

We do not know whether (14) is sharp for non-real k.

3. A general formula

Generally, let h(z) be any quasiconformal self-mapping of the whole plane. Define $\tau(z) = h(\bar{z})/h(z)$ for A = g(H) and $\tau(z) = h(1/\bar{z})/h(z)$ for A = g(U). We choose

$$v = \frac{g^{\prime\prime}}{g^\prime} - \frac{2g^\prime}{g(1-\tau)}$$

Then

(16)
$$\sigma_I(A) \ge 2 \inf \frac{|g'| \left(|\bar{\partial}(g\tau)| - |\partial(g\tau)| \right)}{|g - g\tau|^2 \eta^2},$$

where $\eta = 1/2y$ or $1/(1 - |z|^2)$.

Let h(z) be any quasiconformal extension of g(z), denote $g^*=g(\bar{z})$ or $g(1/\bar{z}),$ then

(17)
$$\sigma_I(A) \ge 2\inf \frac{|g'| (|\bar{\partial}g^*| - |\partial g^*|)}{|g - g^*|^2 \eta^2}.$$

This is just another form of Lehto's result [3, p. 121].

354

References

- AHLFORS, L.V.: Sufficient condition for quasi-conformal extension. Ann. of Math. Studies 79, 1974, 23-29.
- [2] LEHTO, O.: Remarks on Nehari's theorem about the Schwarzian derivative and Schlicht functions. - J. Analyse Math. 36, 1979, 184–190.
- [3] LEHTO, O.: Univalent functions and Teichmüller spaces. Springer-Verlag, New York-Berlin-Heidelberg-London-Paris-Tokyo, 1987.
- [4] POMMERENKE, CH.: On the Epstein univalence criterion. Results in Mathematics 10, 1986, 143-146.

State University of New York at Stony Brook Department of Mathematics Stony Brook, NY 11794 U.S.A.

Received 18 October 1988