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TINEAR FUNCTIONALS ON THE SMIRNOV
CLASS OF THE UNIT BALL IN CN

M. Nawrocki

1. fntroduction

F\rnctional analytic properties of many classical spaces of analytic functions
have received much attention in recent years. In particular, topological duals of
the Hardy spaces of many typical domains have been identified (see [1, 2,5,6,7,
131). The Smirnov class I[* of the unit disc in the complex plane was extensively
studied by N. Yanagihara [16, 17], who described all continuous linear functionals
on N* and found multipliers of trf* into Hardy spaces. However, up to now, no
satisfactory characterization of linear functionals on the Smirnov class N-(D) of
any multidimensional domain D has been obtained. The present paper is a study
of the linear space structure of the Smirnov class N*(8,") of the unit ball Bo in
the space of n-complex variables C'.

We recall that a function /, analytic in B,r, is said to be in the NevanJinna
class N(8") if

f
sup / l"s*l/(,Oldo(O < m,

0(r(r JäB-

where o is the rotation invariant probability measure on S : äB,. The Smirnov
cJass or the Hardy aJgebra N-(B") is the subspace of N(8") consisting of those
functions / for which the family {tog+171".;l : 0 < r < f} is uniformly integrable
on S. It is well known that N.(B") equipped with the topology induced by the
metric

d(f ,il: ll/ - ell : -liT_ / r"g1r + l/(r() - e(r6)l)ao(6)7+r_./S

is an .F-space (i.e., complete metrizable t.v.s.). For each / € lf-(B"), the radial
limit /.(O :Iim,-r- /(rO exists for almost all ( € S and

ll/ll los(t + l/. 1) d".

The reader is referred to [11] for information on lf.(B").
In 1976 M. Stoll proved

:1,
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Theorem S ([14]
lf.(B") there exists a
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Theorem 10) . For each continuous linear functional I on
unique analytic function g on B, such that

(s) ,.Yff)_ lim' Tt0+1-
r(e

f (ro-1OmO d"(C)

z(:-Qter)...rznC"),
rz:-(rz1 r...rTZn),

t.
for all / e lf-(B,,). Conversely, §ven any g andytic on B,, for whieh the limit
in (S) exists for all ,f € N.(8") (S) defines a continuous linear functional on
rr-(B").

The main result of the present paper is Theorem 3.1, which together with
Corollary 3.5 gives, in terms of the growth restriction of the Fourier coeffi.cients
of g , a necessary and suffi.cient condition for an analytic function g to define by
(S) a continuous linear functional on N-(B"). It turns out that the dual space
of If.(B") can be identified with the dual of the Fr6chet space (locally convex
.F-space) .t}(8,") invented by M. Stoll [15] (see Section 2). This will imply that
F.(8") is the so called F}ö&et envelope of N-(B"), i.e., the completion of the
rpace (ff.(B n),r"), where r" is the strongest locally convex topology on N-(Br)
which is weaker than the original topology r of l[.(B").

In Section 4 we show that if n * m, then F*(8") is not isomorphic to
fl(B,,). This implies that the Smirnov classes N.(B"), N.(n-; are not iso-
morphic for different dimensions n ) m. The results of the Sections 3 and 4 are
applied to obtain the best possible estimate of Fourier coeffcients of functions in
nr,.(B").

2. Preliminaries

Throughout the paper we use the standard notation of [11]. Let (z,wl :
Di=rzirri (z,w € C") denote the standard inner product on Co and lzl :
(2,z\t/z (z e C) the corresponding norm on C". We denote the unit ball and
the unit sphere in C" by B : B, and S : S, - ?Bn respectively. Moreover, let
Z1 denote the set of all nonnegative integers ard Zi its n-fold product. T" is
the n-fold product of T : 0Br.

For any multi-index a: (ar,...,@o) e Zi arrd z,( e C", r € C

lrl
a,l

zd

::CV1 +"'*Qn,
:: a,l!" 'Qnl,,
- - 0r _,dn'- ry ' . .. ryc-,el on,

It is well known that the analytic monomials zo , d e Z\ , are orthogonal on
the sphere, i.e.,

t. e"(Pd"G)-o ifa*p.



Moreover,

(2.1) l,le"fa,«l:ffi
(see [11] 1.4.8, 1.4.9). Therefore,

eo(-\ - (("- 
t + l"l)l)'/'"o, ae z\,

'"/-\ (n-1)to! /
is such an orthogonal system of monomials on B, which is normalized in Z2(S, a)

Each analytic function / on B, has the Fourier expression

f (r): D ",6)p,(r),aezi

where the series is convergent uniformly and absolutely on each compact subse
of Bo and

o*("f): ri+ [ rcelA;@doG).r+r_ JS

M. Stoll [15] defined the space .F,.(8") of all analytic functions / on B, fo
which

Linear functionaJs on the Smirnov class of the unit baJl in Cn 371

ll/llr : sup lo"(/)lexp(-;o1"/@+t) 1k) < a for all ,t e N.
aezi'

fl(8") equipped with the topology determined by the sequence of norms {ll.llr ',t e N) is a Fr6chet space. Moreover,

Theorem 2.I- ([15] Theorem 5.2).
(") N.(B") is a dense subspace of .F](8"),
(b) tåe inclusion mapping tr.(B") * F.(B") is confinuous.

3. Representations of linear functionals

In this section we prove the following main result of the paper.

Theorem 3.1. If {b.}.ezi is sucå a sequence of complex numbers that

(3.1) öo : O(exp(-clol"/("+tl;; for some c ) 0,

then

(3.2) 7(/):'» oo(f)bo, .f € lr-(B,),

defines a continuous linea.r functional 7 on .lf*(B") with the convergence in (3.2)
being absolute.

Convercely, for eaeh continuous linear functional 7 on N*(B n) there exists a
unique sequence {å"} such iåat (3.1) and (3.2) hold.

t
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where utrz e B,, and c > 0.

Lemma 3.2. We have

lg:tg ll"å''ll : o'

Proof. In the proof we follow [3]. The measure o on S is invariant with
respect to the group U(n) of all unitary operators of the Hilbert space C', so

ll/",-ll : ll"f",1-1",ll , *h"t" e1 is the first unit vector in C". Therefore, it is enough
to show that

ig 
":ä1,, 

ll"f"''"'ll : o'

Let U be a neighbourhood of e1 on S. It is easy to see that

lim sup sup l"f I,reG, (() I : O.
c+o 

Ce s\ U re(o-,1)' 
- Lt'

es

rI

,wrceki

se properti

1 - l*l'

tav

us

lVå

ill u

c-
(r

M,

wi

'(

,l of the functions

)

In the proof of this theorem we

f ",*(r) - "*l
p

- (2, *l)"

Consequently,
t

]g 
':ä1,, ./"1r'"n(t + l"fl''"'l) do : o'

Using the inequality log(1 *cr) < log(1*c)+log2*loga, x) L, c ) 0, with
s : exp(c(1 - rr)11 - rzrl-(n*r)), *" hu,lr"

luuslt 
* l"f|,,",l) d, <o(u) los(1 + c) * o(u)ros2

* " [(1 - r2)11 -'r(rl-('+r)ar«)-Ju

However, supu€BÅ(r-lrrll')lr -@,ell-("*')ar(()::C ( oo (see [11], 1.4.10),
so

/ r"*1, + l"f|.,.,l) do a2o(u)ros2 * cc
Ju ' -e"et"

for any U and 0 < c ( 1. This completes the proof, because we could choose U
at the very beginning as small as we want.
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Lemma3.3. -Fbr each c)0 there existsa k €N sucå that
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,9, ;r1B lo*(f ",*) I ""p 
(- 

t 
alt(n*l)i lk) > 0'

where

ui(c,lwl,r,1 ,: "]O _ @l\i (," 
* tli + e - 1).

Thus, lf. p,(c,o) :: sup-.r 1".(/",,)l , then

*G, o) ) ui (c,t.t, tot) *l r#i#)''' *.
for all J € N, *: (wr,...,wn) € B with to; ( 0, i:1,2,...rn, and all
aeZ\\{0}. However, by(2.1), forevery aeZi thereis a ( e S suchthat

l('l : ("-t1tat1(,--7+ lal)t)r/'z. of course, we can choose (: (€r,...,(o)
suchthat (;2 0, i:7,2,...,n. Consequently, taking ur:: r{, where r e (0, 1),
we obtain

(n - 1)!
r\"")ts''(lol +1) ...(l"l *n-1)

(', *lo

»#,
lol:*

k-1\ klt_
)ol

!a! \ 1/z
I

l"l)t )

Proof. For each c ) 0, u)z e B we have

f",*(,) -å fif1 - Wl,)'(r - e,wl)-(n*l)i

:1+å 
frrl - wt')'i (("+1"r**-',)

:1+å 
fit1 - t*t),i (("+1r,r**-,)

:1+å 8, (» 
fir1 - wt),(,n*L)ir+

k:olol:Ic \r-r J'

: 1 + å r* (l ui(",r.r, k) *l (#,t:0 lo l_

o tao

) 

,,s'zo

) 
a'eo(')'

" 
lol

for all j € N, r e (0, 1), d e Z\\{0}. Using the obvious inequality
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we have
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\ ) - (("+1)i)!

,lol

for all I € N, r € (0,L), o € Zi \ {0}.
Now, let usfix O <d a å ro smallthat 4n*7 I c(n+7)-@+1). For o €

Zi \{0} take j - j, :-- the integer part of d,lo1l"/("+r1 and take r2 : rZ :: 7-oo,
where .D: oct:: f,flqln/("+1). Note that j. ) 1 for sufficiently large lol as well
as ro € (0, å).

Using Stirling's formula we have

log p(c,a)> j logc+7logr

-jlos(("+1)j

-i("*2+lot l
+

n

)
n-

)+
(n

,2)

)n-

"r)
+

-1
L

-r
-1 

-

1-
+

,*.

(
n

(1

)"
c

f,-,(,

i)

oö

J
?+r + lal log r -l log j + j - O(1og7)

o (Ios (n * 1)i) - o(Ioe l" l)

* lollos r - O(1og lol).

r.l"

-(

,)

;la
j-
+1 \

n

aöl

)j
u*

,+

ol

1,

r
in

it,
+

l"l
-Lj

However,

"(1 -r\loln+'_ cdlal'+l-l /(n*r)

for large a and

log p,(c, ") 2 (" + 2) (dlo,l," /(z+t) ) - d1o1 l @+1) - O (tog 
I 
o 1)

) lal/("+tt l* - O(toglal)

for some /c e N. The proof is completed.

Lemma 3.4. For eaclt n,& e N and each family of complex numbers {xo :

a e Z!,lal : /c) we have

ry* l*,1= ää?tl»,,('1.
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Proof. Let mo be the normalized Lebesgue measure on T. The system of
monomials €o, a eZi, is ortonormal in .[2(T",rn,), so

iå+*l ä "€'l' ' l,^l}"'"1'o*'('): ! l"l' ) ma'x lrol2'

Proof of Theorcm 3.I. M. Stoll has proved that (3.2) with {ä.} satisfying
(3.1) is a representation of continuous linear functionals on the space F*(B")
(see [15] Theorem 5.3). This and Theorem 2.1 imply that each {å"} satisfying
(3.1) defines by (3.2) a continuous linear functional on N*(B").

Suppose now that 7 is a continuous linear functional on N.(8,.). Put äo ::
l(p") for o € Zi. Then there is an 6 > 0 such that

(3.4) lr(/)l < 1 for all / € N.(8,), ll/ll < 
".

For each / e /V.(8") and ( € D : 81 we have ll/((.)ll < ll/ll rra

.rr(o ::7(/((.)) : i( D o.(/)a.)(0.
rt=0 \lol=,t /

Therefore, for each / e N.(8"), ll/ll < e, the function 7y is analytic on the unit
disc D in C and supceolzr(Ol < 1. Consequently,

(3.5) 
I D ,"(flu"l =, for all / € N.(B), ll/ll < e, ,t € N.
lol:tc

Lemma 3.2 tells us that there exists ac) 0 such that

(3.6) ll"å,-ll < . for all tu € B.

Moreover, by Lemma 3.3, there are & € N, 6 ) 0 such that

(3.7) sup lao(/c, tu)l > 6exp 11a1"/t"+r) 1tc} for all a e Z\.
u€B'

Let us fix an arbitrary P e Zi. By (3.7) we can choose such a w : up e B
that

(a.s) l"BU.,öl > 6exp(lå1"/(n+r) ltc).

Using Lemma 3.4 we can find € € T" such that

(3.e) loB(f",-)bBl5l» opj",.)b,€'|.
'l.l:l9l
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Let us observe that llc/",-(€.)ll : ll"f",*ll ( e and 1.,-(€r): Do a(f.,*)€"po(r),
z e B. Therefore, (3.9) and (3.5) imply

lcap(f.,-)bpl = I » o.("f",-(€.))ö.1 < r.
lol:l9l

Finalls by (3.8),

lbBl < lcaB(f",-)l < ("6)-' exp(-1811{n+r) /k).
We have proved that {å.} satisfies (3.1). By the first part of the theorem, {ä.}
defines by f(/) : \a"(f)bo a continuous linear functional on tr[*(B"), which
coincides with 7 on the space of all polynomials. Finally, l(/) : t$) for all
/ € nf.(B"). The proof is finished.

Corollary 3.5. An anilytic function SQ) : Db.p.(z), z e 8,, defi,nes by
(S) a continuous linear functional on l[.(B") if and only if {ö.} satisr5es (3.1).

Proof. The absolute convergence of the series D""U)6", ,f e l[.(Br), is
easily seen to imply that the limit in (S) exists and is equal to the sum of this
series. Therefore, we see, by Theorem 3.1, that if {å.} satisfies (3.1) then the
analytic function S(z):Db.p"(z) defi.nes bV (S) a continuous linear functional
on N*(8").

Conversely, if 7 is a continuous linear functional o., l[.(8") defined by (S)
with g(z) : lbogo(z), then

(3.10) {f):D""U)6. for each polynomial /.
The set of polynomials is dense in N.(B"), so the equality in (3.10) holds for all
/ € If-(B") and {ö.} satisfies (3.1).

Let us recall that if X : (X,r) is an .F-space whose topological dual X,
separates the points of X, its fuöchet envelope,t ir d"firr"d to be the completion
of the space (X,rc), where rc is the strongest locally convex topology on X
which is weaker than r. In fact it is known (see [13]) that rc is equal to the
Mackey topology of the dual pair (X, X'). Since for each locally convex, metrizable
topology ( on X, ()(,€) is a Mackey space, i.e., € coincides with the Mackey
topology of the dual pair (X, Xi) (cf. [12] Chapter IV. 3.4), so the Frdchet envelope
* of. X is up to an isomorphism uniquely defined by
(FE1) * ir . Fb6chet space,

(FE2) there exists a continuous embedding , of X onto a dense subspace of. *,
(FE3) the mapping 7 H 1 o j is a linear isomorphism of *' onto X'.

Theorem 3.7. The space I{(B n) is the fuächet envelope of N.(B").
Proof. Let j be the inclusion mapping of N.(B") into F.(B,). Then (FE2)

holds because of Theorern 2.7 while (FE3) is a consequence of Theorem 8.1 and
[15] Theorem 5.3.
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4. The nuclearity of F.(8") and applications

We recall that a nondecreasing sequence I : {li} is said to be a stable nuclea,t

exponential sequence of finite type if. "uplril'li 
( oo and lim(logj)/7i : 0. For

each such sequence 7 the finite type power series space 
^r(Z) 

is defined to be the
space of all complex sequences * -- {*i} such that

ex(u): sup lcilexp(-7i/fr) < oo for each 't e N

(see [a]). It is well known that Ä1(7) is nuclear.
We say that two sequences 1, 1' ate equivalent (1 - 1') if.

Jj

Proposition 4.L. For every
Är (f L /(n*r) ) . Consequently, if m

"F,.(B") isomorphic to .F,.(B*).

Proof. Let j be any bijectiotof. Zi onto Zq such that j(o) < j(a') whenever

lol < lo'1. It is easily seen that j(o) - lol". Consequently, the operator 7:
ll*(8,) + trr(jt/(n+t); defined bv f(/) :: ic;(/)), where ti(f) :: a"(f) if
j : j(o), is a linear and topological isomorphism.

The second assertion of the proposition immediately follows from the first one

and Proposition 3 in [a].

Theorem 4.2. If n 1rn; there is no complemented subspace of lf-(B")
isomorphic to N.(B-). In particula,r, the spaces N-(B") a.nd N-(B-) are not
isomorphic.

Proof. Suppose that P is a continuous projection of N*(B,) onto its subspace

X isomorphic to N-(B-). P remains continuous if we equip .l[*(B") and X
with their own Mackey topologies. X is complemented in l[.(B"), so the Mackey
topology of X coincides with the topology induced on X by the Mackey topology
of the whole space N*(E}"). Consequently, the extension of P to the Fr6chet
envelope tr..(B") of N.(8") is a continuous projection of .Fi*(B,n) onto the closure
*^ of. X in fl,(B"). Finally X it. subspaceof f'*(El") whichis isomorphicto
X - F*(B*). This contradicts Proposition 4.1.

M. Stoll proved that o.(/) : O("*p(o(a)lo,l"/("+t))) is the best possible

estimate of Fourier coeffi.cients of functions / in .F.(B") (see [15] Theorem 5.1).
We apply the nuclearity of f](B") to show that this estimate is the best possible
one for If-(B").

Proposition 4.4. For each sequence of positive numbers {).} decreasing to
zero there is an f € If"-(B") such that

n € N the space ^F,,*(8") is isomorphic to

sup 
{ 1"" (/) I

exp(-f, lal"l(n+1)) :ae Zi]|-oo.
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Proof. Our proof follows t8] Section 4. Suppose that

o.(f) : O (exp(). laln/(n+1) )

for all / e IV.(B"). Let X be the Banach space of all analytic functions on B,
for which

ll/ll : supla"(/)l exp(-)*lal"/('+t); . *.
It is easily seen that th" tojotogies of X, trL(B,), and tr[.(Bo) are stronger than
the weak topologies defined on these spaces by the continuous linear functionals
f - o.(l), a €Zi. Moreover, X g fl(B") urrd, of course, N.(8") e X. Con-
sequently, both inclusion above mappings have closed graphs, and so, by the closed
graph theorem, they are continuous. Therefore, the topology of X restricted to
N.(8") coincides with the topology induced on JV.(B") by I'.(8") (the strongest
Iocally convex topology on N.(B") which is weaker than the original topology of
N.(8")). Consequently the closure of N-(B") in X is the Fr6chet envelope of
N.(8"). However, this is impossible, because each nuclear Banach space is finite
dimensional.
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