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oN EXTENDED QUASTFUCHSIAN GROUPS

Bernard Maskit

In this paper, we complete our investigation of finitely generated Kleinian
groups that preserve two disjoint open sets. In what follows, G is a finitely gener-

ated Kleinian group. It was shown in [M1] that if G has two invariant components
(of the set of discontinuity), then there is a quasiconformal homeomorphism to,

mapping the extended complex plane, C onto itself, where t-o conjugates G onto
a Fuchsian group (of the first kind). Other proofs of this were given by Kra and
Maskit [KM1], and by Marden [Ma1] and Thurston [T] in the torsion-free case.

This result was then extended by Kra and Maskit [KM2] who showed ihat if G
has exactly two components, [/ and Z, then there is a quasiconformal homeo-
morphism w: Ö -- C , where wGw-t is again Kleinian, and ur maps U onto the
upper half-plane, and -L onto the lower half-plane. Further work in this direction
appears in [M4, p. 316], where it was shown that if G preserves a disc, then G is
a quasiconformal deformation of a Fuchsian group, perhaps of the second kind.

An extend,ed quasifuchsia,n group is a finitely generated Kleinian gro.rlp, d,
with the following property. There are two disjoint, connected, non-empty, open
sets, [/ and Z, both contained in the set of discontinuity O : O(d), where OUL :
Ö, and tl U L is G-invariant. We require further lhat 0U n O(ä) : OL n A(G)
be a disjoint union of countably many topological arcs. In the special case that U
and L-are the upper and lowerhalf-planes, U and L, respectively, then we say
that G is an extended Fuchsian group.-

An extended quasifucJrsian group G contains a subgrorrp, G, called the core,
which preserves both U and Z. It could be that G : G; if not, then G is a
subgroup of index 2.

Observe that the sets [/ and .t are necessarily simply connected. An extended
quasifuchsian group is of the frrst kind if. 0U : ä.t consists only of limit points;
it is of the second J<ind otherwise.

Throughout this paper, we will use the word circle to refer to a Euclidean
circle on Ö. A topological mapping of a circle into Ö wil be referred to as a
Jordan curve.

We will assume, without further mention, that all Kleinian groups are finitely
generated. We will also assume, unless specifically stated otherwise, that all home-
omorphisms are orientation preserving.
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We say that_the Kleinian group, ö, i. u topological deformation of the tbe
Kleiniarr group, .F', if thele is a homeomorphism to: C -+ C-, so that wGw-r : F .

For the special case that G is extended quasifuchsian, and F is extended Fuchsian,
we also require that to(I/) : IJ, and u(L) =1.

Theorem L. Let G be an extended quasifuchsian group. Then there is an
extended Fuchsian group F, so that G i" u topological deformation of F.

In order to prove this theorem, we first classify the extended quasifuchsian
groups of the second kind in terms of their function group signaturesl this appears
as Theorem 2.

Corollary I-. Let G be a
a Jordan ct)rve. Then G is a
gtoup.

Since we can approximate ä[/OO(G) bV smooth arcs, we obtain the following.

Corollary 2. Let G be a frnitely generated l{leinian group which preserves
the Jordan curve, 1 . Then there is a G -invariant curve 1' , arbitrurily cTose to 7 ,
there is an extended Fuchsian group F, a.nd there is a quasicoaforma) homeomor-
phism *; ö -- ö, where wGw-r : F, ancl w(1) is a circle.

By adjoining reflection in the real axis, and then restricting appropriately,
one ca,n go from an extended Fuchsian group to a discrete group of isometries
(including orientation reversing ones) of the hyperbolic plane. Conversely, if one
has a group of isometries of the hyperbolic plane, then one can adjoin reflection
in the real axis, and then restrict to the orientation preserving half, and so obtain
an extended Fuchsian group. These remarks, together with Theorem 1, reduce
the topological classification of the class of extended quasifuchsian groups to the
(known) topological classification of the class of discrete groups of isometries of
the hyperbolic plane. This result is needed for the topological classification of the
panelled groups introduced in [M3], where particular examples were constructed;
this classification will be carried out elsewhere.

Theorem 3. The topological classification of the class of finitely generated
extended quasifuchsian groups is coextensive with the topological classifi.cation of
the class of finitely generated discrete groups of isometries, including orientation
reversing ones, of the hyperbolic plane.

The proof of this theorem appears in Section 5.

L. We now assume that ö is an extend.ed quasifuchsian group of the second
kind. We denote 0U : 0L by 7; this is a countable union of arcs, called boundary
arcs, together with limit points of 6. We consistently orient the boundary arcs
so that U lies on the left as they are traversed in the positive direction. The sets
U a^nd .t are both connected, and G-invariant, hence simply connected.

finitely generated l{leinian group which preserves
topological deformation of an extended Fucås ian
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In general, if ,4 is a boundary arc, then, since the core, G , is finitely generated,

Stab6(,4) is loxodromic (including hyperbolic) cyclic, and Ä is precisely inrmriant
under Stab6(A). The only exceptions to this rule occur if G is elementaryl if G is
finite cyclic, then all of 7 is a G-invariant boundary arc;if G is parabolic cyclic,
then all of 7 except for the parabolic fixed point is a G-invariant boundary arc'

For future reference, we note that since U and L are simply connected, the
boundary arcs are naturally orderqd.

Since G is of the second kind, G, qua Kleinian group, has only one component,
necessarily invariant. Since G is a deformation of a geometrically finite group, it
is also geometrically finite. Hence G it u geometrically finite function group.

2. We next explore the function group signature , : (K,t) of. G (see [M4,
Chapter X]; we will follow the notation of [Ma] throughout). W. know that the
limit set, Å : A(G) : A(G) is a Cantor setl since the structure subgroups are

stabilizers of connected components of Å, every part of K is elementary.
Since Fuchsian groups of the second kind are all obtained from cyclic groups

using combination theorems, the same is true of quasifuchsian groups of the second

kind. We can restate this in terms of signatures.

Proposition 1 [M4, p. 315]. Let G be a quasifucåsian group of the second

kind. Then either G is a Sehottky group (i.e., R conta.tns iust one part of signature
(0,0)), or o has the tollowing two properties:
(i) every part has signature (0,2;a,a),21a1a1and
(ii) /( contains no connectors.

The converse to the above is also true [M4, p. 316]; that is, if the signature
of the function group G satisffes the above properties, then G is quasifuchsian of
the second kind.

Theorem 2. Let G be a geometrically frnite function group of signature
, : (K,t). If G is an exfended quasifuchsian group, then the following hold.
(A) Every pail has ba,sic signature (0,0), or (0,2;a,a) or (0,3;2,2,a),21a

( oo.
(B) Every connector is a 2-connector.
(C) For every part P , at most two specia| points of P a,re endpoints of connectors.

Proof. We have already remarked that every part in the signature of Ö is
elementaryl an equivalent statement is that every structure subgroup is elementary.
We also know that every structure subgroup of G is cyclic. Since the structure
subgroups are maximal subgroups rvith simply connected invariant components,
the intersection of G with a G-structure subgroup is a G-structure subgroup.
Hence every structure subgroup of. G is either cyclic, or a Z2-extension of a cyclic
group. One easily checks the list of elementary groups with at most one limit point
to see that every structure subgroup of G is either trivial, elliptic or parabolic
cyclic, dihedral, or infinite dihedral. This is condition (A):
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We next assume that there are parts P and P', not necessarily distinct, and
that there is an o-connector between P and P' , d > 2. We know [M4, p. 281]

that a special point on a part of signature (0,2;§,0) "* only be connected to
the other special point on that part, and then only when B < x; also, two parts
of signature (0,3; 2,2, oo) cannot have an oo-connector between them. Hence the
only possibilities for there to be an a-connector in If, a ) 2, is that we have
a part P with signature (0,2;a,q),2 < o ( @, with a connector having both
endpoints on P, or that we have two parts P and P'rof. signature (0r3;2r2,a),
2 < a ( oo, and there is an a-connector between them.

In the first case, there is a corresponding subgroup of G generated by an
elliptic element o, of order a, and a loxodromic element, å, where a and ä

commute. Since the fixed points of å lie on Ä(G), so do those of a. Since a
either preserves or interchanges 7 and .L, it has order 2. In the second case, the
resulting group is double dihedral, where again there is an elliptic element of order
o commuting with a loxodromic element. This shows the necessity of (B).

In view of statement (B), the only case we need consider for (C) is that P
has basic signature (0,3; 2,2,2), Let H be a structure subgroup lying over P;
then ä is isomorphic to the Klein 4-group. Since G is a free product of cyclic
groups, If isnotasubgroupof G.Let J:H OG; then"Iiscyclicoforder2.
Since J preserves the topological discs, [/ and .L, it has a fixed point in each of
them; these fixed points necessarily lie in O(G) : O(Ö). An equivalent statement
is that the special point on P corresponding to the fixed points of ..I is not the
endpoint of a connector. o

Easy modifications of the proof of Theorem 1, given below, show that the
above conditions are also sufficient. However, in general, the function group sig-
nature does not suffice to determine the extended quasifuchsian group; that is,
in general, a function group whose signature satisfies the above properties can be
made into an extended quasifuchsian group of the second kind in infinitely many
essentially distinct ways.

3. Our next goal is to understand the relationship between the boundary arcs
and the structure loops.

Let oO be_O(G) with all fixed points of elliptic transformations removed.
Similarly let '§ :'lQG. Let {to1 ,...,uk} be a set of dividers on o5; this is
a set of simple disjoint loops with the property that each w*, when raised to an
appropriate power, lifts to a loop in oO, and, if we adjoin small loops about ihe
speci-al points of ,5, then the covering p: oO -+ oS is the highest regular covering
of ",9 for which these loops, when raised to these powers, lift to loops; we also
require that this set of loops be minimal. (Since every structure subgroup of 6 is
elementary, G contains no accidental parabolic transformations.) The connected
components of the preimages of the dividers in oÖ are the structure loops; each
structure loop is kept precisely invariant either by the identity or by a maximal
elliptic cyclic subgroup. One can reformulate property (B) as saying that each
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divider either lifts to a loop in oO, or its square doesl equivalentlS the stabilizer

of each structure loop is either trivial or cyclic of order 2.

since u and .t are simply connected, no structure loop can lie entirely in
either U or L; i.e., every structure loop crosses a boundary arc.

The following is a vrersion of the planarity theoreml the proof is a variant of

Gromov's proof (see [M4, p. 251 tr.]).

Lemrna 1. For an extended quasifuchsian group of the second kind, the

dividers can be chosen so that every structure loop intercects the set of boundary

arcs at exactly two points.

Proof. It is essentially obvious that zr1(O) is generated by loops having exactly

two points of intersection with boundary arcs, and it is clear that we can choose

theså loops tote geodesics in the Poincar6 metric of oO. Let A be the set of
geod.esics on oÖ having exactly two crossings of boundary arcs, and let ,4 be the

set of projections of loops in A to ",S'
Let to1 be the shortest loop in A. We first observe that ur1 is simple, or a

power of a simple loop. If not, then there are two distinct geodesics, w and w' ,in
Å, both lying over to1 , and having one, and hence two, points of intersection; call

these points of intersection r and y. Then we can write I'trl : U 'V , W' : U' 'V' ,

where, except for direction, all four arcs go between o and y. Since there is no

shorter geodesic than W' (or W') with exactly two crossings of boundary arcs, no

one of these four arcs can be shorter than the other three. Then one of the four
loops U-1 -U', U .V', V.f)', or V-r'V' has the same length as W. Of course

the corresponding geodesic is shorter. This is a contradiction, for all four of these

loops have exactly two points of intersection with boundary arcs. Hence to1 is a
simp_le loop which, when raised to some power (necessarily 1. ot 2),lifts to a loop

in of).

Let If1 be the normal closure of the hornotopy class of u.,1 in ,rr ('§) , together

with appropriate powers of small loops about special points, and let .lf be the

defining subgroup of the covering p: oO --+ o,S; then Nr C lf . If Nr f trf, choose

a loop ti whose homotopy class is in If , but not in y'f1, where tD has only finitely
many crossings of boundary arcs. Then tl, is freely homotopic to a product of
loops which do not cross u1 (see [M4, p. 252]). Then at least one of these loops

also lies in JV, but not in lfr .

Now we can assume that ri, is a loop whose homotopy class lies in .lf , but not

l[r, md that ti' is disjoint from ur1. However, alift W of ti might have several

crossings of bounda.ry arcs. It is clear that we can find two successive points of
intersection of I7 with 1 : 0U, call them r and y, where r and y are successive

points of intersection on both tD and on 71 where we are using the natural ordering

of the boundary arcs. For the sake of arguraent, we can assume that the atc of W
between r and y that contains no other points of intersection with 7 lies in .t '
Find points, r' and At, oa \T n"u, r and y, respectivelS where r' and y' both
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lie in U. Connect a' to y' by an arc in U that does not intersect ff. W" hrrre
now split fz it to a prod.uct of two loops, one has exactly two points of intersection
with 7, and the other has two fewer points of intersection than does trll. Hence
we can also assume that W has exactly two points of intersection with boundary
arcs.

Now define the new class, ,4.1 , of projections to o,§ of geodesics having exactly
two points of intersection with boundary arcs, and disjoint from all lifts of ur1 .

we know that .41 * O;let w2 be the projection of the shortest geodesic in .41;
then ur2 is simple, disjoint from u.,1 , and its homotopy class lies in I[ - ffr .

Define tr[z to be the normal closure of tu1 and to2, together with appropriate
powers of small loops about special points. If .V2 : l[, we are finishedl if not,
then find ul3 as above; etc. Since '§ is topologically finite, this process ends after
finitely many steps. o

4. We are now in a-position to prove Theorem 1. As already remarked, the
theorem was proven for 6 of the first kind in [M1] and [KM2]; hence we need only
consider the case that G is of the second kind. Äfter some fre[minary observa-
tions, the proof is essentially an application of combination theorems. The basic
idea is to write G as a repeated amalgamated free product, HNN-extension, and
free product. Then, using the fact that the structure loops all have exactly two
points of intersection with boundary arcs, reproduce the construction to obtain an
extended F\rchsian group, .F. ttir construction also yields fundamental domains
that are homeomorphic. Then, using the actions of the groups, we obtain a home-
omorphism between O(G) and O(.F). The desired result then follows from the
following.

Extension theorem [M2]. let F and G be geometrically frnite function
groups, artd let ur: o(.F) --+ o(G) be a homeomoryhism that induces a type-
preserving isomorphism of F onto G. Then w is the restriction of a global
homeomorphism; in pa,rticula,r, G is a topological defotmation of F.

we start our proof with the basic groups; these are the elementary groups
with at most one limit point.

Lerrr ytta 2. If G is a basic group (i.e., o
elementary part and no connectors), then G
extended Fuchsian group.

_ (/(, 0), where K has exactly one
is a topological deformation of an

Proof. If G is finite, then it is either cyclic or (finite) dihedral. Also, if ö
has one limit point, then it is either parabolic cyclic, or infinite dihedral. We first
construct the extended Fuchsiau models, to be named F, for these groups.

In general, for the cyclic group of order p, wa normalize so that the fixed
points of F are at Jri, and we let .0 be the outside of the isometric circles; this is
a fundamental domain. There is also one special case of a cyclic group of order 2,
where the non-trivial element interchanges the half-planes. In this case, we choose
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.F to b" generated by z --+ 1.f z, ar'ld we let the unit disc be the fundamental

domain, E.
The extended Fuchsian groups with basic signature (0,3; 2, 2,a), 2 < a < oo

can be normalized so as to be generated by an element a of order a, having its

fixed points at *i , and an element å of order 2, having its fixed points on the

real axis. Normalize so that oo is not a fixed point of any element of order 2, and

so that the fixed points of elements of order 2 lie in the interval l-d,q,with *d
being fixed points; of course, d depends on a. Then the Ford region, .8, has just

two sides; one passes through *i and +d, the other passes through *i and -d'
For the parabolic cyclic group, we choose the generator to be z --+ z *2, and

we let the fundamental domain fr : {z I lRe(z)l < 1} .

The extended Fuchsian group with basic signature (0,3; 2,2, oo) can be nor-

malized to be generated by z --+ z $ 2, and z --+ -z !1.. we choose the set

fr : {, I lnelzll . }} "t a fundamental domain'

If ö is finite cyclic, and every element preserves U and .t, then choose a

geometric generator g for G , and cho-os-e any point fi on .y . Connect o, and all
it. 6 tru.rrrlates, to the fixed points of G by hyperbolic geodesics in both u atd
.L. These form arcs connecting the fixed poinls, and these arcs separate Ö into
regions. Any one of these regions will serve as a fundamental domain, D I note

that g identifies the two sides of G, and that 7 intersects each of the sides in
exactly one point. It is clear that one can map D homeomorphically onto E,
preserving the identifications of the sides, and mapping the directed arc, 7 f\ D,
onto the directed arc of the real axis in E; with this choice, U is mapped onto

U. Now extend using the actions of Ö and .F.

If G is cyclic of order 2, where the non-trivial element interchanges U an{
Z, then draw the geodesics in U and .t between the fixed points. These divide C
into two regionsl either one will serve as a fundamental domain. It is easy to map

this fundamental domain homeomorphically onto the unit disc, while mapping the

directed arc 7 O.Ö onto the appropriate directed arc of the real axis.

If Ö is dihedral, then the core G is finite cyclic. There are lGl half-turns
that interchange U and .L, so they have their fixed points on 7' Draw hyperbolic
lines from the fixed points of G to the fixed points of these half-turns. These arcs

divide C into regionq any on€ of them will serve as a fundamental domain for 6;
pick one and call it b. Let fl, with fundarnental domain E,be the lGl-dihedral
group normalized as above. It is clear that one can map D homeomorphically
onto 6 so that the map is equivariant on the boundaryl that is, the identifications

of 6 on the boundary of b are conjugated into the identifications of F on the

boundary of -ä, and we can choose this map so that the directed arc 7 n D is

mapped onto the directed arc of the real axis inside E. The desired result now

folåws by using the actions of Ö and .F.

If 6-is parabolic cyclic, then choose any point n oD .y other than the fixed

point of ä. Öorrrr"ct r, and all its translates, to the fixed point of d by hyperbolic
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geodesics in both U and .t. These form Jordan curves that divide C into regions.
Pick one of these regions, ca[ it D, and observe that it is a fundamental domain
for G. Now map it homeomorphically onto the fundamental domain .å for the
parabolic cyclic Fuchsian group, F, ro that the identifications on the boundary
are preserved, and so that the directed arc of intersection of 7 with D is mapped
onto the directed arc of the real axis in 6. tt;r yields a homeomorphism of 0(6)
onto O(.F); now apply the extension theorem.

If G is infinite dihedral, then its core G is parabolic cyclic. Exactly as above,
draw hyperbolic lines in [/ and .L from the fixed point of G to the fixed points
of the half-turns in 6, and let D be one of the regions cut out by these eurves.
Let F, with fundamental domai, fr,b. the corresponding infinite dihedral group
acting on IJ and L. As above, *.p D onto .6 preserving the identifications of
the sides, ani mapping the directed arc of. 1 n-p onto- the directed arc of the
real axis in .8. Then extend by the actions of ä and .F, and use the extension
theorem. o

Lemma 3. If K is connected, and t : 0 , then
of an extended Fuchsian group.

c is a topological deformation

Proof. If there are no connectors, then there is only one part P, which either
has signature (0,2;a,a), or (0,312,2,a); i.e., 6 is either parabolic or elliptic
cyclic, or dihedral, including infinite dihedral. These cases are all covered by
Lemma 2.

We next consider the special case that K contains exactly one part P of
signature 10,2;2,2), and there is a connector between the two special points. In
this case G has the form Z * Zz, so G is loxodromic cyclic. The corresponding
extended F\rchsian group can be normalized so as to be generated by z --+ 2z
and z --+ -21 choose the quadrilateral E : {t < lrl < Z} n {ne(z) > 0} as a
fundamental domain.

Let 9 be a generator of G, and let ä g 6 b" u, elliptic element of order 2.
The fixed points of G divide 7 into two arcs Cr and ö. Choose C1 to be the
arc going in the positive direction from the repelling fixed point of g. Choose
a point r on C1, and let y: S@). Use the Poincar6 metric in both U and
.t to construct the orthogonals to the axis of g from both r and y. These
orthogonals form two arcs wh-ich, together with the arcs of the axis of g they
cut off, form a quadrilateral, D, which is a fundamental domain for ä. Map D
onto -8, preserving the identifications of the sides, and mapping b nl, traversed
positively onto the corresponding arc, traversed positively, of the real axis in .6.
Then extend using the actions of the groups to a homeomorphism of o(d) onto
O(-F); then use the extension theorem.

For the general case, where I( is connected and t : 0, rlrite the parts as
Pr, .,., Po, where P* has signature (0,3; 2,2rq*), and there is a 2-counector
between P* and Pm+t. There may or may not also be a 2-connector between
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P, and &; if there is, then the parts form a loop; otherwise, they form a chain.

If there is only one part P, with a connector both starting and ending at P, then
we say that the parts form a loop with n : 1.

We first take up the case that the parts form a chain. Tf n:1, then there is

only one part and no connectors; the desired result is given in Lemma 2. Let Hr
be a structure subgroup lying over P1 ; let 4z be a structure subgroup lying over

P2, where h n H; t ut "ta"t 2, etc. Let Gn-t be the subgroup of d generated

by lr,, ..., Hn-L. 'We can assume that therj is atopological deformation, 9,-1
of. Gn-t onto an extended F\rchsian group, Fn-rt which maps U onto u. There
is also a topological deformatiotr gn, of Hn onto an extended Fuchsian group,

Mn; we need to renormalize gn anl.d Mn.
There is a structure loop W that separates the fixed points of G,r-1 from

those of ä, ; the stabilizer, J , of. w has order 2. one of the topological discs

bounded by W is kept precisely invariant by i in Go-t; call-it C.-Then 9,-1(C)
is a topological disc kept precisely invariant by a subgroup f of Fn-r: Let C be

a circle irrJide p.-r(Cj, *h"r" i is orthogonal to thl real axis and d bounds a

precisely invariant disc. Now normalize Mn so that it still preserves the upper and

iower half-planes, so that .i a Mn, so that one of the fixed points of .t lies on the
boundary of the fundamental dornain for Mn, and so that the other disc bounded
by C is precisely invariant under i in Mn. Then by the first combination theorem

[M4, p. 149 ff.], Fr: (Fn-1,M,) is K1einian, and of course it preserves the real
axis.

Since grr-1 and g, are both orientation preserving, and both map [/ onto
U, they both map W orto curves with the same orientation, and these curves

both cross the real axis at exactly two points. It follows that we can deform g,r-r
so that it maps W orrto C, while still mapping U onto IJ, and mapping the
disc precisely invariant under J in Gn4 onto the corresponding disc precisely

invariant under I in Fn-1. Similarly, we can deform gn so that it also maps 77

onto i, while mapping U onto IJ, and mapping the disc precisely invariant under
i in H. onto the corresponding disc precisely invariant under I in Mn. Since

both maps have the same orientation on W , and they both homeomorphically
rnap W onto C, we ca'rr deform gn in a neighborhood of W ' so that the two
maps agree on W. It is standard (see JM4, p. 2-99 tr]) to replace gn-r a\d
gn by-a single homeomorphism, ry',r: O(G") * O(f;), where ry'o conjugates G,,

onto Hn, while mapping U onto U. Then, by the extension theorem, ry', can be

extended to a topological deformation.
The last case to be considered is that the n parts form a loop. In this

case, there is an additional connector between the other 2-point on Pl , and the
other 2-point on P," . Let Gn and .F, be as above. Then there is a topological
deformation $n from Gn_onto.F,, where ,lr"(U): IJ. There are also structure
loops 7[ atd Wz in O(G"), each haviug exactly two points of intersection with
boundary arcs, and each bounding a disc that is precisely invariant under the

61
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appropriate cyclic subgroup of order 2. There is also an element g e G mapping
the interior of the disc bounded by l[ onto the exterior of the disc bounded
by Wr. There are two possibilities: either f preserves both U and L, or fr
interchanges theml if necessarg we compose f with one of the elliptics of order 2,
so that f preserves both U and .t. We take the images of these two discs under
1bn, Md draw small precisely invariant circles Cr and C2 inside them, where Ö1
and C2 are both orthogonal to the real axis. Since trUr ar,d Wz each has exactly
two crossings with boundary arcs, we can deform {n so that it maps ll{r. onto
C-, while still mapping U onto ]J. Now choose an element /-, mapping the
inside of C1 onto the outside of C2, and preservilg U and L. It is automatic
that / ofi o f-1 : iz, where i- generates Stab(C-). Now deform ry', further
near d1 so that tb"oilW: f otbnlwl. If is now straightforwardLsee [V+, p.
299 tr.]) to restrict ,bo to an appropriate fundamental domain for d : LG*,i\,
and extend using the group actions, to obtain a homeomorphism of O(G) onto
O(.F'). Again, the extension theorem shows that this has an extension to 0 . o

Lemma 3 yields Theorem 1 in the case that there are no l-dividers; i.e., I(
is connected, and f : 0. We now come to the induction step on the number of
1-dividers.

We first consider the case that every L-divider is dividing (then t : 0). Let
W be a l-structure loop, and let A be the set of translates of W . Let .81 and r?2
be the regions of the complement of A o.-n either side of W . Let G* : Stab(.R- ).
Since the projection of I4z divides ^9, 61 and G2 are not conjugate in G.'Also,
as in [M4, p. 285 ff.], the signature o* of G* h.s the form o* : (K*,0), where
I!* is a disjoint union of connected components of -I(, with r(r * Kz : K. Let
F* be an extended Fuchsian group which is a topological deformation of ö*. L.t
?* be the global homeomorphism conjugating G* onto .F-. Looking at ö*,
I'7 bounds a disc C* lhat is precisely invariant under the identity. Let G* be
a circular disc inside the topological djsc a*(c*\, where 0* i, orthogonal to
the real axis. Now normalize .fl and .F2 so that 0 :0, - 0r, and so thut th"
two precisely invariant discs are on opposite sides of C. Since ?I intersects 7
at exactly two points, we can deform gm so that it maps IrZ onto i, while still
mapping U onto U. We further deform 9a1, still mapping U onto U, so that
prlW : g2lw. FinallS as above, we. define a single homeomorphism g on an
appropriate-funda_mental domain for Ö, then extend to o(G) using the actions
of Ö and F: (Fr,-F2), and finally extend to the limit sei using the extension
theorem.

In the final case, let wt be a l-structure loop whose projection is a non-
dividing 1-divider. As above, let .4 be the set of translates of tr4lr. Let B1 and
R2 be the regions cut out by "4 on either side of W1, and let H* : Stab(lV-). In
this case, there is a transformation f € G mapping A1 onto Rz;let Wz: g(W),
R : Rz, and Ös - Hz. There are exactly iwo possibilities: eithe, g prlr"rr",
both [/ and L, or it interchanges thern. It was shown in [M4, p. 2g5 ff.] that
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the signaturc of Gs is (I(,t - 1.). Hence we car] assume that there is an extended

Fuchslan group .Fo, ""a there is a topological deformation g of do onto -Fo,

where g(u) : u. 'we note th3t w ayd wz bound discs that are precisely

invariant under the identity in Go. Let 0r and. Cz be circles, where i* lies-in
the image under g of the precisely invariant disc bounded'by W*, and where i-
is orthogonal to the real axis. Since I,[ and Wz each intersects 7 at exactly two
points, we carl deform g so that it maps W* onto C*, while still mapping 

^U 
onto

U. Find a transformation / mapping the outside of 61 onto the inside of C2, and
either preserving U and L, or interchanging them, according as f preserves U
arrd L, or interchanges them. Then deform g further so that f "PlWt:9o§lWt,
and proceed as above. o

5. We now turn to the proof of Theorem 3. Let G be an extended quasi-

fuchsian group, with core Gs, and let g be some element of G interchanging the
upper and lower regions. We saw above that G is a deformation of an extended

F\rchsian group, F. We normalize .F, so that it acts on the real axis, and we denote

reflection in the real axis by *. I,et fr : (F,*), the-group generated by .t, and *,
and let .F' b" th" subgroup of .F that preserves H2. Then tr' is a discrete group
of isometries of fI2.

We need to show that the topological type of H' /i is determined by G. To
this end, it suffices to assume that G and tr, are extended Fuchsiangroups, where

.F' is a deformation of G. That is, there is a a homeomorphism p,9- §, where
p preserves the upper half-plane, ald conjugatel G onto -F. Let G-(F) be the
group (G, *) ( (4 *)), and let G g> be the II2 preserving half of G @).

Let $ - * o g o* o g-71 note that its restriction to H2 is an orientation
preserving homeomorphism which commutes with every element of .F'. Hence,

by the Bers-Greenberg theorem [BG] (see also Marden [M"]), r/lH2 is invariantly
isotopic to the identity in the complement of the fixed points of the elliptic elements
of .F'. Equivalentlg * and g o * o g-r are invariantly isotopic as maps from
the complement of the elliptic fixed points of F in the lower half-plane to the
complement of the elliptic fixed points of F in the upper half-pIane. It follows that
if f e F interchanges the upper and lower half-planes, then /o,r ar,d f ogo*og-r
project to homotopic maps of H2 modulo the orientation preserving half of .F,
from which it follows that Hz /F ail, Hz lgFg-r are homeomorphic.

Conversely,^ if .F is a finitely generated discrete group of isometries o{ flz ,

then s-et F: (F,+) , and let f'be the orientation preserving half of -F'. Observe
that F is an extended Fuchsian group. tr
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