THE LOWER BOUND OF THE MAXIMAL DILATATION OF THE BEURLING-AHLFORS EXTENSION

Li Zhong

1. Introduction

An increasing continuous function h defined on an interval $I \subset \mathbf{R}^1$ is ϱ quasisymmetric on I if

(1)
$$\varrho^{-1} \le \frac{h(x+t) - h(x)}{h(x) - h(x-t)} \le \varrho$$

for all x and t > 0 such that $[x - t, x + t] \subset I$.

A well-known result due to Beurling and Ahlfors [1] states that the map $f_{h,r}$ defined by

(2)
$$f_{h,r}(z) = \frac{1}{2} \left[\alpha(z) + \beta(z) + ir(\alpha(z) - \beta(z)) \right],$$

where r > 0,

(3)
$$\alpha(z) = \int_0^1 h(x+yt) dt, \quad \beta(z) = \int_{-1}^0 h(x-yt) dt, \quad z = x+iy,$$

is a quasiconformal extension of h to the upper half-plane H if h is ρ -quasisymmetric on \mathbb{R}^1 . Such a map $f_{h,r}: H \to H$ is called a Beurling-Ahlfors extension of h. Beurling and Ahlfors proved that if h is ρ -quasisymmetric on \mathbb{R}^1 , there is a number r > 0 such that the maximal dilatation $K[f_{h,r}] \leq \rho^2$. This estimation has been replaced by

$$K[f_{h,1}] \le 8\varrho, \quad K[f_{h,1}] \le 4.2\varrho, \quad \text{and} \quad K[f_{h,1}] \le 2\varrho$$

due to T. Reed [8], Li Zhong [7] and M. Lehtinen [3], respectively. M. Lehtinen [4] even proved that $K[f_{h,r}] \leq 2\rho - 1$ for some r > 0.

In this paper, the lower bound of $K[f_{h,r}]$ will be examined. We denote

$$K_{\varrho} := \sup_{h \in S_{\varrho}} \left\{ \inf_{r > 0} K[f_{h,r}] \right\},$$

where S_{ϱ} is the set of all ϱ -quasisymmetric functions on \mathbb{R}^{1} . We shall give an example of a ϱ -quasisymmetric function h such that

$$K[f_{h,r}] \ge (2\varrho+1)\left(1-\frac{1}{\sqrt{\varrho}}\right)$$

for every r > 0. This implies the following theorem.

doi:10.5186/aasfm.1990.1522

Li Zhong

Theorem. We have $K_{\varrho} \geq (2\varrho + 1)(1 - 1/\sqrt{\varrho})$ for every $\varrho \geq 1$.

This result tells us that the coefficient of ρ in a linear upper bound of $K[f_{h,r}]$ generally cannot be smaller than 2. This means that the above results by Lehtinen are sharp in a certain sense.

By this theorem and the results of Lehtinen, we have

Corollary. We have $\lim_{\rho \to \infty} K_{\rho}/\rho = 2$.

2. Piecewise linear quasisymmetric functions

To give a special ρ -quasisymmetric function, we need some lemmas on piecewise linear quasisymmetric functions.

Lemma 1. Let $E \subset [0,1]$, $\{0,1\} \subset E$, be a set of finite points and $h: [0,1] \rightarrow [0,1]$, h(0) = 0, h(1) = 1, be increasing and continuous on [0,1] and linear on each interval in $[0,1] \setminus E$. If (1) is true for all x and t > 0 such that $\{x-t, x, x+t\} \cap E$ has at least two points, then h is ϱ -quasisymmetric on [0,1].

This lemma is proved by Hayman and Hinkkanen ([2]).

Noting that h is ρ -quasisymmetric if and only if $f \circ h \circ g$ is ρ -quasisymmetric when f and g are increasing linear functions, Lemma 1 can easily be generalized to the following statement:

Lemma 1'. Let $E \subset [a,b]$, $\{a,b\} \subset E$, be a set of finite points and $h: [a,b] \to [c,d]$, h(a) = c, h(b) = d, be increasing and continuous on [a,b] and linear on each interval in $[a,b] \setminus E$. If (1) is true for all x and t > 0 such that $\{x-t, x, x+t\} \cap E$ has at least two points, then h is g-quasisymmetric on [a,b].

Lemma 2. Let $E \subset \mathbf{R}^1$ be a set of n points and $h: \mathbf{R}^1 \to \mathbf{R}^1$ be increasing and continuous on \mathbf{R}^1 and linear on each interval in $\mathbf{R}^1 \setminus E$. Suppose that (1) is true for all x and t > 0 such that $\{x - t, x, x + t\} \cap E$ has at least two points and

(4)
$$\varrho^{-1} \le \lim_{x \to +\infty} \frac{h(x)}{-h(-x)} \le \varrho.$$

Then h is ρ -quasisymmetric on \mathbf{R}^1 .

Proof. Without any loss of generality, we may assume that $n \ge 2$. For if n = 1, the condition (4) implies that h is ρ -quasisymmetric on \mathbb{R}^1 . Suppose that $E = \{x_1, x_2, \ldots, x_n\}$ with $x_1 < x_2 < \cdots < x_n$. Let A be a sufficiently large number and $E' = E \cup \{-A, A + 2x_1\}$.

To prove that h is ϱ -quasisymmetric on \mathbb{R}^1 , it is sufficient to show that h is ϱ -quasisymmetric on $[-A, A + 2x_1]$ for any sufficiently large A. By Lemma 1', we should only check whether (1) is true for all x and t > 0 such that $\{x - t, x, x + t\} \cap E'$ has at least two points. But we have supposed that (1) is true for all x

and t>0 such that $\{x-t,x,x+t\}\cap E$ has at least two points. So it is sufficient to show that

(5)
$$\varrho^{-1} \le \frac{h(A+2x_1) - h(x_1)}{h(x_1) - h(-A)} \le \varrho,$$

(6)
$$\varrho^{-1} \le \frac{h(A+2x_1)-h(x_j)}{h(x_j)-h(2x_j-A-2x_1)} \le \varrho,$$

and

(7)
$$\varrho^{-1} \le \frac{h(A+2x_j)-h(x_j)}{h(x_j)-h(-A)} \le \varrho$$

for all $j = 2, \ldots, n$.

For any given $x_j \in E$, we look at the function $\varphi_j(t) = [h(x_j + t) - h(x_j)]/[h(x_j) - h(x_j-t)]$. Obviously, when $t > \tau_j = \max\{|x_l - x_j| | l = 1, ..., n\}$, $\varphi'_j(t)$ keeps its sign. Hence if $\varphi'_j(t) > 0$ as $t > \tau_j$,

(8)
$$\varphi_j(\tau_j) \le \frac{h(x_j+t) - h(x_j)}{h(x_j) - h(x_j-t)} \le \lim_{n \to +\infty} \varphi_j(\eta),$$

and if $\varphi'_j(t) < 0$ as $t > \tau_j$,

(9)
$$\lim_{\eta \to +\infty} \varphi_j(\eta) \le \frac{h(x_j + t) - h(x_j)}{h(x_j) - h(x_j - t)} \le \varphi_j(\tau_j),$$

for j = 1, 2, ..., n. Since h is increasing and linear on (x_n, ∞) and $(-\infty, x_1)$, $h(x) \to +\infty$ as $x \to +\infty$ and $h(x) \to -\infty$ as $x \to -\infty$. Hence

$$\lim_{\eta \to +\infty} \varphi_j(\eta) = \lim_{x \to +\infty} \frac{h(x)}{-h(-x)}$$

for j = 1, 2..., n. By (4) we have

(10)
$$\varrho^{-1} \leq \lim_{\eta \to +\infty} \varphi_j(\eta) \leq \varrho, \qquad j = 1, 2, \dots, n.$$

From (8), (9) and (10) we see that if

(11)
$$\varrho^{-1} \leq \varphi_j(\tau_j) \leq \varrho, \qquad j = 1, 2, \dots, n,$$

then

$$\varrho^{-1} \leq \frac{h(x_j+t)-h(x_j)}{h(x_j)-h(x_j-t)} \leq \varrho, \qquad j=1,2,\ldots,n,$$

Li Zhong

for $t > \max{\tau_1, \tau_2, \ldots, \tau_n}$, and hence (5), (6), and (7) hold. It remains to prove (11).

Since n > 1, τ_j is positive for j = 1, 2, ..., n. Then we see that $\{x_j - \tau_j, x_j, x_j + \tau_j\} \cap E$ has at least two points. By the assumption of the lemma, (11) is true. The lemma is proved.

For any $s \ge 1$, we define a function h_s as follows: (12)

$$h_s(x) := \begin{cases} 1+s(x-1) & \text{as } x \ge 1, \\ s(1+s)^{-1}+s^{-1}\left(x-(1+s)^{-1}\right) & \text{as } (1+s)^{-1} \le x \le 1, \\ sx & \text{as } -s(1+s)^{-1} \le x \le (s+1)^{-1}, \\ -s^2(1+s)^{-1}+s^3\left(x+s(1+s)^{-1}\right) & \text{as } -1 \le x \le -s(1+s)^{-1}, \\ -s^2+s(x+1) & \text{as } x \le -1. \end{cases}$$

We are now going to show that h_s is an s^2 -quasisymmetric function. This quasisymmetric function will be used to prove the main theorem in the next paragraph.

Let $E = \{-1, -s(1+s)^{-1}, (1+s)^{-1}, 1\}$. Obviously, there are $3 \times C_4^2 = 18$ cases in each of which $\{x - t, x, x + t\} \cap E$ has at least two points. We omit three cases $\{x - t, x, x + t\}$ that are on the same interval in $\mathbb{R}^1 \setminus E$. For all remaining cases, one may check (1) directly by simple computation. By Δ we denote $[h_s(x+t) - h_s(x)] / [h_s(x) - h_s(x-t)]$. Then we have $Case 1: x = (1+s)^{-1}, x + t = 1$. Then $\Delta = s^{-2}$. $Case 2: x - t = (1+s)^{-1}, x = 1$. Then $\Delta = s$.

Case 3: $x=-s(1+s)^{-1},\;x+t=1.$ Then $\Delta=(s^2+s+1)/(s^3+2s)$ and $s^{-2}\leq\Delta\leq 1.$

Case 4: $x-t = -s(1+s)^{-1}$, x+t = 1. Then $\Delta = (s+2)/(2s^2+s)$ and $s^{-2} \leq \Delta \leq 1$.

Case 5: $x - t = -s(1+s)^{-1}$, x = 1. Then $\Delta = (2s+1)/(s^2+s+1)$ and $s^{-1} \leq \Delta \leq 1$.

Case 6:
$$x = -1$$
, $x + t = 1$. Then $\Delta = (s^2 + 1)/2s$ and $1 \le \Delta \le s$.
Case 7: $x - t = -1$, $x + t = 1$. Then $\Delta = s^{-2}$.
Case 8: $x - t = -1$, $x = 1$. Then $\Delta = 2s/(s^2 + 1)$ and $s^{-1} \le \Delta \le 1$.
Case 9: $x = -s(1 + s)^{-1}$, $x + t = (1 + s)^{-1}$. Then $\Delta = s^{-1}$.
Case 10: $x - t = -s(1 + s)^{-1}$, $x = (1 + s)^{-1}$. Then $\Delta = s^{-2}$.
Case 11: $x = -1$, $x + t = (1 + s)^{-1}$. Then $\Delta = (s^2 + s + 1)/(s + 2)$ and $1 \le \Delta \le s$.
Case 12: $x - t = -1$, $x + t = (1 - s)^{-1}$. Then $\Delta = (s + 2)/(2s^2 + s)$ and $s^{-2} \le \Delta \le 1$.

Case 13: x - t = -1, $x = (1 + s)^{-1}$. Then $\Delta = s^2$.

Case 14: x = -1, $x + t = -s(1 + s)^{-1}$. Then $\Delta = s^2$. Case 15: x - t = -1, $x = -s(1 + s)^{-1}$. Then $\Delta = s^{-2}$.

Therefore we have

(13)
$$s^{-2} \leq \frac{h_s(x+t) - h_s(x)}{h_s(x) - h_s(x-t)} \leq s^2$$
 for cases 1) - 15).

Moreover, we easily see that

(14)
$$\lim_{x \to +\infty} \frac{h_s(x)}{-h_s(-x)} = 1.$$

From (13) and (14), we can conclude by Lemma 2 that h_s is s^2 -quasisymmetric on \mathbb{R}^1 .

3. The proof of the main result

The quasisymmetric function h_s constructed in the previous paragraph has some special properties. Obviously,

(15)
$$h_s(0) = 0, \quad h_s(1) = 1, \quad h_s(-1) = -s^2.$$

By a simple computation, we get

(16)
$$\int_0^1 h_s(t) dt = \frac{s}{s+1}, \qquad \int_{-1}^0 h_s(t) dt = -\frac{s^2}{1+s}.$$

Using these properties one obtains a lower estimate of K_{ϱ} .

We denote h_s by h and s^2 by ϱ . Then h is a ϱ -quasisymmetric function on \mathbf{R}^1 . Let $f_{r,h}$ be the Beurling-Ahlfors extension of h. The dilatation of $f_{h,r}$ at i is denoted by D_r . Setting $\xi = \alpha_y(i)/\alpha_x(i), \ \eta = -\beta_y(i)/\beta_x(i), \ \zeta = \alpha_x(i)/\beta_x(i),$ we get

(17)
$$D_r + D_r^{-1} = a(\xi, \eta, \zeta)r + b(\xi, \eta, \zeta)/r,$$

where

$$\begin{aligned} a(\xi,\eta,\zeta) &= \left[(\zeta-1)^2 + (\zeta\xi+\eta)^2 \right] / \left[2\zeta(\xi+\eta) \right] \\ b(\xi,\eta,\zeta) &= \left[(\zeta+1)^2 + (\zeta\xi-\eta)^2 \right] / \left[2\zeta(\xi+\eta) \right]. \end{aligned}$$

From (15) and (16) one obtains

(18)
$$\zeta = -1/h(-1) = s^{-2},$$

Li Zhong

(19)
$$\xi = 1 - \int_0^1 h(t) \, dt = (1+s)^{-1},$$

(20)
$$\eta = 1 + \zeta \int_{-1}^{0} h(t) dt = \frac{s}{1+s}$$

Hence we have

(21)
$$D_r + D_r^{-1} \ge \left(a(\xi, \eta, \zeta) \cdot b(\xi, \eta, \zeta)\right)^{1/2}$$

$$\frac{1}{\left(\left((\zeta - 1)^2 + (\zeta \xi + r)^2\right)\left((\zeta + 1)^2 + (\zeta \xi - r)^2\right)\right)^{1/2}}$$

$$= \frac{1}{\zeta(\xi+\eta)} \left(\left((\zeta-1)^2 + (\zeta\xi+\eta)^2 \right) \left((\zeta+1)^2 + (\zeta\xi-\eta)^2 \right) \right) \\= s^2 \left(\left(\left(\frac{1}{s^2} - 1\right)^2 + \left(\frac{1}{s^2(s+1)} + \frac{s}{s+1}\right)^2 \right) \left(\left(\frac{1}{s^2} + 1\right)^2 + \left(\frac{1}{s^2(1+s)} - \frac{s}{1+s}\right)^2 \right) \right)^{1/2} \\= \frac{1}{s^2} \left(\left((s^2-1)^2 + \left(\frac{1+s^3}{1+s}\right)^2 \right) \left((s^2+1)^2 + \left(\frac{s^3-1}{1+s}\right)^2 \right) \right)^{1/2} .$$

Noting that

$$\frac{s^3 - 1}{s + 1} \ge s^2 - s$$
 and $\frac{s^3 + 1}{s + 1} = s^2 - s + 1$

one obtains

$$(s^{2}-1)^{2} + \left(\frac{s^{3}+1}{s+1}\right)^{2} = 2s^{4} - 2s^{3} + s^{2} - 2s + 2,$$
$$(s^{2}+1)^{2} + \left(\frac{s^{3}-1}{s+1}\right)^{2} \ge 2s^{4} - 2s^{3} + 3s^{2} + 1,$$

and hence

$$(22) \quad D+D^{-1} \ge \frac{1}{s^2} \Big((2s^4 - 2s^3 + s^2 - 2s + 2)(2s^4 - 2s^3 + 3s^2 + 1) \Big)^{1/2} \\ = \frac{1}{s^2} \Big(4s^8 - 8s^7 + 12s^6 - 12s^5 + 13s^4 - 12s^3 + 7s^2 - 2s + 2 \Big)^{1/2} \\ = \frac{1}{s^2} \Big((2s^4 - 2s^3 + 2s^2 - s)^2 + 5s^4 - 8s^3 + 6s^2 - 2s + 2 \Big)^{1/2}.$$

Setting $P(s) = 5s^4 - 8s^3 + 6s^2 - 2s + 2$, one computes

 $P(1) = 3 > 0, \quad P'(1) = 6 > 0, \quad P''(s) = 60s^3 - 48s + 12 \ge 0 \text{ as } s \ge 1,$ and hence P(s) > 0 as $s \ge 1$. Then we have

(23)
$$D + D^{-1} > \frac{1}{s^2} (2s^4 - 2s^3 + 2s^2 - s) = 2s^2 - 2s + 2 - \frac{1}{s}.$$

Since $D^{-1} \leq 1$, we immediately obtain

$$D > 2s^{2} - 2s + 1 - s^{-1} = (2s^{2} + 1)(1 - s^{-1}).$$

Replacing s by $\sqrt{\varrho}$, we get

(24)
$$D > (2\varrho + 1)(1 - 1/\sqrt{\varrho})$$

and $K_{\varrho} > (2\varrho + 1)(1 - 1/\sqrt{\varrho})$. The main theorem is proved.

80

Some remarks: 1. The author suggested another piecewise linear quasisymmetric function on \mathbf{R}^1 which is similar to h_s in this paper but more complicated. Li Wei and Liu Yong computed the maximal dilatation of its Beurling-Ahlfors extension ([6]) and got an asymptotic estimate.

2. There are some other results on the lower bound of K_{ϱ} . For instance, $K_{\varrho} \geq 1.587\varrho$ for large ϱ ([7]); $K_{\varrho} \geq 3\varrho/2$ for every $\varrho \geq 1$ and $\lim_{\varrho \to +\infty} K_{\varrho}/\varrho \geq 1.5625$ ([4]); $K_{\varrho} > 8\varrho/5$ for $\varrho > 7$ and $\lim_{\varrho \to +\infty} K_{\varrho}/\varrho \geq 1.765625$ ([5]).

References

- BEURLING, A., and L.V. AHLFORS: The boundary correspondence under quasiconformal mappings. - Acta Math. 96, 1956, 125-142.
- HAYMAN, W., and A. HINKKANEN: Distortion estimates for quasisymmetric functions. -Ann. Univ. Mariae Curie-Sklodowska Sect. A 36-37, 1982, 51-67.
- [3] LEHTINEN, M.: The dilatation of Beurling-Ahlfors extensions of quasisymmetric functions.
 Ann. Acad. Sci. Fenn. Ser. A I Math. 8, 1983, 187–192.
- [4] LEHTINEN, M.: Remarks on maximal dilatation of the Beurling-Ahlfors extension. Ann. Acad. Sci. Fenn. Ser. A I Math. 9, 1984, 133-139.
- [5] LEHTINEN, M.: On maximal and minimal quasisymmetric functions on an interval. Ann. Acad. Sci. Fenn. Ser. A I Math. 12, 1987, 77-84.
- [6] LI WEI and LIU YONG: On dilatation of the Beurling-Ahlfors extension of a quasisymmetric function. Adv.in Math. 15, 1986, 419-426 (Chinese).
- [7] LI ZHONG: On the Beurling-Ahlfors extension. Acta Math. Sinica 26, 1983, 279-290 (Chinese).
- [8] REED, T.: Quasiconformal mappings with given boundary values. Duke Math. J. 33, 1966, 459-464.

Peking University Mathematics Department Beijing 100871 China

Received 22 February 1989