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THE LOWER BOUND OF THE MAXIMAL DILATATION
OF THE BEURLING-AHLFORS EXTENSION

Li Zhong

1. Introduction

An increasing continuous function h defined on an interval I C R! is p-
quasisymmetric on I if

_1 _ h(z+1t)—h(x)
(1) - < WT) <o

for all z and ¢t > 0 such that [z —t,2 +t] C I.
A well-known result due to Beurling and Ahlfors [1] states that the map f4 .
defined by

(2) Far(2) = §a(2) + B(2) + ir(alz) = B(2))],

where r > 0,

(3) a(z) = /0 l h(z +yt)dt, B(z)= /

0
h(z —yt)dt, z==z+1y,
1

is a quasiconformal extension of h to the upper half-plane H if h is ¢-quasisym-
metric on R'. Such a map fi,: H — H is called a Beurling-Ahlfors extension
of h. Beurling and Ahlfors proved that if h is p-quasisymmetric on R, there is
a number r > 0 such that the maximal dilatation K[fj ] < 0*. This estimation
has been replaced by

K(frn1] <80, Kl[fr1] <420, and K[fp:1] <20

due to T. Reed [8], Li Zhong [7] and M. Lehtinen [3], respectively. M. Lehtinen [4]
even proved that K[fs ] <20 —1 for some r > 0.
In this paper, the lower bound of K[fs ] will be examined. We denote

K, := ::E{gg K(fnrl}s

where S, is the set of all p-quasisymmetric functions on R!. We shall give an
example of a p-quasisymmetric function h such that

Kifa] 2 2o+ 1)1~ )

for every r > 0. This implies the following theorem.
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Theorem. We have K, > (20 + 1)(1 - 1/,/p) for every p > 1.

This result tells us that the coefficient of ¢ in a linear upper bound of K[fj ,]
generally cannot be smaller than 2. This means that the above results by Lehtinen
are sharp in a certain sense.

By this theorem and the results of Lehtinen, we have

Corollary. We have lim,_. K,/0 = 2.

2. Piecewise linear quasisymmetric functions

To give a special g-quasisymmetric function, we need some lemmas on piece-
wise linear quasisymmetric functions.

Lemmal. Let E C [0,1], {0,1} C E, be a set of finite points and h: [0,1] —
[0,1], R(0) = 0, h(1) = 1, be increasing and continuous on [0, 1] and linear on each
interval in [0, 1]\ E. If (1) is true for all = and t > 0 such that {z —t,z,z+t}NE
has at least two points, then h is g-quasisymmetric on [0,1].

This lemma is proved by Hayman and Hinkkanen ([2]).

Noting that h is g-quasisymmetric if and only if fohog is p-quasisymmetric
when f and g are increasing linear functions, Lemma 1 can easily be generalized
to the following statement:

Lemma 1'. Let E C [a,b], {a,b} C E, be a set of finite points and
h: [a,b] — [e,d], h(a) = ¢, h(b) = d, be increasing and continuous on [a, b]
and linear on each interval in [a,b]\ E. If (1) is true for all z and t > 0 such that
{z —t,z,24+t} N E has at least two points, then h is 0-quasisymmetric on [a,b].

Lemma 2. Let E C R' be a set of n points and h: R! — R! be increasing
and continuous on R! and linear on each interval in R! \ E. Suppose that (1) is
true for all x and t > 0 such that {x —t,z,z+t} N E has at least two points and

(4) o7t < lim % <e

Then h is o-quasisymmetric on R!.

Proof. Without any loss of generality, we may assume that n > 2. For if
n = 1, the condition (4) implies that h is p-quasisymmetric on R!. Suppose
that E = {z1,22,...,2,} with ; <2y <---<z,,. Let 4 be a sufficiently large
number and E' = EU{—A, 4 + 22} .

To prove that % is p-quasisymmetric on R, it is sufficient to show that A is
0-quasisymmetric on [—A, A + 22;] for any sufficiently large A. By Lemma 1’ ,
we should only check whether (1) is true for all z and t > 0 such that {z — t,z,
z+t}NE’ has at least two points. But we have supposed that (1) is true for all z
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and t > 0 such that {z —¢,z,z 4+ ¢} N E has at least two points. So it is sufficient
to show that

-1 ¢ h(A + 2z1) — h(zy)

(5) SR 5@
1 h(A + 2z1) — h(z;)
©) O S e, —h(Zs, —A-2ay) =@
and
-1 h(A+2z;) — h(z;)
(M O S e = heA) <o

forall j =2,...,n.

For any given z; € E, we look at the function ¢;(t) = [h(:vj +t) —
h(z;)]/[h(zj) —h(z;j—t)]. Obviously, when t > 7; = max{|zi—z;||l=1,...,n},
©'(t) keeps its sign. Hence if ¢}(t) > 0 as t > 7;,

® oi(r) < GO <t o)

n—+o0o

and if }(t) <0 as ¢t > 7,

0 A0 S R < S P

for j = 1,2,...,n. Since h is increasing and linear on (zn,00) and (—o0,z1),
h(z) — 400 as ¢ — +oo and h(z) —» —o0 as * — —oo. Hence

m ei(n) = lim —_%
for j =1,2...,n. By (4) we have
(10) ot < Jm i <e  i=12....n
From (8), (9) and (10) we see that if
(11) o7l <pi(ry) <o, j=12,...,n,
then
ot < Mei 1) = hlz) i=12.. ..n,

= R(e) =R -0 =
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for t > max{7,72,...,Tn}, and hence (5), (6), and (7) hold. It remains to prove
(11).

Since n > 1, 7; is positive for j = 1,2,...,n. Then we see that {z; —
Tj,&j,zj + 7j} N E has at least two points. By the assumption of the lemma, (11)
is true. The lemma, is proved.

For any s > 1, we define a function h, as follows:

(12)

1+s(z—1) as x> 1,
s(1+s) P +s(z—(1+s)71) as(1+s) ' <z<1,
he(z) :={ sz as —s(1+s) 1<z <(s+1)7L,
—s2(14+s) 7+ (z+s(1+5)7!) as—-1<z<—s(14s)7,
—s? +s(z+1) asz < —1.

We are now going to show that h, is an s?-quasisymmetric function. This
quasisymmetric function will be used to prove the main theorem in the next para-
graph.

Let E = {-1,—s(1+s)71,(1+s)7!,1}. Obviously, there are 3 x C7 = 18
cases in each of which {z — t,z,z 4+ t} N E has at least two points. We omit
three cases {z — t,z,z + t} that are on the same interval in R!\ E. For all

remaining cases, one may check (1) directly by simple computation. By A we
denote [hy(z +t) — hy(z)]/[hs(z) — hs(z — t)] . Then we have

Case1: t=(1+s) ', c+t=1. Then A = s72.
Case2: t —t=(1+s)"!, 2=1. Then A =s.

Case 3: ¢ = —s(1+s)™', 2+t =1. Then A = (s2 +s+1)/(s® + 2s) and
sT2<AL.

Case4: z —t=—s(1+s)”', s+t =1. Then A = (s +2)/(2s®> + s) and
sTE<AKLI.

Case 5: ¢ —t = —s(1+s)™!, 2 =1. Then A = (2s+1)/(s> + s+ 1) and
sTI<AL.

Case 6: 2 =—1, x+t=1. Then A =(s>+1)/2s and 1 < A <s.
Case 7: ¢ —t=—1,z+t=1. Then A = s~2.

Case 8: z —t=—1,z=1. Then A =2s/(s*+1) and s! <A <1.
Case 9: z = —s(1+s)"', 2 +t=(1+s)"!. Then A =s"1.

Case 10: ¢ —t=—s(1+s)™!, 2= (1+3s)"!. Then A =s"2,

Case 11: ¢ = -1, v+t = (1+s)"'. Then A = (s2 +s+1)/(s + 2) and
1<A<s.

Case 12: ¢ —t= -1, z+t=(1-s)"'. Then A = (s +2)/(2s®> + s) and
sT2<ALI.

Case 13: z —t=—1, 2 = (1 +s)"'. Then A = s2.
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Case 14: z = —1, z+t = —s(1 +s)7!. Then A = s2.
Case 15: t —t = —1, 2 = —s(1 +s)7!. Then A =s72.

Therefore we have

—2  hs(z +1) = Rhs(2) 2
(13) T2 < ho(@) = halz = ) <s for cases 1) — 15).

Moreover, we easily see that

: ho(z)
(14) e

From (13) and (14), we can conclude by Lemma 2 that h, is s®-quasisymmetric
on R'.

3. The proof of the main result

The quasisymmetric function h, constructed in the previous paragraph has
some special properties. Obviously,

(15) hs(0) =0, he(1) =1, he(—=1) = —s%.

By a simple computation, we get

1 s 0 32
1 = = — .
(16) /0 ha(t)di = =, /1hs(t)dt S

Using these properties one obtains a lower estimate of K,.
We denote h, by h and s? by ¢. Then h is a p-quasisymemtric function on
R!. Let f,) be the Beurling-Ahlfors extension of h. The dilatation of fur at s

is denoted by D,. Setting & = ay(¢)/az(1), 1 = —By(7)/B:(i), ¢ = az(2)/B:(2),

we get

where

a(é,7,¢) = [(¢ = 1)* + (¢ +m)?]/[2¢(€ + )]
b, O) = [(¢+1) + (¢& = )] /[2¢(€ + m)].
From (15) and (16) one obtains

(18) (=-1/h(-1) =577,
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(19)

(20)

Hence we have

(21)

c(5+ )(

(G-

Noting that

one obtains

and hence
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1
E=1 —] h(t)dt = (1 +s)7,
0

0
n=1+4/_1h(t)dt=—

/
D, + D7 > (al€.n, ) - bEn. )

(€= 17+ (CE+mP)(C + 12+ (cE =)

S

1/2

3 2
(52—1)2+(3 +1) =2s* — 253 4 5% — 25+ 2,
s

2 2 3—12> 4 _ 5.3 2
(s +1)+(S+1) > 25 —28° 4+ 3s* + 1,

(22) D+D"'> = ((23 — 255 4 52 — 25+ 2)(25% — 25° + 352 +1))

32

s2

1 1/2
(43 — 85T 4+ 125% — 125 + 13s* — 1253 + 752 2s+2)

1/2
l((254 —28° 4257 —5)" + 55" — 857 + 657 — 25 + 2) o

Setting P(s) = 5s* — 8s® + 6s% — 2s + 2, one computes

P(1)=3>0, P'(1)=6>0, P"(s)=60s>—-48s4+12>0ass>1,

and hence P(s) >0 as s > 1. Then we have

(23)

1
D+ D! >3—2(234—233+252—s)=232—-23+2—-1—‘
S

Since D~! < 1, we immediately obtain

D>2s"—2s+1—-s1=22+1)(1-s71).

Replacing s by /o, we get

(24)

D> (20+1)(1-1/\/0)

and K, > (20 +1)(1 -1/,/0). The main theorem is proved.

)2 + (32(31—{— 1) L j— 1)2) ((sl2 + 1>2 + (32(11-!- s) 1+4s

(- (B (@ +7+ (55))

)"
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Some remarks: 1. The author suggested another piecewise linear quasisym-
metric function on R! which is similar to h, in this paper but more complicated.
Li Wei and Liu Yong computed the maximal dilatation of its Beurling—Ahlfors
extension ([6]) and got an asymptotic estimate.

2. There are some other results on the lower bound of K,. For instance,
K, > 1.587p for large o ([7]); K, > 30/2 for every ¢ > 1 and limy— 400 Ko/0 >
1.5625 ([4]); K, > 8¢/5 for ¢ > 7 and lim,— 400 K,/0 > 1.765625 ([5]).
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