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A GENERALIZATION OF THE M. RIESZ THEOREM
ON CONJUGATE FUNCTIONS AND THE ZYGMUND
Llog L -THEOREM TO R?, d > 2

Matts Essén

1. Introduction

Let D be a domain in R%, d > 2. Points in R? are denoted by z =
(z1,Z2,...,24). We use the Euclidean norm |z|. We shall prove the following two
results.

Theorem 1. Let p € (1,00) be given. Then |z|P has a harmonic majorant
in D if and only if |z1|? has a harmonic majorant in D.

Corollary. Let h* and ho be the least harmonic majorants of |z,|P and |z|,
respectively. If 0 € D, we have

(0.1) ho(0) < Cph*(0),

where C, is defined by (0.2), (2.3) and (3.1) and C, is best possible.

Theorem 2. (a) If |z;|log™ |z1| has a harmonic majorant in D, then |z|
has a harmonic majorant in D .

(b) Let us furthermore assume that the least harmonic majorant % of |z;| in
D is such that ¢(z) = O(|z|), * — oo in D. If |¢| has a harmonic majorant in
D, then |z1|log™ |z;| has a harmonic majorant in D.

In the plane, Theorems 1 and 2 are related to classical results of M. Riesz and
A. Zygmund. A discussion of the connection can be found in [6].

The proof of Theorem 1 consists of two parts. In Sections 2 and 3, we prove
that if the constant C), is chosen in the right way, there exists a function G, which
is superharmonic in R¢ such that

(0.2) 2P = Cpla1P < Gp(z), =z € R4

A similar construction was used in the simple proof of the M. Riesz theorem on
conjugate functions which was given in [4]. Also in the present paper, the two
cases 1 < p <2 and 2 < p < oo have to be separated from one another. To
construct G,, we have to make a detailed study of certain classical differential
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equations. Let us mention that we have not been able to find the estimate given
in (2.12) in the literature.

The first part of Theorem 2 is similar but easier: we simply note that the
function /1 + z?log(1 +2?) —2d7 (1 + |x}2)1/2 is subharmonic in R%.

The crucial idea in the second parts of the proofs of Theorems 1 and 2 is to
study the connection between certain “harmonic measures” and the existence of
certain harmonic majorants (cf. Sections 5 and 6). Essentially, we argue as in
the proof of Theorem 5 in [5]: this result says that Theorem 2 holds if we assume
also that D is contained in a half-space {z € R%: z; > 0}. In [5], an important
part of the theory was that z; could be interpreted as a minimal harmonic func-
tion in {z; > 0} associated with the Martin boundary point at infinity: modulo
multiplication by constants, this minimal function is unique and we could use it
to construct certain other harmonic functions. In the present situation, the set of
minimal harmonic functions associated with infinity is not known. An example
given below tells us that there might be cases where the dimension of the set is 2.
The theory in [5] depended in an essential way on the assumption that this set
was one-dimensional. To avoid the use of minimal harmonic functions in our def-
initions in Section 4, we have chosen to apply a technique which we earlier used
in [7]. However, the intuition behind our arguments is inspired by our work in [5].
An account of this adaption of previous work to the situation in the present paper
is given in the Appendix.

Remark 1. In Theorem 2b, we assumed that the domain D was such that
the least harmonic majorant 4 of |z;] in D was such that ¢(z) = O(|z]),  — oo
in D. The results of Benedicks [1] give an example of domains with this property.
Let E be a closed subset of the hyperplane {z € R?: z; = 0}. Let Pz be the
cone of positive harmonic functions in = R%\ E with vanishing boundary values
on E (with the possible exception of a set of capacity zero). If E has positive
capacity, each function u € Pg satisfies the growth estimate u(z) = O(|z),
z — oo (cf. Lemma 3 in [1]). The set P may have dimension 1 or 2. Under
certain assumptions on the density of E near infinity, it is proved that |z;| has a
harmonic majorant in € and that Pg is two-dimensional (cf. Theorems 3 and 4
in [1]). Furthermore, the least harmonic majorant ¢ € P and it follows that
¥(z) = O(Jz|), ¢ = co. Any domain D contained in such a domain Q satisfies
the extra requirement in Theorem 2b.

Remark 2. It would be interesting to have an example of a domain D which
is such that || has a harmonic majorant in D while |z;|log™ |z1| does not have
such a majorant. We conjecture that there is such an example. A further question
is whether the extra condition in Theorem 2b is the right one.

A discussion of related questions in the plane can be found in [9].
We note that there are functions F in H'(U) which are such that Re F ¢
Llog L. Here U is the unit disc in the plane.
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A general study of problems on harmonic majorization in R? is given by
D. Burkholder in [3]: his methods are probabilistic.

2. Construction of a superharmonic majorant of
|z|? — Cplz1|P: the case 1 <p <2

For z; > 0, we define § = arccos(z;/|z|) and consider harmonic functions of
the form |z|PF(0) where 1 < p < 2. Then F is a solution of the equation

(2.1) (d/d8)((sin8)*~2F") = —p(p + d — 2)(sin 6)*~2F,
or equivalently
(2.2) F" +(d—2)(cot O)F' + p(p+d—2)F = 0.

Let F = F, be the solution of (2.1) on (0,7/2) which satisfies the initial
conditions F(0) =1, F'(0) = 0. In Proposition 3, we shall prove that the smallest
zero o of F in (0,7/2) exists: we have F'(a) < 0 (cf. (2.4)). For z; > 0, we
define

G,(z) = { !x|”(F(9)/F'(a)_)ptan a, 0<b<a,
|z|? — 2§ (cosa)7?, a<< /2

We extend G to the whole of R? via reflection: G,(z) = Gp(—z1,2'), 21 <0,
where z' = (z2,23,...,24).

The function G is harmonic in circular cones around the positive and nega-
tive x;-axis: the angle between a generatrix and the axis is «.

Proposition 1. G, is superharmonic in the complement of these cones.

The proof of Proposition 1 will be given later.

The constants have been chosen in such a way that G, € C'(R%). Applying
Green'’s formula in exactly the same way as in [4], we can use Proposition 1 to
prove that G, is superharmonic in R?. We omit the details. This argument gives
the first part of

Proposition 2. G, is superharmonic in R?. Furthermore, we have
(2.3) |z|P — |z1|P(cos a)? < Gp(x), z € R4,

Let us first show that our definitions are correct.

Proposition 3. Let F, and o be as above. If p > 1, we have 0 < o < /2.
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Proof. For p = 1, our initial value problem has the solution Fj(8) = cos6
and we see that a(1l) = m/2. A standard argument shows that a(p) is strictly
decreasing as a function of p when p > 1. This proves Proposition 3.

Proof of Proposition 2. We claim that
(2.4) F'(6) <0, 0<6<a.

To see this, we integrate (2.1) and obtain
6
(2.5) F'(6) = —(sin )2~p(p + d — 2) / F(t)(sin )1~ 2dt.
0

It is known that F(6) > 0 in (0,«). Hence (2.4) is proved.
Let L be the differential operator defined by

(2.6) Lh = (d/d6)((sin )*~%(d/df)(sin 8)*~2h) + p(p + d — 2)h.
Our claim (2.3) is equivalent to

(27)  g(8) = (cos 8/ cosa)’ — 1+ ptanaF(8)/F'(a) >0, 0<6<a.
Since g(a) =0, (2.7) is a consequence of

(2.8) ¢'(6) = p(—(cos )P~ (sinb)(cos @) ™? + F'(f) tan o/ F'(a)) <0, 0 < 6 < av.

It is easy to check that ¢'(0) = ¢'(a) = 0.
A computation shows that when 1 < p < 2,

(2.9) Lg' = —p(p—1)(p — 2)(sin )(cos §)P3(cosa)™? >0, 0<6< a.

Let K(6,£) be Green’s function for the problem Lh = 0, h(0) = h(a) = 0,
0 < 6 < a. If we can prove that K is non-positive it follows from (2.9) that

6= [ Ke.O(INOE<0,  0<b<a,
0
which implies that (2.7) and thus also (2.3) will hold.
To prove that K <0 in (0,a), we introduce H which is the solution of (2.1)
on (0, a) satisfying the conditions H(a) =1, H'(a) = 0. We claim that
(2.10) H'(a) >0, 0<b<a.

To see this, we integrate the differential equation to obtain

H'(8) = (sin8)2~p(p 4+ d — 2) /: H(t)(sint)?"2dt,0 < 6 < a.
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Hence H' will be positive near a. Assuming (2.10) to be wrong, we let v be the
largest zero of H' in (0,a). Multiplying the differential equations for F' and H
by H and F, respectively, taking the difference and integrating over (v, a), we
obtain

H(y)F'(7)(sin7)*"? = F'(a)(sin a)*~.
From (2.4) we see that H(y) > 0: hence we have H"(y) < 0 (cf. (2.2)). This
means that H has a maximum at vy which contradicts our assumption that
H'(6) > 0 in (vy,a). Our assumption that v exists must be wrong and we have
proved (2.10).

So far, we know that LF' = LH' = 0 and that F'(0) = H'(a) = 0. Thus we
can write K in the following way:

_ [ AF'(6), 0<#6<¢,
K(6,) = {BH’(G), £<6<a.

The constants A and B are determinded by the system

{ AF'(¢) - BH'(§) =0,
—AF"(¢)+ BH"() = 1.

To compute the determinant, we re-write the operator L as
(2.11) Lh = h" 4 (d—2)(cot 8)h" + h(—(d — 2)(sin8) "2 + p(p + d — 2)).

Multiplying the differential equations for F’ and H' by H' and F', respectively,
taking the difference and integrating, we obtain

F'(&)H"(€) — H'(§)F"(¢) = F'(a)H" (a)(sin o/ sin )",
From (2.2) we see that H"(a) < 0 and that (cf. (2.4))
F'(OH"(€) - H'()F"(€) = e(siné)*~*,

where ¢ = ¢(a) is a positive constant. It follows that

- _ [T F(OH (§)(sin€)?72, 0< 6 <,
K(6,6)= { cUF(E)H! (6)(sin )4-2, £ <6< a.

The non-positivity of K is now a consequence of (2.4) and (2.10). This completes
the proof of Proposition 2.
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Proof of Proposition 1. A computation shows that when a < 0 < #/2, we
have

AGy(2) = plaP~* ((p+d — 2) — (p — 1)(cos 6)°~*(cos ) 7).

Since G, € C'(R?), the singularities in the second derivatives of G, at
0 = w/2 will not give any contribution to the Riesz mass.
Using the lower bound for 8, we obtain the estimate

AG, < plzP*((p+d—2) = (p— 1)(cos a) %),

for z in the complement of the cones where G, is harmonic. The right hand
member will be non-positive if and only if

(2.12) cos’(a(p)) < (p—1)/(p+d—2), l<p<2

If (2.12) holds, AG, will be non-positive for 8 € (a, 37) and Proposition 1
will be proved.

To prove (2.12), we make a change of variable in (2.1) and consider f(t) =
fp(t) = Fp(arcsint) which solves the problem

(=)' + ¢ (d=2 = (d = 1)) f' + p(p+d = 2)f =0,
(2.13) {f(O) =1, f’(())(= 0, 0<t< 1.) o

Let a be the first zero of f in (0,1). Then a = sina and (2.12) is equivalent
to

(2.14) a>((d=-1)/(p+d—-2)"" =t,.
Problem (2.13) has a power series solution 1+ Y 1% a,t*" where
a1 = —p(p+d—2)/(2(d - 1)),

ant1 =an(2n(2n+d—2) —p(p+d—2))/(2(n+1)(2n +d - 1),
n=23....
It is clear that all these coefficients in the power series are negative and that

f is strictly decreasing on (0,1). Thus (2.14) will follow if we can prove that
fp(to) > 0. A computation shows that

oo k-1

Frlte) = 1= (9/2) = (/2) Y ] b

2 n=1

where b, = (2n(2n+d—2) —p(p+d—2))(d-1)/(2(n+1)(2n+d—1)(p+d—2)).
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For each factor in the product we have the estimate
(2.15) ba < (20— p)/(2(n + 1)).

In fact, b, is increasing as a function of d and maximal when d = co. We also
note that (2.15) is equivalent to

0<(p-1)(2n —p)2n, n=12,...,

which holds when 1 < p < 2. We conclude that
(2.16) Folte) = 1= (p/2) = (P/2) D k1,
2

where ¢ = Hﬁ=1(n -p/2)/(n+1), k=1,2,....
We shall prove that

(2.17) > ek =(2-p)/p,

which implies that f,(to) > 0, which is what we wanted to prove.
It remains to show that (2.17) holds. Let us consider the formulas

(k +2)cgt1 = (k+1—p/2)ck, k=1,2,....

Multiplying these equations by z¥ and adding them, we find that the function
v(z) = Y57 ckz* satisfies the differential equation

v'(2) + () (e + (p/2)(1 - 2)7) = (1 - p/2)(A - 2) 7,

and is such that v(0) = 0. The solution is

o(2) = (1 - p/2) ((2/p) — 2p2) 7 (1 = /27 (1 = 2P = (1= 2)).

A classical Tauberian theorem tells us that if ¢ = O(1/k), k — oo, then we have

[e o

> e =limo(@) = (2= p)/p.

1

It is easy to prove that ¢; = O(k~(*P/2) k — oco. Hence the Tauberian
condition on the coefficients holds. This concludes the proof of (2.17) and of
Proposition 1.
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3. Construction of a superharmonic majorant of
|z|? — Cplz1|P: the case p>2
Assuming that p > 2, we let F' = F}, be the solution of (2.1) on (0, 7) which
satisfies the conditions F(37) =1, F'(1r) = 0. In Proposition 3' we shall prove

that F' has a largest zero 8 in (0, 37): we have F'(8) > 0 (cf. (3.2)). For z; > 0

we define
|z|P — |z1|P(cos B)7P, 0<6<5,

Gp(z) = { jol? (F(6)/F'(8))ptan, B<6< Lr.

We extend G, to the whole of R* via reflection: Gy(z) = Gp(—z1,2'), 71 < 0.
The extended function will be harmonic across {z; = 0} except at the origin. This
is clear since our condition F'(37) = 0 implies that the normal derivative of G,
on {z; = 0} vanishes. Thus G, is harmonic in the complement of circular cones
around the positive and the negative z;-axis: the angle between a generatrix and
the axis is 3.

Proposition 1'. G, is superharmonic in these cones.

The proof of Proposition 1’ will be given later.
The constants have been chosen in such a way that G, € C'(R?). In exactly
the same way as in the case 1 < p < 2, we prove the first part of

Proposition 2'. G, is superharmonic in R¢. Furthermore, we have
(3.1) |z|P — |z1[P(cos B)P < Gp(z), z € R4

Proposition 3'. Let F, and 8 be as above. If p > 2, we have 0 < 8 < %ﬂ'.

Proof. Tt is easy to check that F3(6) = 1—dcos? § and that cos 3(2) = 1/V/4.
A standard argument shows that B(p) is strictly increasing as a function of pin
(2,00). We have proved Proposition 3'.

Proof of Proposition 2'. We claim that
(3.2) F'(8) >0, B<O< im.

Integrating (2.1), we obtain
w/2
F'(6) = (sin 0)2~p(p + d — 2) / F(t)(sint)®2dt, 0<6< lr.
8

Since F is positive in (8, 1), it is clear that (3.2) is true.
Let L be the operator defined by (2.6). Our claim (3.1) is equivalent to

(3.3) 9(6) = (cos 8/ cos B)P — 1+ ptan BF(9)/F'(8) > 0, B<OL o
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Since g(8) = 0, it suffices to prove

(3.4) g'(6) = p(—(cos 8)"~* (sin 8)(cos 8) 77
+ tan BF'(6)/F'(8)) 20, B<6< 3w

It is easy to check that ¢'(8) = ¢'(37) = 0.
A computation shows that when p > 2,

(3.5) Lg' = —p(p — 1)(p — 2)(sin 8)(cos )P 3(cos )P < 0, B < 6 < 3.

We note that Lg' is integrable in (8, 37).
Let K(6,¢) be Green’s function for the problem Lk =0, h(8) = h(37) =0,
B <6 < ix. If we can prove that K is non-positive, it follows from (3.5) that

/2
40 = /; K(6,6)(Lg')(€)dE 20, <6< in,

which implies that (3.3) and thus also (3.1) will hold.
To prove that K < 0 in (f, %‘n’), we introduce H which is the solution of
(2.1) on (B, 37) satisfying the conditions H(3) =1, H'(8) = 0. We claim that

(3.6) H'(8) <0, B<6< i

To see this, we integrate the differential equation to obtain
[4
H'(8) = —(sin6)*~p(p + d — 2)/ H(t)(sint)*"2dt, B<6<inm
B

Clearly, H' is negative near 3. Assuming (3.6) to be wrong, we let v be the
smallest zero of H' in (8, 37). Multiplying the differential equations for F and
H by H and F, respectively, taking the difference and integrating over (43,7),
we obtain

H(y)F'(y)(siny)?~* = F'(8)(sin B)"~.

From (3.2) we see that H(y) > 0. Thus, we have H"(y) < 0 (cf. (2.2)). This
means that H has a maximum at v which contradicts our assumption that H'(6)
is negative in (B,7). Thus there can be no zero of H' in (8, %—7‘(’) and we have
proved (3.6).

So far we know that LF' = LH' = 0 and that F'(}7) = H'(8) = 0. Thus
we can write K in the following way:

o [AHNS), A<6<E,
Am@*‘{Bpw% £<6<in
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The constants A and B are determined by the system
AH'(€) - BF'(§) = 0,
—AH"(§) + BF"(§) = 1.

The same kind of computation as in the case 1 < p < 2 shows that there is a
positive constant ¢ = ¢(f) such that

- _ [ cH'(O)F'(&)(sin€)?~2, B< o<,
K(9,¢) = {cH'(E)F'(O)(sin 642 t<b<m.

The non-positivity of I is now a consequence of (3.2) and (3.6). This completes
the proof of Proposition 2.

Proof of Proposition 1'. A computation shows that when 0 < § < 3, we have
AGy(z) = plz[P~*((p + d — 2) — (p — 1)(cos §)P~*(cos ) 7).

Using the upper bound for 6 and the assumption p > 2, we obtain the
estimate

AGy(z) < plalP~2((p+d = 2) — (p — 1)(cos ) 72),

for z in the cones where G, is not a harmonic function. The right hand member
will be non-positive if and only if

(3.7) cos’ B(p) < (p—1)/(p+d - 2).

Fortunately, the proof of (3.7) is much easier than the proof of the corre-
sponding inequality (2.12) in the case 1 < p < 2. In the proof of Proposition 3,
we saw that cos3(2) = 1/v/d and that §(p) is strictly increasing as a function
of pin (2,00). When p = 2, there is equality in (3.7). When p increases in the
interval (2,00), cos B(p) is strictly decreasing and the right hand member in (3.7)
is strictly increasing. Hence the inequality in (3.7) is correct and we have proved
Proposition 1'.

4. Definitions and estimates of some harmonic measures

Without loss of generality we can assume that 0 € D. Let w; be harmonic
in the component of DN {z € R? : |¢;] < t} = DN A(t) which contains 0
with boundary values 0 on DN A(t) and 1 on dA(t)N D. Let wgr(-, R4, D) be
harmonic in that component of DN {z € R? : |z| < R} which contains 0 with
boundary values 0 on dD N {|z| < R} and 1 on DN {lz| = R}. In components
which do not contain 0, these harmonic functions are defined to be 0. From the
maximum principle we see that

(4.1) wr(z) < wr(z,RY, D), z € DN {|z| < R}.
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Let us also assume that |z;| has a harmonic majorant ¥ in D. We introduce
two functions v; and w, which are harmonic in D with the following boundary

values: ) D\ A(t)
_ ) T € )
vi(@) = { 0, z€dDNA®),

_ [ lzil, z€dD\A(),
wi(z) = { 0,  =caDNA®).

We define w; to be the difference between ¥(z) and the harmonic function
in D which has boundary values |z;] on DN A(t) and 0 on 9D \ A(t). We note
that D N A(t) is not necessarily bounded. According to Lemma A0, C'D is not
thin at infinity. Applying Lemma A1, we see that w, is positive in D.

Remark 1. One of the main new ideas in [5] was to introduce a new kind of
“harmonic measure” which depended on the (essentially unique) minimal harmonic
function in © O D associated with the Martin boundary point at infinity. If Q
is a half-space {z; > 0}, this minimal function is #; and one of the examples of
this “harmonic measure” coincides with the function w; given above. If D is not
contained in a half-space, we avoid the minimal harmonic functions and study the
function w; directly (cf. Theorem Al and its corollaries!).

Remark 2. We warn the reader that the symbols ¥, v;, w; and w; have
also been used in [5]. Even if the definitions are related, they are not identical to
the ones used in the present paper. However, if the same symbol is used, the two
concepts play similar roles in the two papers.

If ' = (z9,23,...,24), we let wh(-,s) be the harmonic measure of the set
{z € R?:|a1| =T,|a'| > s} in the strip {z € R?: |z;| < T}. From Lemma 6 in
[2a], we deduce that

(4.2) w$H(0,8) < CqT? 458 2=8/T

where the constant C; depends on the dimension only.

Let K2 be a harmonic function in {|z1| < T} with boundary values |z| on
{z € RY: |z,] = T,|2'| > cTlogT} and 0 on the rest of the boundary. From
(4.2) we see that

(4.3) K%(0) = O(T*°(log T)*7%), T — oo.

If p> 1 and ¢ is a number in (0,p — 1), we consider also the harmonic
function K% in {|zi| < T} which has boundary values |z|P~¢ on {z € R?:

|z1] = T,|2'| > TP/(*=9)} and 0 on the rest of the boundary. From (4.2) we see
that

(4.4) KX(0) = O(T exp(=T¢/*=9))), T — oo,
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where a is a function of p, d and ¢.

It is clear that the right hand member of (4.4) tends to 0 when T — oo. It is
also clear that if ¢ > 1, the right hand member (4.3) will tend to 0 when T — oo.

The following Phragmén-Lindeldf theorem is a simplified version of Theorem 2
in [2b].

Let u be subharmonic in the strip {x eR?: x| < %} , let u be non-positive
on the boundary of the strip and assume that when z — oo in the strip, we have

(4.5) max((u(z),0) = o(|z|2=/2 exp(r|z|)).
Then u is non-positive in {|z1] < 1}.

5. Proof of Theorem 1

For 1 < p < oo we know that there exists a function G, which is super-
harmonic in D such that (0.2) holds. With « and 3 as in Sections 2 and 3, we

have

C = (cosa)™?, 1< p<2,
P71 (cosB)™P, 2<p<oo.

(cf. (2.3) and (3.1)). The function C, is continuous in the interval (1,00), de-
creasing on (1, 2] and increasing on (2,0).
We shall use the Riesz representation theorem (cf. Theorem 6.18 in [10]).

Theorem R. Let D be a domain in R?¢ having a Green’s function G and let
u be superharmonic on D. If u > 0, there is a unique measure u on D such that
u = Gu+h where Gu is the Green potential of u and h is the greatest harmonic
minorant of u on D.

Let us assume that h* is the least harmonic majorant of |z;|P in D. If ¢ is
a small positive number, it is easy to see that

21"~ < R*(x) + C(p,e), €D,

where C(p,¢) = max(t?~¢ —t?), ¢t € [0,1]. According to (0.2) with p replaced by
p — €, we have

(5.1) 27 < Cprelz1 /7 + Gpc(2) < Cpoch™(2) + Gp—c(2) + Q(p, )
where Q(p,e) = Cp—_.C(p,e) = 0, ¢ — 0.

Since the right hand member is non-negative and superharmonic in D, we
can apply Theorem R and see that there exists a measure y, such that

Cp—eh™(z) + Gp—c(z) + Q(p, €) = he(z) + Gue(2), z €D,
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where h, is the greatest harmonic minorant of Cp_.h* + Gp_. + Q(p,¢) in D. In
particular, we have

(5.2) 2P~% < (he + Gue)(z), =z € D,

Lemma 5.1. If |z;|P has a harmonic majorant in D and if (5.2) holds, we
have

(5.3) |z|P~¢ < he(z), z € D.

The proof of Lemma 5.1 will be given later.
To complete the proof of Theorem 1, we use (5.1) and the definition of Gp_.
to deduce the estimate

(5.4) 0 < he(z) < Cp—ch™(z) + Bp(e)|zlP~° + Q(p,e),  z €D,
where

1, 1<p<2,
By(e) = {(p—e)tan,@(Fl(ﬂ))—la 2<p—e< oo,

with 8= B(p—¢).
When ¢ — 04, the constants tend to finite limits and we see that there is a
constant Cy which does not depend on ¢ such that for ¢ small, we have

0 < he(z) < Co(h*(z) + [2P7°) + Q(p,e),  z€D.

In a standard way we can now prove that grad k. is locally uniformly bounded
in D as € — 04. From the Arzela—Ascoli theorem, it follows that there exists
a sequence {€,} tending to zero such that {h.,}52; converges pointwise to a
function ho in D as n — oo: the convergence is locally uniform. The function hg
is harmonic in D and a majorant of |z|P.

To prove the Corollary, we first note that (0.1) is an immediate consequence
of the identity
Cp—ch™(0) = he(0) + Gue(0) — Q(p, ).

We give the details of the proof that C) is best possible in the case 1 < p < 2. We
recall that @ = a(p) and F = F, were defined in Section 2. If ¢; = (1,0,...,0)
and s € (1,p), we consider the cones

I,={zeR*:0<0<a(p)}, T)={ceR:z+e €l,},
and the inequalities

(5.5) lz1|® < |z +1)° + 1, rel,
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(5.6) |z + e1]® < |z]° + 2|z + 1, zel.
We define ¢ = arccos((1 + z1)/ler + z|). Let UF and U, be the least harmonic
majorants of |1 +21|° and |z + e;|° in T, respectively. It is easy to see that
Ui (z) = |z + e1]*(cos a(p)) " Fu(0)/ Fs (a(p)),
Us(z) = |2 + e1]" Fo(0)/ Fs (a(p))-

Let hy and h, be the least harmonic majorants of |z1|* and |z|* in T,
respectively. Let V' be the least harmonic majorant of 2|z| 4+ 1 in T, where
q € (1,p) is fixed. If ¢ < s < p, it follows from (5.5) and (5.6) that

Ri(z) < US(z) + 1, Us(z) < hs(z) + V(2), zeT,.
Since lim,_,, F,(a(p)) = 0, we conclude that
lim inf h,(0)/R3(0) > (cos(a(p)) " = Cp,
s—p
which proves that C}, is best possible.

Proof of Lemma 5.1. From Corollary A2 with ®(t) = t?, we see that
(5.7) T?wr(0) — 0, T — oo.

From now on, we assume that T is large. Let gr be harmonic in DN
{lz1] < T} with boundary values |z|P~¢ on D N {lz1] = T} and zero on DN
{lz1] < T}. We claim that

gr < 2Twr + K7,

in DN {|z:| < T}. (The definition of K% is given in Section 4.)
This follows from Lemma A1l since

lzP~¢ <277, &y =T, |&'| <TP/P79),
We recall that ' = (z3,...,24). Using (4.4) and (5.7), we deduce that
(5.8) 97(0) >0, T — oo.

If |2|P=* — h.(z) has a positive lower bound on a set of positive harmonic
measure on 0D, then it would follow from (5.2) that Gu. would have a positive
harmonic minorant in D which is impossible (cf. Corollary 6.19 in [10]). Hence
|z|[P~¢ — he(x) has non-positive boundary values on dD. Let us now in D N
{lz1] < T} consider the function |z|P~¢ — (k. + g7)(z) which is non-positive on
d{D n{|z:| < T}} and dominated from above by |z[P=¢. This growth is far
below the bound below which a Phragmén-Lindelof theorem holds in the strip (cf.
(4.5)). Hence we see that

[2P7¢ < (he + g7)(2), z€DN {|:v1| < T}.

Finally, letting T — oo and using (5.8), we obtain (5.3). We have proved
Lemma 5.1 and completed the proof of Theorem 1.
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6. Proof of Theorem 2

We first note that |z;|log* |¢;| has a harmonic majorant in D if and only if
f(z1) = /1 + 2%log(1 + 22) has a harmonic majorant in D. Assuming that f

has a harmonic majorant in D, we shall prove that g(z) = Cq(1 + |ac|2)1/2 has
a harmonic majorant in D. Here the constant Cg is chosen in such a way that
u = f — g is subharmonic in R? (we can choose Cyq = 2/d).

We can now argue as in the proof of Theorem 4 in [5]. Let ho be the least
harmonic majorant of f in D. Since we have u < hg — g, ho —u is a nonnegative
superharmonic function in D. According to Theorem R, we have hg—u = Gu+h,
where h is the greatest harmonic minorant of hg— u in D and Gp is the Green
potential of a nonnegative measure p in D.

We wish to prove that h is a harmonic majorant of ¢ in D. So far, we know
that ¢ < Gu + h. Just as in the proof of Theorem 1, it is clear that g — h is
non-positive on dD. Applying Corollary Al with ¢(t) = tlogt t, we see that

(6.1) Tlog Tw(0) — 0, T — oo.

From now on, we assume that T is large. Let g7 be harmonic in DN {|z,] <
T} with boundary values |z| on D N {|z1| = T} and zero on dDN {|z1| < T}.
We claim that

g1 < 3T log Twr + K% in DN {|z1 < T}.

(The definition of K% can be found in Section 4: let us choose the constant ¢ in
the definition to be 2.)

This follows from Lemma Al since

|z| < 3TlogT, |z1| = T, |z'| < 2T logT.

Using (4.3) and (6.1), we deduce that
(6.2) g7(0) — 0, T — oo.

Let us now consider the function g — h — 2Cygr in DN {|w1| < T}: it is
non-positive on the boundary of this set and dominated from above by |z|. The
same Phragmén-Lindeldf argument as in the proof of Theorem 1 tells us that

g < h+2Cq9t in DN {|z1] < T}.

Letting T — oo and using (6.2) we see that h is a harmonic majorant of g. This
concludes the proof of Theorem 2a.
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In the proof of Theorem 2b, we assume that |z| has a harmonic majorant in
D and that the least harmonic majorant ¥ of |z1| in D is such that ¥(z) < C|z|
when z € D is large. It is known that wy; < ¥ in D. We define I'y = {:c €D:
U(z) =t}. It is easy to see that |z] > ¢/C on I'; and thus that

(6.3) wy(z) < twyyo(z, RY, D), zeDn{|z| <t/C}.

In the last step we used the maximum principle.
Our assumption that |z| has a harmonic majorant in D implies that

o0
(6.4) / w(0,R%, D) dt < oo,
0

(cf. Theorem 2 in [8] with ®(¢) = t!).
Another consequence of the maximum principle is the inequality

(6.5) w(0) < we(0,R%, D).

From (6.4) and (6.5) we deduce that tw¢(0) — 0 as t — oo: this is (A4) in
Lemma A5 and Theorem A1l. Combining (6.3) and (6.4) we obtain

/ w(0)t~1dt < o0,
1

This is condition (A7') with ®(t) = tlog* ¢. Since (A7) is equivalent to (A7') we
can apply Theorem Al and conclude that |z;|logt |z;| has a harmonic majorant
in D. We have proved Theorem 2.

Remark. Let h, be the least harmonic majorant of ¢ in D. It follows from
the proof that we have
hy(0) < ho(0) +2d7 1.

(We recall that ho is the least harmonic majorant of f in D.)

Appendix

Definitions of the harmonic measures used in the Appendix are given in Sec-
tion 4.

Let D be a domain in R?, d > 2. We shall many times need the maximum
principle in the form given below in Lemma A1. In order to show that all domains
D which are studied in the present paper are such that the complement CD is
not thin at infinity, we need a simple observation which we state in Lemma AOQ.
For a discussion of thinness and its relation to harmonic measure, we refer to [8].
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Lemma AO. Assume that |z;| has a harmonic majorant ¥ in D. Then CD
is not thin at infinity.

Proof. Let f :[0,00) — [1,00) be strictly increasing, continuous and un-
bounded. Furthermore, we assume that as t — oo, we have

i) f(®)/t = oo,
(i1) t~*(log f(t)) — 0,
(iid) t(f(£)) ™" (log £(1)) — 0.

Necessary and sufficient for CD not to be thin at infinity is that
wr(0,R%, D) — 0, R — o0, whend >3,

(log R)wr(0,R%, D) — 0, R — oo, whend =2,

(cf. the proof of Lemma 4 and Lemma 6 in [8]).

We write wg(-, R%, D) as wg) +w(}§) , where wg) is the harmonic measure of
Dn{zeR?:|z|=R,|z| < f(lz1])} in D and wg) is the harmonic measure of
the rest of DN {|z| = R} in D. Since |z;| > f~!(R) on {zeR?: |z =R<
f(‘xll)} , it follows from the classical maximum principle for harmonic functions
in a bounded domain that

I RWwP (2, R, D)< ¥(z), ceDn{zeR’:|e|<R}.
To estimate wg) we note that this function is majorized by the harmonic function

in {|z| < R} whichis 1 on {e € R*: |z| =R > f(Jz1])} and 0 on the rest of
{|z| = R}. We conclude that

w?(0,R%, D) < Const. (f~(R)/R)" "
Combining these two estimates we obtain
wr(0,RY, D) < ¥(0)/(f~*(R)) + Const. (f'(R)/R)" .
Letting R — oo, it is easy to check that the criteria for CD not to be thin at

infinity are fulfilled in the two cases d > 3 and d = 2. This concludes the proof
of Lemma AO.
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Lemma Al. Let D be a domain in R?%, d > 2, such that CD is not thin at
infinity. If h is harmonic and bounded from above in D and if h has non-positive
boundary values on 0D, then h <0 in D. (Cf. Lemma 1 in [5].)

In [7] we considered the question whether certain radial functions had har-
monic majorants and it was natural to work in subdomains of the type DN
{|:v| < R}. In the present paper we apply the same technique to subdomains
of the type DN {|z1| <t} = D NA(%).

Let £ be the class of convex increasing functions on [0, 00) which are such
that if ® € £, we have ®(0) = 0, '(0) = 0 and lim;—o ®(¢)/t > 0. Let g(z,-)
be Green’s function for D with pole at z.

Lemma A2. Let & € L. If ®(|z1|) has a harmonic majorant in D, then
g(z,-) exists and we have

(A1) /000 @' (t)v,(0) dt + /D 9(0,9)@" (Jy1]) dy < oo.

Proof. Let h be the least harmonic majorant of <I>(|x1|) in D. In D; =
A(t)ND we have ®(|z1|) = (h¢— P;)(z), where h; is the least harmonic majorant
of ®(|z1|) in A(t)ND and

Py(z) = Const./ g:(z,9)®" (Jy1]) dy.

t

Here g¢¢(z,-) is Green’s function for D, with pole at . Since h; < h for all t,
the sequence {hn};” converges to hg which is harmonic in D and a majorant of
®(|z1]). It follows that hg = h.

Thus the sequence {P,,};<> converges to a function P in D defined by

P(z) = Const.Lg(:t,y)@"(lyﬂ) dy.

We conclude that the second integral in (A1) is finite.
Using Lemma A1l we see that A > ®(t)v; in D for all ¢ > 0. It follows that
the first integral in (A1) is at most 2h(0). This completes the proof of Lemma A2.
Outside their domains of definition we define the Green functions to be zero.
Let do(y) = dy, - - - dya. We introduce

A(t) = /{ _, 0. doto).

Lemma A3. Let ® € £, and let ®(|z1|) have a harmonic majorant in D
and assume furthermore that ®(t)/t — oo, t — oo. Then y(t) + y(—t) — 0,
t — oo.
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Proof. Let us first prove that if y(to) < oo for some to > 0, then ~(t) is
decreasing on [tg,00). This is a consequence of the proof of Lemma A2. The
subharmonic function gn(0,-) is nonnegative and bounded in the strip {y € R*:
0 < ty < y1 < n}: it is integrable over {y1 = to} and vanishes on {y1 = n}.
Hence gn(0,-) is dominated by the Poisson integral in the strip with boundary
values gn(0,-) on {y1 =to} and 0 on {y1 = n}. If v,(t) is the integral of gx(0, )
over the hyperplane {y; =t}, we deduce that

Yu(t) € Ya(te),  to<t<m.

Letting n — oo, we see that y(t) < 4(to), t > to. The same argment shows
that y(t) is decreasing on [to,00) and that v(t) is increasing on (=00, —tg] if
’Y(—to) < 00.

From the convergence of the second integral in (A1) and the monotonicity of
v(t) + 7(—t) on (0,00), we see that

(A(T) ++(-T))@'(T) < /D 4(0,)8" (lya]) dy < oo

Since ®'(T) — oo as T — oo we obtain the conclusion of Lemma A3.
Let &; be harmonic in A(2t)\ (A(t)\D) with boundary values 0 on A(t)\D
and 1 on OA(2t). We extend &, to a function superharmonic in R%\ (Z(t_)\ D)
by defining & to be 1 on {z € RY: |zq| > 2t}.
Comparing boundary values of the harmonic functions in DN A(2t) and in
D N A(t), we see that

(A2) we(0) = ©¢(0) = wa:(0).
In D, we have @ = Hy + Q¢, where H, is the greatest harmonic minorant of

& in D and Q; is a Green potential. It is easy to see that H;(0) < v¢(0).
Let p be the Riesz mass of Q¢ restricted to R?\ (A()\ D): it is known that

supp p C OA(2t). We define K(z) = (2] - t)+/t, t < |z1] < 2t. Then we have

du(z)/do = Const. |(6&)t/8n)(m)\ < Const. |(0K/8n)(:v)\ = Const.t™}, |z1| = 2t,

(A3) Q:(0) = /a 0 4(0, ) dpu(y) < Const. t~* (v(2t) + 7(=2t)).

Lemma A4. Under the assumptions of Lemma A3, we have twe(0) — 0,
t — 00.
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Proof. The convergence of the first integral in (A1) implies that we have
®(t)v4(0) — 0, t — oo and thus that tve(0) — 0, ¢ — oo. From the discussion
above we see that

t@:(0) < t(H; + Q1)(0) < tv,(0) + Const.(y(2t) + v(—21)).

From Lemma A3 it is clear that the right hand member tends to 0 as t — oo.
Using (A2) we see that tw(0) — 0, t — co. We have proved Lemma A4.

Lemma A5. Let the domain D be such that

(A4) twy(0) — 0, t — oo,

(A5) /0 ~ td(=v4(0)) < oo
Then we have
(A6) war(z) < we(x)/t, z € A(2t)N D.

Remark. This is Lemma 6b in [5], adapted to the situation in the present
paper. The proof is similar to the proof in [5]. We include the details for com-
pleteness.

Proof. From our assumptions we see that there exists a function Lg: [0,00) —
[0,00) such that Lo(t)/t — oo, t = oo, which is such that

/000 Lo(t) d(—v4(0)) < oo, Lo(t)we(0) — 0, — oo.

Let L be the greatest convex minorant of Ly. Clearly, we have L(t)/t — oo,
t — o0o. Since L(|z1|) is subharmonic in D, we can use Lemma Al in A(t)N D
to deduce that

L(|z1]) < /000 L(t)d(—ve(2)) + L(t)we(), z € A(t)ND.

Letting t — oo, we see that L(|z;]) has a harmonic majorant k in D. We define
m(t) = inf h(z), € DN {|z;| =t}. Once more using Lemma A1l we deduce that
if t <t; we have

|z1| — we(z) <t + th(z)/m(ty), zeDN(A(t)\ A®)).
Letting t; — oo we see that
we(z) > |z1| — ¢, ze€ DNA(t); wyz)>t, z€DnN{|z;| =2t}

Applying Lemma Al we obtain (AG). We have proved Lemma A5.
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Theorem Al. Let ® € L and assume furthermore that ®(t)/t — oo,
t — co. Then ®(|z1|) has a harmonic majorant in D if and only if (A4) and
(A7) hold:

(A7) /0 ~ 0e(0) dB(t) < oo

Remark. Condition (A7) is equivalent to

(AT') /0 ~ wd(0) A(B()/t) < 0.

Remark. Theorem Al is an analogue of Theorem 1 in [5].

Proof. If ®(|z1|) has a harmonic majorant in D, (A4) and (A7) are conse-
quences of Lemmas A2 and A4.

Conversely, assume that (A4) and (A7') hold. It follows that we have
®(t)we(z)/t — 0, t = oo. Let ¢ > 1 be given. From the proof of Lemma A5
we see that wi(z) < (¢ — 1) lw(z)/t, ¢ € A(tc) N D. We conclude that
O(t/c)w : t(z) — 0, t — oo. It follows that

h(z,c) = /:o ®(t/c)d(—ve())

is a harmonic majorant of ®(|z1|/c) in D. Letting ¢ | 1, we obtain an increasing
sequence of harmonic functions which is bounded at 0 since (A7) holds. This
proves Theorem 1.

For functions ® in £ we define A(t) = fot sd(®(s)/s).

Corollary Al. Let ® be as in Theorem Al. If ®(|x;|) has a harmonic
majorant in D then

(A8) /0°° A'()wq4(0) dt < o0,

(A9) ®(t)w2:(0) — 0, t — oo.

Remark. In Theorem 2 in [5] it is proved that a condition which formally
looks almost exactly like (A8) is equivalent to the existence of a certain harmonic
majorant. In the context of the present paper we can only prove Corollary Al.
We note that the definitions of w; in [5] and here are different.

Proof. If ®(|z1|) has a harmonic majorant in D, it follows as above that
(A4) and (A7) hold. From Lemma A5 we see that (A6) holds. Our conclusion
(A8) is an immediate consequence of (A7') and (A6). Since (A7) holds we know
that ®(t)w¢(z)/t — 0, t — co. Using this fact and (A6) we obtain (A9).
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Corollary A2. Let ® be as in Theorem Al. Furthermore, we assume that
& satisfies a doubling condition when t is large and that

(A10) ®(t) ~ A(t) for all large t.

Then ®(|z1|) has a harmonic majorant in D if and only if
(A11) / &' (#)wi(0) dt < co.
0

Consequently we have
(A12) ®(t)we(0) — 0, t — oo.

Proof. Under our assumptions conditions (A8) and (A1ll) are equivalent.
Corollary A2 is now an immediate consequence of Theorem Al and Corollary Al.
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