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A GENERALIZATION OF THE M. RIESZ THEOREM
ON CONJUGATE FUNCTIONS AND THE ZYGMUND

.L log.D -THEOREM TO .Rd , d ) 2

Matts Ess6n

1. Introduction

Let D be a domain in Rd, d >- 2. Points in Rd are denoted by c :
(*r,*2,. . . ,od). We use the Euclidean norm lol. We shall prove the following two
results.

Theorem l. Let p € (1, oo) be given. Then lxlp has a ha'rmonic majoraat
in D if and only if lxrln has a ha,rmonic majorattt in D .

Corollary. Let h* and ho be the least harmonic majoraats of lcllr and lul,
respectively. If 0 € D, we have

(0. 1)

where Co is defined by (0.2), (2.3) and (3.1) and Co is best possible.

Theorem 2. (u) If l"r llog+ lr1 | has a harmonic majorant in D , then lal
has a harmonic majora,nt in D.

(b) let us furthermore assume that the least ha,rmonic majorant r! of lall in
D is such that {:(x): O(lol) , n ) oo in D. If lul has a harmonic majorant in
D , then lrl llog+ lcl l åas a harmonic majorant in D .

In the plane, Theorems L and 2 are related to classical results of M. Riesz and
A. Zygmund. A discussion of the connection can be found in [6].

The proof of Theorem 1 consists of two parts. In Sections 2 and 3, we prove

that if the constant C, is chosen in the right way, there exists a function G, which
is superharmonic in Rd such that

(0.2)

A similar construction was used in the simple proof of the M. Riesz theorem on
conjugate functions which was given in [a]. AIso in the present paper, the two
cases L < p < 2 and 2 < p ( oo have to be separated from one another. To
construct Gpl we have to make a detailed study of certain classical differential
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equations. Let us mention that we have not been able to find the estimate given
in (2.12) in the literature.

The first part of Theorem 2 is similar but easier: we simply note that the
function JtTfrtog(l + o?) - zd-r $ + 1*1'1'/' is subharmonic in Itd.

The crucial idea in the second parts of the proofs of Theorems 1 and 2 is to
study the connection between certain ttharmonic measures" and the existence of
certain harmonic majorants (cf. Sections 5 and 6). Essentially, we argue as in
the proof of Theorem 5 in [5]: this result says that Theorem 2 holds if we assume
also that D is contained in a half-space {o e Rd: 01 ) 0}. In [5], * important
part of the theory was that 01 could be interpreted as a minimal harmonic func-
tion in {r, > 0} associated with the Martin boundary point at infinity: modulo
multiplication by constants, this minirnal function is unique and we could use it
to construct certain other harmonic functions. In the present situation, the set of
minimal harmonic functions associated with infinity is not known. An example
given below tells us that there might be cases where the dimension of the set is 2.
The theory in [5] depeuded in an essential way on the assumption that this set
was one-dimensional. To avoid the use of minimal harmonic functions in our def-
initions in Section 4, we have chosen to apply a technique which we earlier used
in [7]. However, the intuition behind our arguments is inspired by our work in [b].
An account of this adaption of previous work to the situation in the present paper
is given in the Appendix.

Remark 1. In Theorem 2b, we assumed that the domain D was such that
the least harmonic majorant rl; of. lrl l in D was such that t/(c) : O(lrl) , o -J oo
in D. The results of Benedicks [1] give an example of domains with this property.
Let E be a closed subset of the hyperplane {r e Rd i $1 :0}. Let Po be the
cone of positive harmonic functions in o : R'\ E with vanishing boundary values
on E (with the possible exception of a set of capacity zero). If E has positi'e
capacity, each function u € P6 satisfies the growth estimate u(x) : O(lrl),
z --+ oo (cf. Lemma 3 in [t]). The set PB may have dimension 1 or 2. Under
certain assumptions on the density of .E near infinity it is proved that lrll has a
harmonic majorant in o and that Pa is two-dimensional (cf. Theorems B and 4
in [1]). Furthermore, the least harmonic majorant ,b e Pn and it follows that
,!@): O(lrl) , & 1oo. Any domain D contained in such a domain O satisfies
the extra requirement in Theorem 2b.

Remark 2. It would be interesting to have an example of a domain D u'hich
is such that lol has a harmonic majorant in D while lolllog+ lrll does not have
such a majorant. We conjecture that there is such an example. A further question
is whether the extra condition in Theorem 2b is the right one.

A discussion of related questious in the plane can befound in [g].
We note that there are functions .F in Hr(U) which are such that Re,F, (

Llog/,. Here [/ is the unit disc in the plaue.
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A general study of problems on harmonic majorization in Rd is given by
D. Burkholder in [3]: his methods are probabilistic.

2. Construction of a superharmonic majorant of

l*lo -Col*rlo: the case 1<p(-2

For o1 ) 0, we define g: arccos(o1/lol) and consider harmonic functions of
the form lrlpP(O) where 1 < p ( 2. Then F is a solution of the equation

(2.1)

or equivalently

(2.2)

@ldq((sin 0)a-zr') - -p(p + d, - z)(sin 0)o-'F,

F" + (d - 2)(cot 0)F' + p(p + d - 2)F - 0.

Let F : F, be the solution of (2.1) on (0, r 12) whieh satisfies the initial
conditions .F (0) : 1 , -t"(0) : 0. In Proposition 3, we shall prove that the smallest
zero a of F in (0,112) exists: we have F'(o) < 0 (cf. (2.a)). For o1 ) 0, we
define

Gou) : I l.l:(F(0)l F' (1))ptana', 0 a 0^< a',
- Ilrlr-rf(coso)-r, a<01rf2.

We extend Go to the whole of Rd via reflection: Go@) : Gp(-*trx'), x1 < 0,
where *, : (rzrasr... rua).

The function Gn is harmonic in circular cones around the positive and nega-
tive c1 -axis: the angle between a generatrix and the axis is o.

Proposition L. G, is superha,rmonic in the complement of these cones.

The proof of Proposition 1 will be given later.
The constants have been chosen in such a rvay that Ge € Cr(Rd). Applying

Green's formula in exactly the same way as in [4], we can use Proposition L to
prove that G, is superharmonic in Rd. We omit the details. This argument gives
the first part of

Proposition 2. Go is superåarrnonic in Rd. Furtåerrnore, we have

(2.3) l*1,-l*rlo(coso)P S Go@),, n €R,d

Let us first show that our definitions are correct.

PropositionS. Let Fn and a be as above. If p>t,wehave 0 <a<rf2.
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Proof. For p : 1, our initial value problem has the solution Fr(0) : 
"or 

0

and we see that a(f): rl2. A standard argument shows that a(p) is strictly
decreasing as a function of p when p > 1. This proves Proposition 3.

Proof of Proposition 2. We claim that

(2.4) .F'(r) < 0, 010 1 a.

To see this, we integrate (2.1) and obtain

(2.5) F' (0) : -(sin 0)2-d p@ + a - D ft .F(r)(sin t)d-2 dt.
Jo

It is known that .F'(d) ) 0 in (0, o). Hence (2.a) is proved.
Let L be the differential operator defined by

(2.6) Lh : (dl d0)((sin g)2-d (dl dl)(sir-0)o-rh) + p(p + d - 2)h.

Our claim (2.3) is equivalent to

(2.7) s(0): (cos0lcosa)p - 1+ptan aF(0)lF'(a)> 0, 0--0 <-a.

Since 9(o) : 0, (2.7) is a consequence of

(2.8) st (0) : p(-(cosd)r-l(sind)(cos a)-r + F' (0)tar- af F' (a)) S O, 0 < 0 I a.

It is easy to check that g'(0) : g'(a) :0.
A computation shows that when ! I p { 2,

(2.9) Ls' : -p(p-t)(p- 2)(sind)(cosd)r-3(coso)-p > 0, 0<0 <a.

Let K(0,O be Green's function for the problem Lh:0, å(0): h(a): g,
0 <0 < e. If we can prove that .I( is non-positive it follows from (2.g) that

s,(o) : [" rrp,€)(t,s,)G)d{ < o, o < o < a,
Jo

which implies that (2.7) and thus also (2.3) will hold.
Toprovethat K(0 in (0,o),weintroduce ff whichisthesolutionof (2.1)

on (0,o) satisfying the conditions ä(a) : L, H'(o): 0. We claim that

(2.10) ä'(a)>0, 0<0<a.
To see this, we integrate the differential equation to obtain

H,(0): (sin0)2-dp(p+ d-r, 
l;ä(/)(sinr)d-2dt,o 

< 0 < q.
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Hence I/' will be positive near @. Assuming (2.10) to be wrong, we let 7 be the
largest zero of H' in (0,o). Multiplying the differential equations for .F'and If
by If and .t., respectively, taking the difference and integrating over (7,<r), we

obtain
H (iF' (i(sin 7)d-2 : tr''(aXsin a)d-2.

Fbom (2.a) we see that ä(7) ) 0: hence we have H"(l) < 0 (cf. (2.2)). This
means that ä has a maximum at 7 which contradicts our assumption that
H'(0) > 0 in (7,4). Our assumption that 7 exists must be wrong and we have
proved (2.10).

So far, we know that LF' : LHt : 0 and that F'(0) : H'(a) : 0. Thus we

can write /( in the following way:

The constants A and B are determinded by the system

I tp'(€) - BH'(O: s,

1-ar'(0 * BH"(O:1.

To compute the determinartt, we re-write the operator .t as

(2.11) Lh: h" +(d-2)(cotqh' +h(-(d,- 2)(sin 0)-'+p(p+d-2)).

Multiplying the differential equations for .F" and H' by If' and F', respectively
ta,king the difference and integrating, we obtain

F'G)H"(() - H'(()r"'(() : F'(o)H" (")(sin af stne)o-'.

From (2.2) we see that H't (") < 0 and that ("f. (2.4))

F'(€)H"(() - H'(€)F"({) : c(si,, O2 -o 
,

where c - "(o) is a positive constant. It follows that

The non-positivity of I( is now a consequence of (2.$ and (2.10). This completes
the proof of Proposition 2.

K@,o: t!{:(d), o<o<€,
Iaa'(o), ( <o1or.

KQ,O : [ "-:F'Q)H',(O(sin()'-2, o < o < e,

\ "-1 
F'G)H'(o)(sin e)o-,, ( S o 1 a.
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Proof of Proposition 7. A computation shows that when ot < 0 1rf2,we
have

A,Go@) : plxln-z (1p + d - z) - (p - l)(cos 0)r-2 (cos*)-r).

Since G, € Cl(Rd), the singularities in the second derivatives of. Gn at
0 : r12 will not give any contribution to the Riesz mass.

Using the lower bound for d, we obtain the estimate

LG, I pl*lr-' (@ + a - 4 - (p - l)(cos o)-'),

for r in the complement of the cones where Go is harmonic. The right hand
member will be non-positive if and only if

(2.12) cosz(a(p)) S (p- t)l@+d-2), t<p<2.

If (2.12) holds, AG, will be non-positive for 0 e (a,, |zr') and Proposition 1

will be proved.
To prove (2.12), we make a change of variable in (2.1) and consider /(t) :

lo1):.F)(arcsint) which solves the problem

(2 1a) 
{ !i; :"i," 

* 
;,,;{L;? 

-,2;2F) t' + p(p + d - 2)r : 0'

Let a bethefirst zeroof / in (0,1). Then a: sina and (2.12) isequivalent
to

(2.14) "> (@-t)/(p+d-21)1/2:1o.

Problem (2.13) has a power series solution 1* DT ont " where

ar : -p(P + d - 2)l (2(d - 1)),

Gn*L : an(2n(2n + d - 2) - p(p + d - z)) I (2{n * L)(2n+ d - 1)),

n :2rgr. . ..

It is clear that all these coeff.cients in the power series are negative and that
/ is strictly decreasing on (0,1). Thus (2.14) will follow if we can prove that
-fr(ro) > 0. A computation shows that

m lc-l

fo!o):1- (p/z) - (p/z) I fI ,",
2 n:l

where b* : (zn(2n + d - z) - p(p + d - 2)) (d - t) I Qfu + t)(2n+ d - 1 )(p 1 d. - 2)) .
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For each factor in the product we have the estimate

(2.15) bn < (2n - p)l\@ + 1)).

In fact, är, is increasing as a function of d and maximal when d : oo. we also

note that (2.15) is equivalent to

0 < (P -t)(2n-P)2n, n:L,2,"',

which holds when L < p < 2. We conclude that

(2.16)

(2.17)

2

where ck: III:,,(n - pl2)l@ + 1), k - 1,2,....
We shall prove that

D,r-(2-P)lP,
L

which implies that å(r0) ) 0, which is what we wanted to prove.

It remains to show that (2.17) holds. Let us consider the formulas

(k +2)cp,,1: (å + L * pl2)4, lc :7,2,....

Multiplying these equations by zk and adding them, we find that the function
u(z) : D? "oro 

satisfies the differential equation

u'(z) *,t(z)(z-t + @lz)(t - r)-') : (1 - plz)(t - ,)-r,

and is such that r.r(0) : 0. The solution is

u(z): (t - plz)(fUrl -z(pz)-t(t - plz)-'((1- z)P/2 - (1 -,))).

A classical Tauberian theorem tells us that if cx : O(llk), k - oo, then we have

I "n 
: lir4u(r) : (2 - p)lp.

7 rtl

It is easy to prove that c* : O(fr-(1+p/2)), k -+ oo. Hence the Tauberian
condition on the coefficients holds. This concludes the proof of (2.17) and of
Proposition 1.
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3. Construction of a superharmonic majorant of
lrln - Colrl lP: the case p ) 2

Assuming that p > 2 t19 let F : Fp be the solution of (2.1) on (0, |zr') which
satisfies the conditions .F(|r'):1, F'(';"):0. In Proposition 3, *" Jhull prorr"
that .F hasalargestzero B in (0,|z'): wehave F,(p)> 0 (cf. (9.2)). For 11 > 0
we define

Go@) -
We extend Gn to the whole of Rd via reflection: Go@): Gp(-rr,o,), 11 < 0.
The extended function will be harmonic across irr : 0) except at the origin. This
is clear since our condition F'(*"): 0 implies that the normal derivative of Go
on {c1 : 0} vanishes. Thus G, is harmonic in the complement of circular cones
around the positive and the negative rr -axis: the angle between a generatrix and
the axis is B.

Proposition Lt . Go is superharmonic in these cones.

The proof of Proposition L' will be given later.
The constants have been chosen in such a way that G, € cl(Rd). In exactly

the same way as in the case 1 < p < 2, we prove the first part of
Proposition 2'. Gn is superåarrnonic in Rd. .Fhrtåermore, we have

I l*lP - l*rlr(cos §)-o, 0 < 0 a g,

t l*l'(r@lF'(il)ptanB, P So < lrr.

(3.1) l*lo - Ir, lr(cos p)-o S Go@), n € Rd

Proposition 3t. Let Fo and B be as above. If p > 2, we have O < 0 < r".
Proof.It is easytocheck that F2(0):1-dcos2g and that cosB(2):l/Jd.

A starrdard argument shows that B@) is strictly increasing as a functi,on of p in
(2, *). We have proved Proposition 8,.

Proof of Proposition 2'. We claim that

(3.2) F'(0)>0, p<0

Integrating (2.7), we obtain

F' (0) - (sin 0)'-o p(p + d - F(t)(sin t)o-2 dt, 0 ( 0

Since F is positive in (g,lr),it is clear thai (8.2) is true.
Let L be the operator defined by (2.6). our claim (8.1) is equivalent to

,, l;

In.(3.3) s(0): (cosdlcos ilo -ttptanBF(0)/Ft(p)> 0, p <0 <
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Since 9(B) : 0, it suffices to Prove

(3.4) s'(0) : p(-(""s 0)r-1(sin 0)(cos B)-p

*ta;nBFt(0)lF'(P)) > o, § < 0 31".

It is easy to check that g'(B) : 9'(1rr):0.
A computation shows that when P ) 2,

(3.5) Ls' : -p(p- r)(p- 2)(sind)(cosg)r-3(cos P)-o <0, P <0 < L".

We note that Lgt is integrablein (p,f,r)'
Let K(O,O be Green's function for the problem Lh : 0,, h(il : h(f,r) : g,

P < 0 < lr . It we can prove that .I( is non-positive, it follows from (3.5) that

s,(o) : ["'' rr1r,€Xrg')(Od€ > o, 0 < o < Ln,
Jp

which implies that (3.3) and thus also (3.1) will hold.
To prove that K ( 0 in (0,1T), we introdwce H which is the solution of

(2.1) on (0,l") satisfying the conditions H(B) : 1' , H'(B) : 0. We claim that

(3.6) H'(e)<o, p<o<*".

To see this, we integrate the differential equation to obtain

H'(0):-(sing)2-dp @+a-D [t u$)(sint)d-2dt, P <0 <in.
Jp

Clearly,ä' is negative near B. Assuming (3.6) to be wrong, we let 7 be the
smallest zero of H' in (8,|r'). Multiplying the differential equations for F and
H by H and F, respectively, taking the difference and integrating over (8,1),
we obtain

H (iF' (i(sin 7)d-2 : r''(p)(.in 0)o-' .

From (3.2) we see that If(7) ) 0. Thus, we have H" (l) < 0 (cf. (2.2)). This
means that ä has a maximum at 7 which contradicts our assumption that ä'(d)
is negative in (P,7). Thus there can be no zero of ä' in (0,1") and we have

proved (3.6).
So far we know that LFt : LH': 0 and that Ft(lr): H'(0):0. Thus

we can write K in the following way:

K(',t) : {ail31,, 
u, :i : !".
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The constarrts ä and B are determined by the system

AH'(€)-B.F'(O:0,

-AH,,G) * BF"(6;: 1.

The same kind of computation as in the case 7 < p ( 2 shows that there is a
positive constant c: c(9) such that

r(0, o : { "Y-',\t-l!:!q)!'i" e)d-', B < o < €,
" - t cHt(()F'(0)(sinOd-2, € < 0 < n.

The non-positivity of I( is now a consequence of (3.2) and (8.6). This completes
the proof of Proposition 2'.

Proof of Proposition L'. A computation shows that when 0 < d < B, we have

AGo@): plaln-2(@+ a -4 - @ - 1)(cosd)r-2(cos p)-r).

using the upper bound for 0 and the assumption p ) 2, we obtain the
estimate

LGr(a) < pl*lP-2 (@ + a * 4 - @ - l)(cos p)-r),
for r in the cones where G, is not a harmonic function. The right ha^nd member
will be non-positive if and only if

(3.7) cos2 9@) S (p - t)l@ + d - z).

Fortunately, the proof of (3.7) is much easier than the proof of the corre-
spondinginequality (2.12) in_thecase L <p< 2. Intheproof of proposition 8,,
we saw lhat eosB(Z):|lt/d and that 0(p) i. strictly increasing as a function
of p in (2, *). When p:2, there is equality in (3.7). When p increases in the
interval (2,@), cos B(p) is strictly decreasing and the right hand member in (8.7)
is strictly increasing. Hence the inequality in (B.z) is correct and we h6r" prorreå
Proposition 1'.

4. Definitions and estimates of some harmonic measures

Without loss of generality we can assume that 0 € D. Let us1 be harmonic
in the component of D fl {1 e n, : lorl < t} : O n 4@ which contains 0
with boundary values 0 on äD n A(t) and 1 on ä1.(t) n D. Let ,a(., Rd, D) be
harmonic in that component of Di {r e Rd : lcl < it} which coniains 0 with
boundarvvalues 0 on äDn {lrl <.R} and 1 on Dn {lrl - R}. In components
which do not contain 0, these harmonic functions are defined to be o. tr\om the
maximum principle we see that

(4.1) 'u;;(r) < ,^,R(r, Rd , D), n€Dn{lrl <E}.
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Let us also assume that lr1 | has a harmonic majorant l[ in D. We introduce
two functions u1 and tut which are harmonic in D with the following boundary
values: 

/ \ {t, u€aD\,A(r),,,(r):10, x€\Dnaii1,

w{r): {[,', :Z""iit?,
We define to1 to be the difference between V(o) and the harmonic function

in D which has boundary values loll on ADnA(t) and 0 ot 0D \,4(t). We note
that D n A(t) is not necessarily bounded. According to Lemma L0, CD is not
thin at infinity. Applying Lemma 4L, we see that u.,1 is positive in D.

Remark 1. One of the main new ideas in [5] was to introduce a new kind of
"harmonic measure" which depended on the (essentially unique) minimal harmonic
function in Q : D associated wiih the Martin boundary point at infinity. If O

is a half-space {o1 > 0}, this minimal function is 11 and one of the examples of
this "harmonic measure" coincides with the function u;1 given above. If D is not
contained in a half-space, we avoid the minimal harmonic functions and study the
function ur1 directly (cf. Theorem A1 and its corollaries!).

Remark 2. We warn the reader that the symbols 9, ut, to1 and a;1 have
also been used in [5]. Even if the definitions are related, they are not identical to
the ones used in the present paper. However, if the same symbol is used, the two
concepts play similar roles in the two papers.

Tf a' : (*r,rrr...,td), we let ,&(.,") be the harmonic measure of the set

{o e Rd: lrll: T,l*'l> s} in th" strip {r € Rd: lrtl< ?}. From Lemma 6 in
[2a], we deduce that

(4-2)

where the constant C4 depends on the dimension only.
Let I{$ be a harmonic function in {lr1l < 

"} 
with boundary values lrl on

{c e ILd : loll : T,l*'l > cTlog?} and 0 on the rest of the boundary. Fhom
(4.2) we see that

(4.3)

Ifp
function

1", l_ T,
that

(4.4)

I+(o) : o(?'-"(log?)d-2), ?--+ oo.

> 1 and e is a number in (0,p - 1), we consider also the harmonic
K$ in {lrrl < ?i which has boundary values lrlr-" or, {r e Rd :

lrtl > y/@-")) and 0 on the rest of the boundary. From (4.2) we see

Klr(0) : o("'exp (-r"/(r-'))), ? -> oo,
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where o is a function of p, d and e.
It is clear that the right hand member of (a.a) tends to 0 when 7 -+ oo. It is

also clear that if c ) 1, the right hand member (4.3) will tend to 0 when 7 ---» oo.
Thefollowing Phragmdn-Lindelöf theorem is a simplified version of Theorem 2

in [2b].
Let u be subharmonic in the strip {r € Rd : lrrl < }}, t"t u be non-positive

on the boundary of the strip and assume that when o --) oo in the strip, we have

max(("(r),0) - o(l"lQ-d)/2 exp(zrl"l)) .

Then u is non-positive in { lr, I

harmonic in D such
have

(4.5)

(5.1)

5. Proof of Theorem 1

we know that there exists a function
that (0.2) holds. With q and 0 as in

11 /(coso)-P, 11p12,\rP 
\(.orp)-o, 2<-p(oo.

G e which is super-
Sections 2 and 3, we

(cf. (2.3) and (3.1)). The function Co is continuous in the interval (1,m), de-
creasing on (1,2] and increasing on (2,oo).

We shall use the Riesz representation theorem (cf. Theorem 6.18 in [10]).

Theorem R. tret D be a domain in Rd having a Green's function G artd let
u be superha,rmonic on D . If u ) 0, there is a unigue measute p, on D such that
u : Gp+ h where Gp, is the Green potential of pr and h is the greatest harmonic
minorant of u on D.

Let us assume that ä* is the least harmonic majorant of lrlle in D. If e is
a small positive number, it is easy to see that

where C(p,r) : max(rp-e - P), t e [0, 1]. According to (0.2) with p replaced by
p - €, we have

where Q@,e) : Co-"C(p, e) - 0, e --+ 01 .

since the right hand member is non-negative and superharmonic in D, we
can apply Theorem R and see that there exists a measure pl" such that

Cu-"h* (*) + Gr-,(r) + Q@,e) : h,(r) + G p"(r), n e D,
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where ä, is the greatest harmonic minorant of Cn-rh* * Gp-" + Q(p,e) in D.
particular, we have

(5.2) lrl'-"((h"*Gp")(u), a€D,

Lemrna 5.1. If laln has a harmonic majorant in D and if (5.2) holds,
have

(5.3) l*lo-"<h"(*), aeD.

The proof of Lemma 5.1 will be given later.
To complete the proof of Theorem 1, we use (5.1) and the definition of Gp-"

to deduce the estimate

(5.4)

where

reD,

(L, 1 1p12,

withB:0@-e).
When e - 0+, the constants tend to finite limits and we see that there is a

constant Cs which does not depend on e such that for e small, we have

0s h"(*) s co(h.(r)+l*lr-") +Q@,e), n € D.

In a standard way we can now prove that gradä" is locally uniformly bounded
in D as e * 0+. From the Arzelä-Ascoli theorem, it follows that there exists
a sequence {e,"} tending to zero such that {h""}flt converges pointwise to a
function hs in D as n + oo: the convergence is locally uniform. The function ä6

is harmonic in D and a majorant of lclr.
To prove the Corollary we first note that (0.1) is an immediate consequence

of the identity
Cp-"h*(0): å"(0) * Gp,,(o) - Q@,r).

We give the details of the proof that C, is best possible in the case L 1 p 12. We
recall that a:a(p) and F- tr! were defined in Section 2. If. er: (1,0,...,0)
and s g (1,p), we consider the cones
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In

lp: {r € Rd :0 < 0 < o(p)},

and the inequalities

f; - {r €Rd:r*4 €Ir},

+ 1 ) n € f'r,
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(5.6) la * e1l' < lrl" + 2lrl+ t, o e I'".
we define p : *""or((l + x)lle1+ ,l) . Let tt! and U" be the least harmonic
majorants of 11 * o118 and lr f erl' in l!, respectively. It is easy to see that

UI@): lo + e1l"(coso(p))'F"(p) lF"(o(p)),,
U"(a) : l, + "rl F"(dlF"("(p)).

Let h[ and ä" be the least harmonic majorants of lcll' and lrl' in I!,
respectively. Let V be the least harmonic majorant of.2lxl * 1 in I!, where
S e (1,p) is fixed. If C < s <-p, it follows from (5.5) and (5.6) that

hi@) < U!(r) + t, U"(*) < h"(r) +V(x), o € ry.
Since lim"- , F"("(p)) : 0, we conclude that

lim inf h"(0)lh:(o) > (cos(a(p))-o : Co,

which proves that C, is best possible.

Proof of Lemma 5.1. From Corollary A2 with O(r) : tP , we see that
(5.7) TewT(O) --+ 0, ? --+ oo.

From now on, we assume that 7 is large. Let gr be harmonic in Dfl
{l"rl < 

"} 
with boundary values lrlp-" on Dn {lc1l: "} 

and zero on äDn
{ lrr l < 

"} 
. We claim that

s712TPa7 + Kb,
in D n { lrr l < 

"} 
. (the definition of I$ is given in Section 4.)

This follows from Lemma A1 since

laf-c < 27n, lrr l = ?, lx'l < 7t/b-") .

We recall that c' : (xz, . . . , sd). Using (a.a) and (b.Z), we deduce that
(5.8) or(0) -+ 0, ? + oo.

If laln-" - h"(*) has a positive lower bound on a set of positive harmonic
measure on 0D, then it would follow from (5.2) ihat Gp," would have a positive
harmonic minorant in D which is impossible (cf. Corollary 6.19 in [10]). Hence
luln-" - h"(*) has non-positive boundary values oa 0D. Let us now in D f'l
{lrrl < ?} consider the function lrln-e - (ä" * Sr)(*) which is non-positive on
A{On {lrrl < 

"}} 
and dominated from above by lolr-". This growth is far

below the bound below which a Phragm6n-Lindelöf theorem holds in the strip (cf.
(4.5)). Hence we see that

lrlr-" ( (h"+sr)(*), xeD n{lr,l <"}.
Finally letting 7 --+ oo and using (5.8), we obtain (5.8). We have proved
Lemma 5.L and completed the proof of Theorem L.
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6. Proof of Theorem 2

we first note that lrl llog+ lr1[ has a harmonic majorant in D if and only if
.f(rr) : 1/TT@t"g(1 + o?) has a harmonic majorant in D. Assuming that /
has a harmonic majorant in D, we shall prove that s(x): Ca(l+;c;z)1/2 has

a harmonic majorant in D. Here the constant Ca is chosen in such a way that
u: f -g issubharmonicinRd (wecanchoose Ca:2ld).

we can now argue as in the proof of Theorem a in [5]. Let, hs be the least

harmonic majorant of / in D. Since we have u I hs - g, ho-u is a nonnegative
superharmonic function in D. According to Theorem R, we have hs-u: Gp*h,
where ä is the greatest harmonic minorant of hs - u in D and Gp, is the Green

potential of a nonnegative measure p, in D.
We wish to prove that h is a harmonic majorant of g iu D. So far, we know

that g < Gp, * ä. Just as in the proof of Theorem 1, it is clear that g - h is
non-ptsitive on 0D. Applying Corollary A1 with p(t) : t log+ t, we see that

From now on, we assume that ? is large. Let gy be harmonic in Dfl

") 
with boundary values lrl on D n {lr1l : "} 

and zero on ODn {lr1l
We claim that

gr S 3? log Twr + Iib in D n {lr, < f }.

(The definition of K$ can be found in Section 4: let us öoose the constant c in
the definition to be 2.)

This follows from Lemma A1 since

l"l < 3?log?, lr, I - T, lr'l <271og7.

llsing (4.3) and (6.1), we deduce that

(6.1)

(6.2)

? log Twt(O) + 0, f -» oo.

g"(0) -» 0, T + o'o.

Let us now consider the function g - h -2Cagr in D o {lrrl a ?}: it is
non-positive on the boundary of this set and dominated from aboveby lrl. The
same Phragm6n-Lindelöf argument as in the proof of Theorem 1 tells us that

s < h+ZCagr in Do ilrrl< ").
Letting 7 --+ oo and using (6.2) we see that h is a harmonic majorant of g. This
concludes the proofof Theorem 2a.
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In the proof of Theorem 2b, we assume that lol has a harmonic majorant in
D and that the least harmonic majorant i[ of lcll in D is such that i[(r) < Cl"l
when o € D is large. It is known that tol ( itr in D. We define 11: {r e D :

i[(r):r]. It is easyto seethat lrl >tl1 on 11 and thus that

(6.3) u,t(r) 3 tq/c(r, Rd , D), n€Dn{l"lStlC}.

In the last step we used the maximum principle.
Our assumption that lol has a harmonic majorant in D implies that

(6.4) 
lo* 

,rro,Rd, D) dt < x,

(cf. Theorem 2 in [8] with O(r) : r!).
Another consequence of the maximum principle is the inequality

(6.5) ,,(0) < ar,(0, Rd, D).

From (6.4) and (6.5) we deduce that tarl(0) --+ 0 as f -+ oo: this is (Aa) in
Lemma A5 and Theorem 41. Combining (6.3) and (6.4) we obtain

f@

J, 
ur,(0)t-1dt < oo,

This is condition (A 7') with O(r) : t log+ t . Since (A7) is equivalent to (A 7' ) we
can apply Theorem AL and conclude that lcl llog+ lrl l has a harmonic majorant
in D. We have proved Theorem 2.

Remark. Let ho be the least harmonic majorant of g in D. It follows from
the proof that we have

hr(o) < ho(o)+zd-r.

(We recall that äs is the least harmonic majorant of / in D.)

Appendix

Definitions of the harmonic measures used in the Appendix are given in Sec-
tion 4.

Let D be a domain in Rd, d > 2. We shall many times need the maximum
principle in the form given below in Lemma A1. In order to show that all domains
D which are studied in the present paper are such that the complement CD is
not thin at infinity, we need a simple observation which we state in Lemma A0.
For a discussion of thinness and its relation to harmonic measure, we refer to [8].
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LemmaAO. Assume that lrll åas aharmonic majoraat v in D, Then cD
is not thin at infinity.

Proof. Let f : [0, oo) -+ [1, m) be strictly increasing, continuous and un-

bounded. Furthermore, we assume that as t --+ oo, we have

(i) f (t) lt --+ oo'

(ii) rt (Ios /(t)) -v 0,

(iii) t(/(t))-' (1og /(t)) '-+ o.

Necessary and sufficiettfor CD not to be thin at infinity is that

ara(0, Rd, D) -» 0, E -r oo, when d ) 3,

(log R)c.ra(0, Rd, D) -* g, E --+ oo, when d : 2,

(cf. the proof of Lemma 4 and Lemma 6 in [8]).
We write @n(.,Rd,D) as ,\]) +rfi), where ,$) it the harmonic measure of

D n {u € Rd : lrl : E,lrl < /(lrrl)} i" D and ,f;) ir the harmonic measure of

the råst of Do {lrl :.8} in D. Since lrrl > /-'(8) on {r € Rd: lcl : E <
/(lrrl)), it follo*" from the classical maximum principle for harmonic functions
in a bounded domain that

To estimate *g) we note that this function
in {l"l . R} *hi.h i. 1 on {r € 11d ' lrl
{l"l : E}. We conclude that

nr_Dn{"€Rd:lrl <ft}.

is majorized by the harmonic function
: -R > f (1", l) ) and o on the rest of

,f)(0, Rd, D) ( const. 1r-r1a;7R)d-'.

Combining these two estimates we obtain

a,p(0, Rd, D) < {,(0)/ (/-t (,8)) * const. (f -'(41 n)d-t .

Letting .8, --+ oo, it is easy to check that the criteria for C D not to be thin at
infinity are fulfilled in the two cases d ) 3 and d:2. This concludes the proof
of Lemma 40.
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Lemma A,L. Let D be a domain in Rd, d) 2, sueh that CD is not thin at
infinity. If h is harmonic and bounded from above in D a.nd if h has non-positive
boundary vaJues on 0D, then h ( 0 in D. (Cf. Lemma 1 in [5].)

In [7] we considered the question whether certain radial functions had har-
monic majorants and it was natural to work in subdomains of the type Df.|

{lrl < ä}. In the present paper we apply the same technique to subdomains
of thetype Dnilrrl<r): DnA(t).

Let L be the class of convex increasing functions on [0, m) which are such
that if § e L, we have O(0):0, O'(0):0 and limr-oo O(t)lt ) 0. Let g(r,.)
be Green's function for D with pole at o.

Lemma A2. Let § e E. If O(lo1l) å* a harmonic majorant in D, then
s(r,.) exists and we have

(A1) o'(t)u,(0) dt + e(0,y)Q" (ly, D dy < oo.

Proof. Let h be the least harmonic majorant of O(lr1l) in D. la D1 :
A(t)n D we have O (lrr l) : (h, - Pr)(r), where lzt is the least harmonic majorant
of o(lo1l) in a(t)oD and

Pt(n) - et(r, Y)O" (lY, l) dv.

Here g1(a,.) is Green's function fot D1 with pole at c. Since ht t h for all f ,

the sequenc" {h"}f converges to äo which is harmonic in D and a majorant of
O(lrrl). It follows that äo : ä.

Thus the seguence {P"}f converges to a function P in D defined by

P(*)- g(n,, u)§" (lv, l) av.

We conclude that the second integral in (41) is finite.
Using Lemma A1 we see that h2@(t)q in D for all t > 0. It follows that

the first integral in (41) is at most 2h(0). This completes the proof of Lemma A2.
Outside their domains of definition we define the Green functions to be zero.

Let do(y) - dyz . . .dya. We introduce

I
t(t): I s\,ild"(y).

J lyt:tl

Lemma A3. Let Q e L, and let O(lrrl) have a harmonic majorant in D
and assume furthermore that O(t)lt ---q oo, f -+ oo. Then 1(r) + 1(t) -+ 0,
f --+ oo,

t,l,*

Const . I
Jo,

Const . I
J»
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Proof. Let us first prove that if z('o) < oo for some-ts-) 0' then 7(t) -is
d"".;i;; or, 1to,*;. This is t 

"ot'"qllåtce 
of the proof of Lemma A2' The

subharmonic function g,(0, ') is nonnegative and bounded in the strip {y € Rd :

0 ( to l ar < n,]: it is integrable over {y, = toi-Tdwanishes o'{yr = ?}'
Hence 9,(0,.) is dominated by the poissÄ integral in the strip with boundary

values e,(0, ') "" {;:;;r-;ä 0 on {v1 : n} ' Il 7'(t) is the integral of s"(0' ')

over thl hypåtpluo" {v':t}' we deduce that

%(t) < z"(to), ts 1t 1n.

Letting n -+ &)$7e §ee thai 7(t) < 7(to), t 7.t.o'. The s.ame a'rgment shows

that 7(t) i, d""r"u,"ing on [fs,l'i ""a 
if'åt zftl is increasing on (-oo' -'0] if

7(-fo) < oo.
From the convergence of the second integral in (A1) and the monotonicity of

7(r) + ^t?t) on (0, oo), we see that

(r(r) + r(-")) o'(7) g(0 ,y)o" (ly, l) ay ( oo.

Since O'(?) + oo as ? -» oo we obtain the conclusion of Lemma A3' :r -
Let öt be hurmonic in alzt;\ (zo\D) with boundary values 0 on Ä(t)\D

and 1 on 0A(2t). We extend 6r to a function superharmonic in Rd \ (ZO \ D)

by defining 61 to be 1 on {r € Rd : lrl l 2 2t} '

Comparing boundary iulo", of t'he'harmånic functions in D O A(2t) and in

D n A(t), we see that

(A2) c.r1(0) 2 ör(0) 2 rzr(O).

ln D,we have öt : Ht1 Q1 , where ät is the greatest h'ar1gnic minorant of

C:t h D ffid Q, i, u,"Gr""r, poiential' It is easv to see that ä'(0) < ut(0)'

Let p be the Riesz *.r, of Q1 restrictea tä nd \ (7O\ D): it is known that

suppp c AAQI). We define I((c): (lrrl - t)+ lt, ' 
< l'rl < 2t' Then we have

d,pr(a)ldo: const. l@atlon)(x)l < const. l1oN1o"11*)l : const' t'r ' lall:21'

(43) 8,(0) : tuorrrs(o,v) 
dp(il < const' t-t (t?t) + (-zt))'

Lemma A4. IJnder tåe assump tions of Lemma A3, we have to{o) -'+ 0,

t -+ oo.

sl,
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Proof. The convergence of the first integral in (A1) implies that we have
O(t)ut(0) --+ 0, f + oo and thus that tu1(0) --+ 0, f -+ oo. From the discussion
above we see that

tö10) <t(H, +Q'Xo) < tu1(0)* Const.(7Qt)+^rezq).

From Lemma A3 it is clear that the right hand member tends to 0 as f --+ oo.
Using (A2) we see that tarl(O) --+ 0, * --+ oo. We have proved Lemma A4.

Lemma A5. Let the domain D be such that

(A4)

(A5)

twt(O) + 0, t -+ oo,

lr* 
td(-?)1(o)) ( oo.

Then we have

(A6) ,rr(*)<w{x)lt, neA(%)nD.

Remark. This is Lemma 6b in [5], adapted to the situation in the present
paper. The proof is similar to the proof in [5]. We include the details for com-
pleteness.

Proof. From our assumptions we see that there exists a function .ts: [0, oo) -
[0,*) suchthat Lo(t)lt 4oo, f --+oo,whichissuchthat

f@
I t o(t)d(-u1(0)) < oo, Ln(t)u;1(O) --+ 0,f --+ oo.

Jo

Let L be the greatest convex minorant of. Ls. Clearly, we have L(t)/t --y oor
I --+ oo. Since Z(l"r l) is subharmonic in D , we can use Lemma A1 in ,4,(f ) n D
to deduce that

.r(lrrl) = lr* 
L(t)d(-ut(x)) + L(t)w{x), r e A(t)n D.

Letting f -+ oo, we see that .D(lr1l) has a harmonic majorant h h D. We define
m(t):inf h(a), x € D n {lrrl: r}. Once more using Lemma AL u,e deduce that
if , < tt we have

lrll -ur1(o) < t*tfi(x)/*(tr), a e Dn (A(il) \ä(r)).
Letting f1 ---+ oo we see that

-r(*)> l*rl-t, t e Dn A(t); w1(a)) t, a e D n {l"rl:2t}.
Applying Lemma A1 we obtain (46). We have proved Lemma A5.



Theorerrr
t oo. Then
(47) hotd:

(A7)

Rernark.

(A7',)
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A1 . Let O € L and assume furthermore that A(t)lt -+ N,
O (1", l) has a harmonic majorant in D if and only if (A4) and

f*

Condition (A7) is equivalent to

roo

Jo

Remark. Theorem A1 is an analogue of Theorem 1 in [5].

Proof. tf O(lrrl) has a harmonic majorant in D, (A ) a,nd (A7) are conse-
quences of Lemmas A2 and 44.

Conversely, assume that (Aa) and (A7') hold. It follows that we have
O(t)w{x)lt --+ 0, t --+ oo. Let c ) 1 be given. From the proof of Lemma A5
we see that ar1,(c) < (c - t)-rw{x)lt, n e A(tc)n D. We conclude that
§(tlc),a: i(r) -+ 0, f --+ oo. It follows that

roo
h(a,c) : Jo o(tlc)d(-u1(e))

is a harmonic majorant of O(lo1l/c) in D. Letting c j 1, we obtain an increasing
sequence of harmonic functions which is bounded at 0 since (A7) holds. This
proves Theorem 1.

For functions O in L

Corollary A1 . Let
majorant in D then

(AB)

(Ae)

we define A(r) - fi s d(o(r)/r) .

O be as in Theorem A1. If O(trl l) has a harmonic

A'(t)orr(0) dt < oo,

§(t)w2,(0) -+ 0, t --+ oo.

Remark. In Theorem 2 in [5] it is proved that a condition which formally
looks almost exactly like (A8) is equivalent to the existence of a certain harmonic
majorant. In the context of the present paper we can only prove Corollary A1.
We note that the definitions of c.rs in [5] and here are different.

Prcof. If O(lr1l) has a harmonic majorant in D, it follows as above that
(Aa) and (47) hold. From Lemma A5 we see that (A6) holds. Our conclusion
(AB) is an immediate consequence of (A7') and (A6). Since (A7') holds we know
that O(t)ta1(r) lt -- 0, f --+ m . Using this fact and (A6) we obtain (Ag).

l,*
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Corollary A'2. Let O be as in Theorem 41. Fhrtåermore,we assume that
O satisrtes a doubling condition when t is large a.nd that

(A10) O(r) - 
^(r) 

for aJI large t.

?åen O(lr1l) å* a harmonic majorant in D if and only if

(A11) [* o'1t1rr1o)dr < m.
Jo

Consequently we have

(A12) A(t)a.,1(0) --+ 0, t --+ oo.

Proof. Under our assumptions conditions (A8) and (411) are equivalent.
Corollary A2 is now an immediate consequence of Theorem AL and Corollary A1.
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