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CONNECTEDNESS IN FINE TOPOLOGIES

J. Heinonen, T. Kilpeläinen, and J. Malf

1. Introduction

If E is an arbitrary subset of Euclidean n-space R', let Bo,r(E) denote the

Besselcapacityof E,0 <d<m, 1( p3nlo,thatis

B.,p(E): inr{ll/llf, : / e I!(R"), Go*"f > 1 in'E}'

Here .tr(R') is the usual Lebesgue space of p-th polver summable functions'

,o+(R") the nonnegative elemend ll/l[ the usual norm of f h L,' and Go * /
the convolution over R" of / with'the Bessel kernel Go, best defined by its

Fo,rri", transform G"(€) : (r + lel)-"|', see e'g' [St]' The reader should note

that the Bessel capacity is a Choquet capacity'

As usually irr rrorrlirr"u, pot"niial theories, we say that the set .E is (a,p)-thin

at c in R" if the Wiener integral converges,

(1.1) l,'
Here B(o,r) is the open ball {y e R" , lr- vl <'-}.:Jf ? is.not (a,p)-thin at

r, then'we say that b ir 1",p)-fat at x. The set å(E) of points at which -E is

(o,p)-fat is called the (o,p)- base of E '
' " +W" define th" (o, p)-å"" topology, ro,o, tobe the collection of all sets V c R
such that 7", the "oÅpl"*"nt 

of.-V, is'(a,p)-thin at gach x € V ' Thus V

is an (a,p)-fine neighbårhood of o € V if and only if V' is (a'p)-thin at r.'

"f. 1nfi, i.' rcZ). TJpological concepts.in (a,p)-fine topology.are equipped with

ifr"'pfrrut" "(olp)-firr"",Lr exampie (a,p)-finely open, (o'p)-finely connected'

or if no confusion arises, finely open, finely compact, etc'

The particular case of (",p)-fi"e topologies when a: 1.and 1- < p ( n is

related to second order ellipiic åquations. As well known, the (1,2)-fine topology

coincides with the classicai fine iopology of H. Cartan, the coarsest topology on
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R" mafting all superharmonic functions continuous. A similar result holds for all
p not greater than n: the (l,p)-fine topology is the coarsest topology in which
all supersolutions of the p-Lap1ace equation

div(lv" lr-'V") - 0

are continuous. In effect, the equation (1.2) can be replaced by a more general
degenerate elliptic equation

div A(*,Yu) : 0

where ,A(a,h).h x lhln. See [HKM] and Section 6 below.
There are several sources for the various properties of the Bessel capacities,

the associated nonlinear potentials, and the use of the (o,p)-fine topologies in
analysis. We refer the reader e.g. to [AH], [ALj, [AM], [Hed], [HW], [M1-2], [MK],
and [R2]. See also [F1]. However, topological properties of (o,p)-fine topologies
are not yet thoroughly investigated. In [AL] D.R. Adams and J.L. Lewis showed
that for ap > L each (o,p)-finely open and (a,p)-finely connected set is arcwise
connectedl the result is false if ap 1 1. Our main results in this paper assert that
the (o, p)-fine topology is locally connected (provided ory > 7) and it obeys Doob,s
quasi-Lindelöf principle: any collection of (cr,p)-finely open sets has a countable
subcollection whose union differs from the union of the whole family only by a
set of (o,p)-capacity zero. See Sections 2 and 3. In classical potential theory
these two properties are proved using the balayage of measures, a tool which is
not available in this nonlinear setting. In the linear situation these results are
found in [F2] and [D].

wb will also show that if ap) n - 1, then an (a,p)-finely open set is finely
connected, arcwise connected and euclidean connected at the same time, the asser-
tion being false if ap I n- 1. See Section 5. The case op ) n -1 thus resembles
the classical plane case where this result is known [FB], [GL].

In the final section, Section 6, we appiy the aforementioned arcwise connect-
edness result for asymptotic paths of ,4-subharmonic functions.

2. The quasi-Lindelöf property
In this section we show that the (a,p)-fine topologies obey Doob's quasi-

Lindelöf principle.
First we prove an auxiliary result, a modifled Wiener criterion.

2.1. Lemma. Let oo € RD. Suppose that up is a sequence of points with
l** - rol < 2-k-2, Ic : L,2,.... If B*(sx) : B(xx,B.2-k-rj, then a set E C Rn
is (a,p)-thin at rs if and only if

» (z-k(op-n) B,,o(E n Bx(*r))) 
t/(p-t)

k:L
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Proof. Since
B(xs,2-k-r ) c B 1,(u 1,) c B(xs,2-k),

the claim follows easily.
The Kellogg property was proved in [HW, Theorem 2]:

2.2. T}ne Kellogg property, Let E be any sef in R' . If eo,o(E) js tåe set

of ilI points at which E is (a,p)-thin, then

Bo,r(eo,o(E)na):9.

To state our main result in this section recall that ro,, has the quasi--Lindelöf

property if for each family {Ur}, ) € Ä, of (a,p)-finely open sets there is a

countable set I C Å such that

,.,,(U u^ \ [J u^) : o.

)€^ )€r

We prove

2.3. Theorem. Tåe (a,p)-fine topology r"',o has the quasi-Lindelöf prop-
erty.

Prcof. We make use of the following local capacity: Let {By'} , lc :1,2,...,
be the collection of all balls B C R" with rational centers and radii. Write

oo

cap(E) :Lr-r'-;ffi,
fr=l

for .E C R'. Then, clearly, cap(.) is a subadditive set function and Bo,o(E) : 0

if and only if cap(E) : [.
Suppose then that the sets U.\, ) € Å, are (a,p)-finely open and that

u-Uus'
Äc^

Let
6 - inf{cap(u t U U^) : r c Ä countable}.

Å€r

Then choosing countable sets li C A, j - L,2, . . ., with

cap(ut u u^) <6+tli
,\€f ;
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and putting
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we obtain
6: cap(F)

where
F:(J\ ! n^.

l€lo
To complete the proof we show that 6 : 0. Suppose, on the contrary that

6 > 0. Since Bo,r(F) > 0, it follows from the Kellogg property that there is a
point r € f'nä(.F") C U. Thenchoose Å e Å suchthat r e (J». Now, since
.F' \ U.1 is (a,p)-thin and F (a,,p)-fat at a, Lemma 2.1 enables us to pick a ball
.B7, with rational center and radius such that

B",r((F \Ur)na*). B..,o(F nBr)

whence
cap(F 1U.r) < cap(.F) : f

which is a contradiction. The theorem follows.

3. Local connectedness

This section is devoted to proving that the (e,p)-fine topology is locally
connected provided ap > l. This is not true if ap ( 1.

Recall that the (a,p)-base of the set E is

b(E) : {r e R" : E is (c,p)-fat at o}.

We have

3.1. Proposition. The (a,p)-base b(E) of a set.E C R" is a G6-set.

Proof. The sets

are easily seen to be open and, clearly,

b(E): fr "-.&=l

The lemma follows.
We call a set U C R" (o,p)-finely regularif. U" : b(U"). Proposition 3.1

immediately yields

ro-Öt,
j:1

Gx:{-eR,,lo,(,o,-nB,,o(E)B(,,,))),/b_,l+>
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3.2. Corollary. An (a,p)-finely regulat set (J is (a,p)-finely open and of

type F".
3.3. Remark. It is easily seen that the (o,p)-fine interior of any (a,p)-finely

closed set is (o,P)-finelY regular.

Next we establish the Lusin-Menchoff property (or binormality) for the (o, p)-

fine topology.

3.4. Theorem. suppos e that trI c R" is (euclidean) compact and T c R"

(o,p)-fin"ly closed with i fl 3l : 0. Then therc is an open set G C R" such tåat

TcGcGub(G)cF'.
Proof. we proceed with the proof ind.uctively. Put ?s : ?1 and let k € N.

Then choose a finite set Zp C F such that

,. U B(2,2-k-2).
zeLk

Write
P1, : {a€ R" : dist(o,.F) S S' 2-e-t}.

For each j : L,2,...,/c and z € Zi choose an open neighborhood Gp,i,' of Tp-1

such that
Bo,o(Gn,i,, n B/z)) < (2 - 2-k) B-,e(T n BiQ))

where B/z): B(2,3'2-i-2). Then putting

Tx: Tx-t, (n G*,i,, \ Pu)
l'z

we obtain

(3.5) Bo,o(TonB/z)) <(2-2-\B*,e(TnB{z))
for every j : lr2r.'.r,t + 1 and z € Zi s\tce

T*fiBx+t(z)CT*nPxCT.

To complete the proof write

n-l**:9,'o'
Clearly, G is open and ? C G C F". Moreover, it follows from (3.5) that

B.,o(G n B /z)) < 2 B.,p(T n B {z))
for all j € N arrd z € Zi. Hence Lemma 2.f implies that

ä(G) n F :0
and the theorem is proved.

111
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3.6. Remarks. (a) Stated differently, Theorem 3.4 says that F has an
(o,p)-finely open neighborhood U and ? an open neighborhood G suchthat
U f1G :0.

(b) Theorem 3.4 holds also if F is assumed to be closed instead of compact,
see Corollary 3.8 below and the proof of !LMZ,10.25].

The next two corollaries follow using [LMZ, 3.13 and 3.14].

3.7. Corollary. ?åe (a,p)-fine topology is completely regulan

3.8. Corollary. If U is an (a,p)-frnely open Fr-set, then there is an upper
semicontinuous and (a,p)-finely confinuous function .f : R" -r [0, 1] such that

u: {, € R': /(r) > O}.

3.9. Remarks. (a) It also follows that (R", ro,r) is a Baire space; see [LMZ,
3.161.

(b) Corollary 3.7 implies that (o,p)-regular open sets form a base for the
(o,p)-fine topology r..,o , cf. Remark 3.3.

We say that a property holds (o,p)-quasieverywhere, abbreviated (o,p)-q...,
if it holds except on a set of (a, p)- capacity zero. A function /, defined (o, p)- q.".,
is called (o,, p)- quasicontinuous if for every e ) 0 there is an open set G such that
Bo,o(G) ( e and that the restriction "f 1"" i. continuous. Then a function is
(a,p)-quasicontinuous if and only if it is (a,p)-finely continuous (o,p)-q.e. [HW,
Theorem 8].

3.1O. Theorem. Suppose that f is an (a,p)-finely continuous function on
R'. Then each oo € R' has an (a,p)-frne neighborhood W of an such that
f l* i" continuous.

Proof. Similarly to [HKM, 3.17] one can easily show that there is a set E C Rn
which is (a,p)-thin at rs such that

lim f(r) : "f(ro).,ilo",,

Fix j e N. Since / is quasicontinuous, there is an open set G; C B(as,2-r+2) \
B(*r,z-i-L) such that the restriction

f lA <r o tz-i +1) \( B( x a tl-i ) uG; )

is continuous and

(3. 1 1) Bo,u(Gi) 12-2i"
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Writing
oo

a: U GiuE
j=l

arrd w : B(a0,1) \.4 , (3.11) implies that w is an (a,p)-fine neighborhood of
rs. Moreov.r, flw is continuous as desired.

For the next lemma we need to assume that ap ) L.

3.L2. Lemma. Suppose that ap ) ! and that U is an (a,p)-frne neighbor-

hood of ao. Then there is an (a,p)-frne neighborhood V of rs, V C U, such

that V is connected in the euclidean topology.

Prooi. By [AL, Theorem 2] there is an (a,p)-fine neighborhood V' ot rs,
Vt CU, such that for each c €V' there is an a,rc 7, joining x to as in U. Then

v- U lx
revt

is the desired (o, p)-fine neighborhood of ns .

3.L3. Rernark. Lemma 3.12 is false rf ap < 1. Indeed, let

U- 0B(0,(Ö
i:L

rtj)) "

Since Bo,p@B(O, 1lj)) :0 for ap < 1 [M1, Theorem 211,

On the other hand, t0) is the euclidean 0-component of
fails to hold if ap < 1.

3.L4. Lemma. Suppose that ap > 1 and that U is
set. Then the family

tl is (o, p)-finely open.
U . Hence Lemma 3.12

an (o,p)-finely regular

ClopU : {V C tJ : V and [/ \ I/ are (a,p)-finely open]

is a o-algebra on U.

Proof. Let Vp e ClopU, le : !,2,..., and ro e fiErVr. It sufi.ces to show
that OI/r is an (a,p)-fine neighborhood of oe. Since for each integer k, the sets

V* ar,d U \ V* are (o,p)-finely regular, Corollaries 3.2 and 3.8 allow us to choose

upper semicontinuous and (a,p)-continuous functions "fr and gk,0 < fx, gx ( 1,
such that

Vp: {r € R' : /*(") > 0}

and
U \ Iz* - {, e R" : se(r) > 0}.
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Write
oo

/:»2-r(fn*sx).
k=l

Then / is (a,p)-finely continuous whence, by Theorem 3.10, there is an (o,p)-fine
neighborhood W C U of rs such fhat flrV is (euclidean) continuous. In light of
Lemma 3.12 we may pick an (a,p)-fine neighborhood W of 16, W C \T , s,,rch

that W is connected. Then fix /c e N. Since llw i, continuous *d "fr *d 9*
are upper semicontinuous, the restrictions f*lw arrd gxlw arc continuous. Thus
the sets V*fiW and (U\ Vx)nW are relatively open in W . Since ?7 is connected
and rs e V*fi 17 it follows that W CVx. Consequently

wcfiv*
lc=1

whence flErYr is an (o,p)-fine neighborhood of rs as desired.
Now we are ready to prove our principal theorem.

3.15. Theorem. If ap ) 1, then the (a,p)-fine topology is locilly con-
nected.

Proof. Let Uo be an (o,p)-fine neighborhood of os. Choose an (o,p)-finely
regular neighborhood U of os such that U C Uo. \Mrite

Clop,oU : {V CU ;so e V,V is (o,p)-finely open

and U\Y is (o,p)-finely open).

Using the guasi-Lindelöf property (Theorem 2.3) we find a sequence V1, € CloproU
such that the set

.e:Uiu\rr: v €ctop,ou)\ Ö(u\yr)
k=1

has the (a,p)-capacity zero. Then Lemma3.1.4 implies that

is an (o,p)-fine neighborhood of rs. On the other hand, W is the (o,p)-fine
component containing co since

W:n{v:VeCtop,,t}}.
The proof is complete.

3.16. Remark. The example in Remark 3.13 shows that the (a,p)-fine
topology is not locally connected if ap I l.

w - ö I/r\F
&:1
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4. Variational capacity and Hausdorff measures

Throughout this section let a : m be a positive integer and p ) 1 such that
mp a n. We present some results concerning capacity and measure densities;
these results, mostly known, will be needed in Section 5.

Let U and O be open sets in R" with U cc O. Define t}r.e vafiational
(m,p)-capacity of. U in O to be the number

cap*,,([J,O) : inf » [^ W"o1o O,
Jlt

la l= rn

where the infi.mum is taken over all p € Cf(O) with g ) 1 in U. lf E CC O is
any set we define

cap-,r(E, O) : Å{" cap^,,(U,Q).
UCCO oPen

Then there are constants c1 - c1(n,m,pdist(,8,0O)) and c2: cz(n,*,p,
diam(O)) such that

c1B^,,(E) 1 cap*,r(E, O) < c2 B*,r(E),

see [R2, Section 6].
Let h : [0, *) ---+ [0, m) be a continuous nondecreasing function with ä(0) : 0

and lim,*oo h(r): oo. We define the h-I{ausdorffmeasure(or content) of a set
Ebv

Hn(E): i,f {» hQ):, . Ö 8@6,r;)}.
i i=1

The following theorem is due to Yu.G. Reshetnyak [R1, Lemma 6] and [R2,
Theorem 4.1]; see also [Mar]. We briefly indicate how to deduce it from Reshet-
nyak's results.

4.1. Theorem. Suppose that

Un(E n B(r,")) I c I(r)o capnz ,o(E n B(r, 
") , 

B(*,Zr))

for r 1 rs . Here c - c(n,,ffirp) .
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The proof is based on the following lemma [R1, Lemma 6].

4.2. Lernrr,a.If u q 10(B(2r)) is nonnegative, sptu C B(2r) and

r u(a) ,rt(x): Jrrr,,lnffi dY'

then there a,re constants K1 - I{r(n,m,p), Kz: I{z(n,p) *rd Kg : I(a(n) sucå
that

,r({, : u(x), e$I) * K2r*-n/rll,llr}) t Ksrellulll

foraJl6>0.
Proof of Theorem 4.1, Fix r S ro. Choose I e Ctr@(2r)) such that 9 : l

in .E O B(r). Then, by [R2, Lemma 6.2],

p(*) < c1(n,m) lrrrn ,p_#ffi*.
Write

u(y): c1 D lP"r(r)|.
la l=rn

Since there is a constant c: c(n,rn) > 0 such that

"-'i* [ fuf d,m 1 cap*,n(En B(r), aQr)) < .i,,f. [ fuf dm
J aprl J epr'1

where the infimum is taken over all such u, we may assume that

ll"ll, < lK;rr(n-mn)ln
where Kz is the constant of Lemma 4.2.

Now choosing 6: 2K1I(r) Lemma 4.2 yields

Hu(n n B(r)) < Hn({a : v@) >- 1}) < c(rz, m,p)I(r)ellullPo.

This completes the proof.

4.3. Remark. As well known, the converse inequality for Theorem 4.1 hoids
with the function h(r) : ri-tnp if. mp < n, h(r) : (log(2lr))'-' it Tnp : n, sss
e.g. [MK], [R2, Theorem 4.21and [Mar, 4.1]. A survey of compa^rison theorems
can be found in [Hed].

4.4. Remark. If rnp < n it follows from the Sobolev embedding theorem
thatforr(1
(4.5) cap*,,(E,B(2)) < cap^,,(E,s(zr)) 1 ccap*,r(a, ap1)
whenever E C B(r). Here c: c(n,m,p), cf, fMaz, Proposition 9.1.1/3]. Hence

(4.6) c1B*,0(E) l cap*,r(E,B(2r)) 1c2B*,0(E)
whenever E C B(r). Here c; : ci(n,m,p), i : 1,2.

If *p: n, the assertions (4.5) and (a.6) do not hold.
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5. Comparison between different types of connectedness

Our main result in this section reads: for ap) n- 1 the (a,p)-finely open

set is (a,p)-finely connected, arcwise connected, and (euclidean) connected at the
same time.

we start with two auxiliary results. The first is a consequence of [AH, Theo-
rem B].

5.1. Lemma. Suppose that ap ) n - 1. Then there is 9o ) 1 such that

To,p C Tn_l,q

for all S € (1, So).

Proof. We show that the assertion follows from [AH, Theorem B].
We may assume that op ( n. Then we need only to show that there is g > 1

such that

(5.2) (n-1)(P-1)+n 
=a(q-])+n.pq

Since p ) 1, the left side of (5.2) is less than n. Hence there is Qo > 1 such that
(5.2) holds for g ( 96 because

a(q-l)*n _*n
q

as g --+ L. The lemma is proved.
The next lemma is essential, see [HK3, 3.4], [LM, 3.16] and [MS]for special

cases,

5.3. Lemma. Suppose that ap ) n - L . If U is an (4, p)- frne neighborhood
of xs, then there is a sequence of radii r; -+ 0 such that

lB(rs,ri) C U.

Proof. Write B(r) : B(ro,r) for r > 0. In the light of Lemma 5.1 we may
assumethat o:n- L and that ap <n. Let E:U". Wemayfurtherassume
that .E is open. Let q - l(op+r? - 1) ) n -L and write å(r) : rn-q, r ) 0.
Then

,r(r): 
1," (H)"' +: c(n,p)r@-dln,@n-n)/t

and hence it follows from Theorem 4.1 and Remark 4.4 that, for r ( L,

An(E n B(r)) - -.uPo,o(E o B(r), A{zr))
\J.=/ r*q -c ,"-ae

a.(r,dB#.
' rn-oP
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Fix r ( å *d suppose that for each p e llr,rl the sphere ABQ) meets E. Then
it follows easily, cf. Remark 5.7 (b) below, that

(5.5) Uu(E nB(r)) > Il1,(llre1,r"rl) > c(n,p)r"-q

where er : (1,0,...,0). Then (5.a) and (5.5) yield

(5.6) B"',P(E n B(r)) 
> c(n,p) > o.

rn-aP

On the other hand, since E is (a,p)-thin at rs we can find an integer j6 such
that for r : 2-j, i : io, Jo * 1,...,

B",r(E n B(r)) ..
rn-aP

where c is the constant of (5.6). This proves the lemma.

5.7. Remarks. (a) Lemma 5.3 fails to hold for ap I n - 1. In fact, the line
segment E: (0,e1] is of (a,p)-capacity zero [M1, Theorem 21] whence E" is an
(e,p)-fine neighborhood of 0.

(b) To establish (5.5) above we made use of the following simple symmetriza-
tion property of Hausdorff measures: Let E C R" and write A- : {lrl e1 i & e
.E) . Then Hn(E*) < Hn(E).

The main result of this section is

5.8. Theorem. Suppose that ap ) n -'J. and that U is an (a,p)-fin*
open set. Then the following are equivalent.
(1) U is (a,p)-finely connected.
(2) U is arcwise connected.
(3) U is (euclidean) connected.

Proof. The implication of (t)=+(Z) was proved in [AL, Corollary 2] for all
ap > 1. Since (2) trivially implies (3) we need only to show that (3) implies (1).
This, in turn, immediately follows from [LMZ, 5.4] and the next lemma.

5.9. Lemma. Let dp > n - 7. If V and W are disjoint (a,p)-finely open
euclidean connected sets, then

VnW:A.
Proof. Suppose, on the contrary, that os e V nW. Let 11 e W . In the light

of Lemma 5.3 we can pick a radius 0 < r < l*, - *ol such that

lB(rs,r) cV CW".

Then let a2 € W n B(xs,,r). Since äB(rs,r) separates o1 an.d a2 in W, W
cannot be connected, and the lemma follows.
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5.10. Remarks. (a) Let U be an (a,p)-finely open and (o,p)-finely con-
nected set with ory > 7. It follows from [AL, Theorem 2] that each two points in
U can be joined by a coordinate path in U.

(b) Suppose lhat ap I n - 1. Then the statement (2) (and hence (3)) of
Theorem 5.8 does not imply (1). To see this, suppose first that ap )'J',. Let E
be the line segment (0,rr]. Since .E is of (o,p)-capacity zero we may choose an
open connected neighborhood D of E such that D is (a,p)-thin at 0. Thus D"
is an (o,p)-fine neighborhood of 0. Let V be the (o,p)-fine component of the
(a,p)-fine interior of D' containing 0. Then V is (a,p)-finely open and arcwise
connected by Theorem 3.15 and [AL, Corollary 2]. Thus

U: DUV

is (o,p)-finely open and arcwise connected. However, U is not (a,p)-finely con-
nected.

Next, using the inclusion relations among fine topologies [AH, Theorem B] we
obtain a counterexample also for ap I 1. if n ) 3. The plane case follows from a
slightly more careful but similar reasoning.

(c) For ap I 7 the implication of (t) + (2) in Theorem 5.8 is false as shown
in [AL, p. 62), cf. Remark 3.13.

(d) Theorem 5.8 is known in the plane for the classical fine topology, cf. [F3,
Theorem 3] and [GL].

6. Asymptotic paths for ",4-subharmonic functions

In this final section we give an application of Theorem 5.8. We show that
there is a coordinate path along which an entire ,,4-subharmonic function which
is not bounded from above tends to infinity. However, due to Theorem 5.8, we are
confined to the case p ) n-1.

Recall that the (1,p)-fine topology, 7 < p I n, is intimately connected
to the (nonlinear) potential theory of " -subharmonic functions. More preciselg
let ",4 : R' x R' --+ R' be a mapping which satisfies the usual assumptions of
measurability, boundedness, ellipticity, coercivity and homogeneity (that is, the
assumptions (2.1) - (2.5) in [HKM] or in [H]). Continuous weak solutions to the
equation (1.3) are called A-harmonic, and an upper semicontinuous function u
in an open set O is termed A-subharmonic if for each domain D, compactly
contained in Q, and each , -harmonic h e C@), h) u in 0D implies h2u
in D.

For basic properties of ,4-subharmonic functions and their potential theory
we refer to [HK 1-3], [K].

It was proved in [H] that if u is an entire ,4-subharmonic function in R',
and not bounded above, then there is a path f , f (f ) --+ oo as f --+ oo, such that
u(r) -- oo as o tends to m along l. In the classical theory of subharmonic
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functions it is known that the path I can be chosen to be polygonal; this was first
proved by L. Carleson. We refer to [F3] for a lucid survey on the subject.

We do not know whether a polygonal path can always be found for general

"4-subharmonic functions. However, we apply Theorem 5.8 and show that this is
the case at least for p ) n - 7.

6.1. Theorem. Supposethat p>n-1 andthat u is tL,-subharmonicin
Ro, unbounded from above. Then there is a coordinate path I going to infinity
such that

'S'(r) 
: m'

a€r

By a coordinate path we mean a path which is a countable union of (possibly
degenerated) line segments parallel to the coordinate axes.

Before we indicate how Theorem 5.8 can be used to deduce Theorem 6.1 some
remarks about (l,p)-fine topology and " -subharmonic functions are due.

In [HKM] the ",4-fine topology ra was defined to be the coarsest topology in
R" making all " -subharmonic functions in R" continuous. It was then shown in
[HKM] that

TA: T\,P'

In effect, in [HKM] a seemingly different Wiener criterion was used, namely

(6.2) (rn-ncaPr,p(EnB(*o,r),B(*,)2r))),/(p-t)+<

However, this integral converges simultaneously with the integral in (1.1). For
p < n this is an immediate consequence of (4.6) and for completeness we provide
a proof in the case p : n (the fact that the two Wiener criteria coincide also when
p: n is evidently part of the folklore). Thus, let p: n and define the capacity

equivatrent to the Bt,n-capacity, cf. IAIvI] or [Hed]. We

6.3. Proposition. Let E C R?z and n e fln . Then

if and only if

1

I
0

C1,*(E)- inf 
U*-

Then the Ct,n-capacity is
prove

i
k:1

i
Ic:1

Here Bx * B(*,2-*).

(Cr,n(E ) Br,))'/(,"-1) < co.
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Proof. The ,,only if" part being a trivial consequence of Poincar6's inequality,
we only prove the converse. For & g N let u* be the C1,2-capacitary potential of
EfiBx. Let d,p: snpaBr_r u;r. We show that limr*-d* :0. This will complete

the proof since then for & big enough dx < *, and it follows that

Cl,n(E n gn) > 2-n capr ,n(E fr Bx, B*-r)

which implies the
To this end,

inequality for up
infiniteset /CN

forevery k€1.
Write

Fix k e N and pick the least

assertion.

outside B* and the minimum principle (see [S]) we obtain an

such that 
jrf u1, z c(n)d,
B *-r

.S - U ark-1.
keI

j

cr,o(E n Br) >- Cr,n(E n Bi) > @d)"C1,"(Bi-r)
) (cd,)C1,"(^9 n Bft).

Then the set ,9 is (t,n)-thin at r, contradicting Lemma 3.12. Thus d:0 and
the proposition is proved.

Proof of Theorem 6.1. Let u be an .A-subharmonic function in R', un-
bounded from above. Then there is a number tro > 0 such that for each L ) Lo
u is unbounded in the set K(x,L), where K(x,L) is the union of all continua
which contain r and on which u is 2 -0, see [H,4.5]. Pick points r7 in R"
inductively as follows. Lel a1 be any point such that u(r1) > 2Lo, and suppose
that c1 ,..., oj havebeenchosen. Let o111 beapoint in K(a1,"@)) suchthat
u(* j+r1 2 2i+r Lo. Then r1 and oi+l can be joined by a continuum in the finely
open set {u > 2tls}. Since p > n - 1, Theorem 5.8 implies that ri and zr41
belong to the same fine component U1 of. {u > ZiLo}; in particular, there is a
coordinatepath li joining ri and r7'.u1 in Ui lAL, Theorem2]. Then I:Ulj
is the required path, and the theorem is proved.
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