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HYPERBOLIC METRICS ON FINITE-DIMENSIONAL
TEICHMULLER SPACES

S.L. Krushkal’

1. Introduction. Statement of result

Teichmiiller spaces are important in different fields and also interesting as
model examples in the general theory of complex manifolds, especially hyperbolic
ones. Thus it is of great interest to establish how the general problems deriv-
ing from the theory of complex manifolds are solved for these spaces. One such
problem is the question of the coincidence of invariant hyperbolic Carathéodory
and Kobayashi metrics; it was posed in [1}], [4]. This question proves to be very
important also for the variational problems of geometric function theory (see [9]).

For the finite-dimensional Teichmiiller spaces T(g,n), which correspond to
Riemann surfaces of finite conformal type (g,n) with 2g + n > 2, the situation
is as follows. There is an important theorem by Royden [12], asserting that on
these spaces the Kobayashi metric coincides with their intrinsic Teichmiller met-
ric, which is defined by using quasiconformal mappings; later Gardiner [13] has
extended this result also to the infinite-dimensional Teichmiiller spaces.

On the other hand, it was established by the author in [7], [8] that, on the
Teichmiiller spaces T(g,n) of a dimension greater than two, the Carathéodory
metric on the whole is smaller than the Teichmiiller-Kobayashi metric, so the
problem has a negative solution. The arguments used there assume the existence
on the surfaces of three linear independent holomorphic quadratic differentials
(with fully determined properties), and thus they are suited for dimT(g,n) > 3
only. The question remained open for the Teichmiiller spaces of dimension 2; there
are the spaces T(0,5) of the spheres with five punctures and 7T(1,2) of the tori
with two punctures, which are biholomorphically equivalent.

The goal of the present paper is to show that the metrics do not coincide for
these spaces either. The reasons proposed below are valid simultaneously for all
spaces T(g,n) of dim > 1 with punctures; for dimT(g,n) > 3 that gives a new
(and more effective) proof that the above metrics do not coincide.

On account of applications, it is important to have sufficient conditions on
holomorphic disks in T(g,n) that provide the coincidence of invariant metrics on
these disks. Kra [6] has shown this to be true for the Abelian Teichmiiller disks
defined by quadratic differentials with zeros of even order. An analogous result is
established in [10] for the universal Teichmiiller space; it can be extended also to
the Teichmiller spaces of finitely many punctured disks.
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Here we prove

Theorem. Let dimT(g,n+1) =39—-2+4+n >1 (¢ >0, n > 0) and
m: T(g,n + 1) — T(g,n) be the canonical fiber space in which the projection is
induced by forgetting a puncture on a base surface of type (g,n + 1). Then, in
fibers ©~(z), the hyperbolic Carathéodory and Teichmiiller-Kobayashi metrics
(on the space T(g,n + 1)) do not coincide.

2. Some auxiliary constructions and results

First of all, we recall that if M is a complex manifold (finite-dimensional or
even Banach), its Carathéodory metric is

em(z,y) = sup{g(h(:c),h(y)) : h € Hol(M, A)},

where p is the hyperbolic metric in the unit disk A = { z:|z| < 1} of curvature

—4, i.e., with the differential element dp = (1 - |z|2)“l , and the Kobayashi metric
du(z,y) is the greatest of all pseudometrics d(-,-) on M satisfying the inequality

d(h(z"), h(z")) < o(z',2"), h € Hol(A, M).

Let Xo be a given Riemann surface of conformal type (g,n + 1), i.e, of genus
g with n+1 punctures, where 29 —2+n > 0. Fixing a conformal structure on X,
we consider this surface as the initial point in T(g,n + 1). Let pp be a puncture
on Xy and 5
Xo = Xo U {po}.

We uniformize the surfaces X, and X, by finitely generated Fuchsian groups I’
and I' of the first kind and without torsion, acting discontinuously on upper and
lower half-planes
U={z:Imz > 0}, U*={z:Imz < 0}.
Then, as well known,
T(g,n +1) = T(T) = Loo(U, )1 /{4 € Loo(U, D)y : wh| = id},
where

Loo(U,T)1 = {1 € Loo(C) : ulU* =0, (no7)¥'/v' =p, v€T; |pllo <1}

and w* is the quasiconformal automorphism of C with the Beltrami coefficient
# € Loo(U,T); and fixed points 0, 1, co.
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The conformality of w* in U* allows us to consider the mapping

htn YT e

which correctly defines a biholomorphic isomorphism of the space T(g,n+1) onto
a bounded domam in the space Bo(U*,T") of holomorphic solutions of the equation

(i oy)y? , v €T, in U*, with the norm ||| = supy.(Im z)ﬂv,b(z)‘ Here, &
itself acts holomorphlcally from Loo(U,T'); to B2(U*,T') and, in particular,

déd
1) dB(0)u = // MORD  (=erinzer?)

We identify T(g,n +1) with its embedding in Bo(U*,T’). An analogous construc-
tion is valid, of course, also for T(g,n) = T(l") the corresponding projection for
this space we will denote by @

The Teichmiiller metric on T(g, n+1)is

0 (8(1), 3(v)) = }inf{log K(w# o (w*)™" : @(n') = B(n), 2(+') = B(»)},

where K(w®) = (1+|loll)/(1 = llolls) -
One could easily establish that

(2) CT(:E’ y) < dT($a y) < TT(m,y)'

The identical embedding j: Xo — X, “forgetting a puncture” induces an
isometrical isomorphism j,(1): Leo(U,T) = Loo(U,T) by

Jx(p)oJ = pl') T,

where J: U — U is a lifting of j from zo onto U; this isomorphism is compatible
with the projections ® and ®. Thus j determines a holomorphic fiber space

(3) m: T(g,n+ 1) = T(g,n),

which is mentioned in the theorem (this fibering is a holomorphic disk family
admitting only a real local C*°-trivialization).
With this fibering is connected another fiber space

(4) To: F(g7n) - T(gan)a

which was introduced by Bers. Here

F(g,n) = F(I) = {(®(p),7) € T(T) x C: p € Loo(U, D)y, 2 € wh(U)},
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with the projection my: (é(u),z) - B(p).
According to Bers’ isomorphism theorem [2], the fiber spaces (3) and (4) are
isomorphic; thus there exists a biholomorphic isomorphism

T(g,n+1) = F(g,n)

compatible with the projections. It is defined by the map

p (8((w), w0 M (=) ),

where z; is a fixed preimage of the point py in U by a universal holomorphic
covering U — X,.

The following result of Kra [6] and Nag [11], which we essentially will use, is
established with the aid of the isomorphism theorem.

Proposition (Kra-Nag). The fibers n~!(z) (for (g,n) # (0,3)) are not
totally geodesic in T(g,n + 1) relative to the metric T, i.e., they are not Te-
ichmiiller disks, and Tr is connected with the hyperbolic metric hyp on the fiber
7~1(z) (which is isometrically pull-backed from A by a holomorphic embedding
A — 7~ 1(z)) by the strong inequality

(5) tr(21,22) <hyp(21,22) (21,22 € 77 ().

Recall also that the Teichmiiller disks A, in T(g,n + 1) have the form
A, ={2(tp/lo]) : t €A},

where ¢ is a holomorphic quadratic differential on X,. The space of such differ-
entials (with L;-norm) will be denoted by Q(z,) or Q(T'); that is the cotangent
space of T(g,n + 1) at the point Xj.

3. Proof of the theorem

Let us now turn to the proof of the theorem. We model T(g,n + 1) and
T(g,n) again as T(I') and T(T), and take their embeddings in By(U*,T') (note
that By(U*,T") is isometrically embedded into By(U*,T) by ¢ — (poJ)J"?).

It is sufficient to establish the validity of the assertion of the theorem for the
initial fiber 771(0) only. The case of a general fiber 7 1(¢), ¢ € T(T') (and an
analogous case of an arbitrary point from 7~1(0) \ {0}) can be reduced to such
ones by passing from a quasifuchsian group I', = wHI'(w*)™! to its Fuchsian
equivalent using a conformal mapping of the domain w*(U) onto U ; this leads us
to the so-called admissible bijection of T(T'), which preserves the metrics.
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We will prove that for the point ¢ = 0 € T(T') (or, equivalently, for the
basepoint zo, to which the point (0,2) € F (I‘) corresponds) there must exist a
neighbourhood in the fiber #~(0) over 0 € T(T"), in which the equality

(6) er(y,0) < mr(1,0)

holds.

Assuming the contrary, we find a sequence of Schwarzians {1,,} C 77'(0)
which converges to 0 in Bo(U*,T'), and that sequence corresponds on X, to a
sequence of points {pm}, converging to po (for example, in a hyperbolic metric
on X ) such that 1, represents in T(T') the marked Riemann surface

Xm = Xo \ {pm}
(with puncture p,, on X, instead of po) and
(7) er(¥m,0) = 70(¥m,0), m=1,2,...

Let
{hm} C Hol(T(I‘), A), hn(0) =0,

be the corresponding sequence of holomorphic functions on which the distances
er(¥m,0) are attained, i.e.,

Q(hm(¢m)a O) = CT(d’m’ O)a
and suppose that k,,um, are extremal Beltrami differentials with

fim = 2T

= 1o (0<km <1, om € Q(T)\ {0})

on which the Teichmiiller distance 77('m,0) is realized (i.e.,
77(¢m, 0) = 31og[(1 + km)/(1 = km)]
m = 1,2,...). We normalize the quadratic differentials ¢, so that
lomll,, =1 forall m=1,2,...

Consider now the corresponding Teichmiiller disks

A, = {cb(t—) te A} c T(T).

|oml
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One can also assume the functions h,, to be taken such that

hmo<I><t—) =t (teA)

|om|

and hence
(8) d(hm o ®)(0)tum =t  (t € C).

Turning, if necessary, to the subsequences, we may assume that ¢, converges
in Q(T') (and locally uniformly in A) to ¢ € Q(T') \ {0} with ||| = 1, and
hm converge locally uniformly in T(T') to a function hy € Hol(T(T'),A) \ {0}.
Besides, the disks A — ¢, converge to A, in a Teichmiiller metric locally, and
by virtue of (8)

9) d(ho 0 @)(0)tuo =t (o = @o/lpol,t € C),

which means dho(0) is an isometry on the tangent line ToA,, to Ay, in 0.

Let us also show that this tangent cannot be transversal to the tangent line
Ty %(0), i.e., that TOA% and Tom~!(0) must coincide. Indeed, if the equation
for the fiber Tr"l(O) in Bo(U*,T) is

Y=folt)= D tmfMO)/m! (fot) = f(z,t) € Hol(A, T(T))
then, for small |t|, we have
(10) Y =tf(00+0(t*)  (f3(0)#0)

and so Ton~1(0) = {tf;(0) : t € C}; we assume below that f, is the above-
mentioned biholomorphic embedding. It follows from (1) that

) wen=-2 [ HELEZL 4 o1l

for any p € Loo(U,T"); with ®(u) = fo(t). In particular, due to the well-known
Ahlfors—Weill theorem on quasiconformal extension, one can take

w(C) = —2n" fo(€, 1)

(and then {w*,z} = fo(z,1)).
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Let us return to our 1,,. Let these 1, correspond to t = ¢, from A, i.e.,
Ym = fo(tm). Then we have from (11)

//n fol&, m)dgd Loy = Bkn //”m(f)dfd"w(k)

(where kn < |tm|) or, rememberring (10),

2 8-t [ o o)

By applying the Lebesgue theorem on majorized convergence to the integral on
the right-hand side and taking into account that the left-hand integral is equal to
£4(0), we obtain by the well-known reproduction formula for the elements from

By(U*,T
o £1(0) = — // (@o/lpol) d€ dn
o €=z 7

where a = limm—oo(km/tm) # 0 (because of o # 0 and f3(0) # 0); but that
means the coincidence of directions for tangent lines of 77(0) and of A, in 0.

Now the proof of the theorem is completed in the following way. For the
function

hoo fo: A = 771 (0) = A
we have, by virtue of (9)
|d(ho o fo)(0)t] = |dho(0)dfo(0)t]| = |t].

Hence, due to Schwarz’ lemma, the equality ho o fo(t) = €'*t, a € R, must hold
for all t € A, or, equivalently, in the whole fiber 7~1(0) we have

CT('@ba 0) = hyp(’»ba O)

Comparing that with (2), we see that in 7#71(0)

(1, 0) 2 hyp(¥,0)

must hold, contrary to (5), (in fact, by virtue of the coincidence of 77 with dr, here
can only the equality be, which means that the fiber 771(0) is Teichmiillerian).

The contradiction thus obtained proves that for all ¥, closed to 0 in w=1(0),
the strong inequality (6) should be valid. Thus the theorem is proved.

I am grateful to the referee for his helpful remarks.
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