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GOLUZIN INEQUALITITIES AND MINIMUM ENERGY
FOR, MAPPINGS ONTO NONOVERLAPPING REGIONS

P.L. Duren and M.M. Schiffer

In a previous paper [3], we considered sets of functions /i which map the unit
disk conformally onto nonoverlapping regions D;, and we established the sharp
inequality

i njnetoslri(o) -/*(o)l +i rz,Loslrjtoll s,'logr?,
k:l ,j+k j:t

where the or' are arbitrary real parameters with sum s, and B is the transfinite
diameter of. Ui=tDi. Further hypotheses then led to a stronger inequality where
the right-hand side is decreased by adding a certain negative-definite quadratic
form depending upon the geometry of the regions Di.

The purpose of the present paper is to extend the stronger result to a version
of the Goluzin inequalities, and to interpret the bound physically as the mini-
mum energy of a system of conductors with prescribed electrostatic charges. A
remarkable invariance property of the energy functional is then noted for certain
domains bounded by lemniscates. Finally, the energy functional is studied under
interior variation and is found to have a perfect squaxe in its variational formula.
Applications to extremal problems will be given in a later paper.

1. Goluzin-type inequalities

Let Q be a finitely connected domain in the extended complex plane Ö,
containing the point at infinity and bounded by disjoint rectifiable Jordan curves
|r, . . ., I- . Let A6 be the compact set bounded by f1 . The åarmonic measure
o1 is the bounded harmonic function in O which has the boundary value L on I7.
and 0 on li for a,ll j + k. The period of the harmonic conjugate of url around
f; is

i
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where 0f 0n denotes the inner normal derivative. It is known (see [9, Chapter 1])

that ((Pir)) fo" 7, lc : 1,2,..., ffi- L is a symmetric nonsingular matrixl and it
generates a negative-definite quadratic form. The same is therefore true for the
inverse matrix 11p;r)) .

Green's function of O with pole at infinity has the form

sQ): g(z,a): log lal - log,R + o(lllzl)

near infinity. It is harmonic in O except for the logarithmic pole at infinity, and
it vanishes on the boundary. The Robin constant of O is -IogrB, where -R is the
transfinite diameter, ot loga.rithmic capacity of the complementary region

Ö: Ar U Az U "'U A*.

Further information about transfinite diameter may be found in Goluzin [6, Chap-
ter VIII; Hille [7, Chapter 16]; and Tsuji [13].

More generallg Green's function of O with pole at ( e O is the function
harmonic in O \ {(} which vanishes on 0O and has the form

s|,e)--loslr-(.l+...
near (. The normal derivative of Green's function is a resolvent kernel for the
Dirichlet problem. In particular,

(2) ,*(o: * Irr\pw,l
and

(3)

where

sQ): g(",a).

Now chooseintegers n) m and n3 with 1( n1 ( n2 1... 1T7*:n. For
convenience, let ns : 0. Divide the integers from 1 to n into the blocks

Ip: {u: nk-l 1u ( np}, le:7,...}n'1.

Next choose integers N ) n and.l[, with 1< Nr < N2<-... <N":.Iy'. Again
let I/o : 0 and define the blocks

uk(m) : *lrr{Wrl, k-1,2,...,m,

J,- {j:I[,-r < j (I[,], u- 1,...)rz.



v€It j€Jv

be the sum of the o;'s associated with ihe /cth block .It of indices z. Hence

ot*ozl"'o*:s.
For 1 I u a n., let the functions f, map the unit disk D conformally

onto nonoverlapping domains D, : å(D) with D, C Är for all u e Ix,
le :1,2,...,rn. Such a vector (å,...,"f") "f univalent functions will be called

admissible with respect to the region O. Next choose points Cr, e2,..., (iv in
D which are distinct in each prescribed block: e; # Ci if. i,i e./" arrd i * i,
where u: L,2,...,n. A vectot ((r,...,Cr) of such points will again be called

admissible.
The following theorem may be regarded as a generalization of the Goluzin

inequalities (see [2, chapter 4] or [10, chapter 3]. It give-s information on the
values hGi) of functions with nonoverlapping ranges in O in terms of certain
conformal invariants of O.

Theorem L. Let O be an m-tuply connected domain in Ö, containing the
point at infinity. Choose integers n ) m and N ) n, a'nd integers nx and Nv
as above. Let x1,...roN be a'rbitrary real parameters with sum s, and let op

be defrned by (+). Choose an admissible vector of points (i € D . Then for each

admissiblevector (å,...,fn) of functions f, univilentinD,thesharpinequality
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Let frtt frzt

(4)

. ) fr Vtr be arbitrary real numbers with sum s , and let

o1,- » » ni

»$;
ie J",i*i
n,n

»»
u:\ F:l ru* I

= i » D *u*,t"g, ++s2log.E
v:l ie J, i€J, r \r\J

m-l m-l
+ I I ni*$r1(*) - o;)(sa,p(m) - a;)

j=l k:t

hoLds, where R is the transfi.nite diameter of (1 , w1, are the harmonic measures of
the boundary components of A, and ((pro)) is the inverse of the period matrix of
their ha,rmonic conjugates.

In our previous paper [3], we established a special case of this theorem in
which all (i : 0. Earlier work of Alenicyn [1] and Kiihnau [8] had led to related

(5) »{»
y:l ie Jv

(
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T
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ogI+

l*»t j€J,
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results. Note that the last term in (5) is a negative-definite quadratic form, so

our inequality improves upon the weaker version (still sharp;cf. [3]) in which this
term is absent.

The proof is similar to that in [3] but is more complicated; it will be given
in two stages. In Section 2 we pose an appropriate extremal problem and prove
the existence of an extremal configuration. (This rather delicate argument was
omitted in [3].) Then in Section 3 we use the method of boundary variation to
describe the extremal configuration and thus to establish the sharp inequality (5).
In Section 4 we give a physical interpretation of the last term in (5).

2. Existerlce of an extremal configuration

It is convenient to pose the problem of maximizing the functional

(6)

where

(7)

and

(B)

We regard O
under a mapping

(e)

e-» G,*»
v:l u:L

»
p:l rv* p

H, p,

G,_ » » njnktoslf,((i)- f,(e*)l + » r]toslf:,t(i)l
je J, ke J",j+k j€J"

Hvp: » » njnkloslf,((i)- fr((*)|.
je J, lseJp

as the conformal image of some fixed domain of the same type
of the form

oo

u - F(r) - z + » bxz-k
&:0

near infinity. The transfinite diameter "R of O is invariant under such mappings,
as are the period matrix of O and the harmonic measures ,r(-). For fixed
choices of the parameters nk1 Nk, oi, and (r, an extremal configuration willbe
understood to be a domain O in the prescribed equivalence class together with an
admissible vector of univalent functions (å,...,/,), such that the functional g
attains a maximum value.

Because the functional g is translation-invariant, no generality is lost in re-
stricting consideration to functions .F' for which åo : 0 in the expansion (9).
These functions form a compact normal family. The corresponding sets of admis-
sible vectors of univalent functions (fr,. . ., å) *" uniformly bounded. Thus for
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each index , (1 < u (-n), the resulting family of functions .f, is normal but not
compact. Indeed, even if the domain o is held fixed, it may well happen that
a se([uel]ce {f n, f ,2,. . .} "f such functions tends locally uniformly to a constant

limit. we want to show that this cannot happen for an extremal sequence.

Under the assumption that öo : 
-0, 

the conformal mappings of the form (9)

produce uniformly bounded regions 0, to that (assuming eaeJr component 47.

contains an open set) the associated families of admissible vectors of univalent

functions are also uniformly bounded. It follows that for all conformal images O

and for all associated admissible vectors, the functional g has a finite supremum

M. Choose a sequence of normalized (öe : 0) mappings F1 with ranges o3

and a sequence of vectors (å,,...,/,1) admissible with respect to Os, such that

fi : g(ltt,. . ., f*t) ---+ M as I + oo. By normality we may assume that -Fr --+ F
arrd f,7 - f, (u - 1,.. .,n) locally uniformly. By the Carath6odory convergence

theorem, the regions converge to their kernel O, the range of .F,-

Suppose now that for each set E C Ir of indices in the same block .[r,

» » xi*o'
ueu jeJ"

Then we claim that all of the limit functious fi, ...,fn are univalent (nondegen-

erate), so that the vector (å,...,å) ir admissible with respect to o. since rp is

a continuous functional, this will show that it attains a maximum valuel i.e., there

exists an extremal configuration.
If any of the limit functions /, are not univalent, they must be constant.

Thus for some set E C Ix of indices u, the derivatives f'"10) - 0 as I --+ oo;

while /j1(0) -- li@) f 0 for all other u € I*. For z € E, the functions /,1 make

a total contribution to gt of

,ht:»G9+» I Ht').
veE veE p€E,v*p

Under the assumption (10), we are going to show that ,h - -* as I + oo' Since

every term of 91 is bounded above, this will show that Pt -+ -cc, a contradiction.
In view of the Koebe distortion theorem, it is readily shown that

Gy <At2,logd,+B
and

Ht') < At,t rlog(d, + dt) + B,

where d":lfi@)1, tr:Lrrr,oj, and A and B are constants depending only
on the numbers ri and (i. Thus

ueU FeE,v*p u€.8

where dil : lftt,p)l . fn" proof that dr * -"o is now completed by the following
lemma.

( 10)

(11)
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Lemma. Let alrdzs. .. ran be atbitrary real numbers and let utt,ttrzt. . . tun
be positive numbers. Then

.9, : I a?rlogul +l » aial,log(ui* u*),
j:t j=t k=L,i*k

S (rt + az *...* an)2log(max{u1 ,...,uo}) * ko.

where ko depends only on etr. . . r&n.

Proof. The proof will proceed by induction. For n : 7 there is nothing to
be shown. Suppose the inequality is true for some n, and suppose for convenience
that 0 ( u1 ( uz I .. . 3 un+t. Our inductive hypotheses says that

S" <b?*loguollen, where bn: ct*...*an.

But

Sn+r : S* -f a?*+rlog u,..,.1 * Zan+tf ,i tog(ri * uoar)
j=t

: 
^9, + al*rlogun+r * 2an11bolog u,r41

* 2an+rf ,1 log(l * ui f uoar)
i=1

< (t'" + a2.+t * 2an11bo) log ur11 * &n+r

: b2*+tlogur.,-1 * kn+rr

where ,t,a1 is again independent of the u; because 1 < 1+ uj/un+t ( 2. Thus
the lemma is proved.

In view of the lemma, it follows from (11) that

,ht< A(ä 
F*..r)',o*(**Vi,,(o)l) 

* K,

where A and .I( depend only on the parameters oi and (7. Thus ,h - -*
under the assumption (10). This contradiction shows that fl(0) I 0 for every u.
In other words, each lirnit function /, is univalent. This completes the proof of
the existence of an extremal configuration if (10) holds.

It was shown in [3] by a simple example that an extremal configuration need
not exist if a sum of the form (10) is allowed to vanish.
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3. Variational proof of the theorem

Using the method of boundary variation, we shall now give a proof of The-

orem 1. We make the initial assumption (10), thus ensuring the existence of an

extremal configuration.
we again use the notation Q, fh D, to indicate an extremal configuration.

Let
t:önDrn bzn...nb.

be the set of points which lie outside O and outside the range of every function

/,. Fix a point zs €T and construct the boundary variation ([11];see [2, chapter
1ol) 

_ 2

z" :ve(z): z *;:^+ o(p'),

where p > 0 is so small that Vn is analytic and univalent outside a small part of
I near zs. Thus the function' fi :Veo 9, are univalent and map the disk onto

nonoverlapping regions

Di, =Vn(D,) C A;: I/p(Ar) C Ö.

for u e I7,, where O. : %(O) and Ö* : %(Ö)' Observe that Ö* : (O*f.
Let g" be the value of the functional (6) for the perturbed configuration

(O-,/J). Note that p* ( cp because (O,r) is an extremal configuration.
Our next task is to calculate g*. Since

( 12)

it follows that

where e *nitu:p.
The variational formulas (13) and (14) show that the expressions G, and

H,r as given by (7) and (8) are deformed to

(
(15) c} - G, -R"{oaz ».?lf,«) - ro)-'\

je J"

- Re {ou'» » ninrlf ,((r) - zsl -1 V,((r) - ro] -'} + o(p,)

fI(O : f,(O + aQz lf ,(O - zo) + o(p3),

(18) toslf;'(Ol - losl/,l(Ol - Re {os'lf"(O - ,ol-'} + o(p').

It also follows from (10) that

(14) loslf:(o - fi,oil - loslf ,(o - f ,ut)l

- Re {on'lf ,(O - zo) 'lf uii - rol -'} + o(p'),

jEJ, ke J",j+k
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(1,0) H;,, - H y tr- R"{ oo' » » * i* o lf ,G) - rof-' lf *Gi - ro1-' 
} * O(r' ).

ieJu keJp

Inserting the expressions (15) and (16) into (6), we see by a straightforward cal-
culation that

(12) e* : e- R"{,0, t» » *1g,G)-,0)-']'} * o,nr,.
v:t jC.J"

Using the inequality g* ( g and invoking the basic lemma in the theory of
boundary variation (see [11] or [2, p. 297]), we now conclude from (17) that the
points zs €l lie on trajectories of a quadratic differential:

(18) -(» »;:ir )'a""0'7riii,z-J'\li)/
The perfect square allows us to draw an immediate conclusion. Taking the square
root in (18) and integrating, we find that

(1e) F(z):» » riroslz - f,(e)l: 
"xu=t j€.J"

for all z e lfiAp, where the c* are real constants. It also follows that for each
å, the regions D": f,(D) which lie in Är (i.e., for which u e I*) actually fill
this region, Ieaving no open set uncovered. Their boundaries are formed by arcs
of a lemniscatel in fact, they lie on level curves of the function f' defined in (1g).

Consider now the functions
n(20) rt,«): t D *,rosl/,(C) - /r((r)l - » ,; rogl-( - (i I

tr=r j€Jt ieJ, ' t - 6( l',

u : !,2, . . . ,n, which are harmonic in D. It follows from (19) that ?{,(() : c7,

for l(l :1 if u € Ix. Thus 7{"((,): c& for all ( € D if. u €.I*. Choosing (: (;
for some i e J. we deduce from (20) that

c76 :Hv((r) : » » rj loslt,((,;) - fr((r)l
lr:L,p*v ie lu

+» nji*;lryl *', losltlt(,)l
jeJr'\?sJ'

+»17 log11 -6(,1, ieJ,, uer1s.
j€J"
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Now multiply by r; and sum over all i e J,, recalling the expressions (7) and (8)

for G, and H,*. The resulting formula is

G,* » Hvp:"0 I*,-Drltos(r-leif)
p:l,F*u jeJ, ieJ"

+I 'D'';'1'oglffil'ieJ, jeJ",;+ j si

where u e fx. Now sum over afil u €Ir and then over all k (1 < lc <rn), bearing
in mind the definition (6) of the basic functional <p and the definition (4) of o7,.

This gives the final expression

(21) e -i c*ok- f » rltos(r - l(il')
k:1 u:l jeJ,

+»» » nin/osl**l
ieJ,jeJ,,i*j 'r' \J\?'

It remains to determine the constants c6. For this purpose we again consider the
function F defined by (19), which is harmonic in the domain O except at infinity,
where F(") - stog lzl is harmonic. (Here .s : or + "'+ rr.) By (fO), f(z) has

the constant boundary values c1 for all z e I p : 0Ät ' We now introduce Green's
function of O,

sQ) = g(2, oo) : log lzl - log R + o(1),

as defined in Section 1. In terms of the harmonic measures o1 of 11 withrespect
to O, we construct the function

G(z) : F(r) - ssQ) - \cx,,tx(z).
/c= 1

Observe that G is harmonic in O (even at infinity), and it vanishes identically on

each boundary component 16. Thus

n1,

(22) F(z): ss(z) *lciw/z), z e Q.

,=l

Letting z tend to infinity, we deduce from (22) and the asymptotic formula

F(r) - slos lrl+ o(1 llrl)
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that
fn

(23) f c1o;(oo): slogB.
j=1

Recall now that by construction the points f,(Ci) lie inside f* if. u e I*.
Thus from (19) and (22) we calculate

(24) oo: L [ 9!w,,t: srur(m) +i"1P1*,2r Jrr 0n'*-' j:r
where (3) and (1) have been used.

The remaining calculations are the same as those in [3]. Since the columns of
the period matrix sum to zero, we may rewrite (2a) in the form

s«rp(m) - ote :TO^ - c)pix.
i=t

In terms of the inverse matrix ((pio)) , this gives

m-l
(25) cm - ci: » p;r ["rr(*) - ox), j :1,2,...,m - 7.

lc:r
SimilarlS the identity w{z) * .. . * w*(z): 1 allows (23) to be rewritten as

n-1
(26) cm:slog.E* D("--c7.)r»1(m).

k:t
Introducing (25) into (26), we find that

rn-l n-L
(27) cn: slog.B * » » ri* [sr,.,3(m; - oi]c.,7.(oo).

j:r e:r
The formulas (25) and (27) allow us to compute

rn m-t

Dou"o: scrn+ » o1,(c1, - c*)
/t=1 k'*-r*-,

- s2logR + » D, p,*[soi(oo) - o7] [sr.r6(oo) - "n].j=l lc=l

This formula may now be combined with (21) to express g in terms of the invari-
ants of O and the given parameters. Since this is the maximum value of rp over
all admissible configurations, we have established the inequality (5) of Theorem 1

and have proved its sharpness under the assurnption (10). FinallS the condition
(10) can be removed by a continuity argument, and the inequality remains sharp.
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4, Minimum energy

We shall now discover a physical interpretation of the functional

(28) 4, -Ios R + E 5 pix(, i(oo) - o i) (r*(m) - o r,),
j:l k:l

which occurs as a bound in the Goluzin-type inequalities of Theorem 1.. Here we

shall assume for convenience that the oi are real numbers with sum s:1.
We consider again a multiply connected domain O C Ö bounded by disjoint

rectifiable Jordan curves lr , Iz , . . ., f- . 
"Let 

Äp be the compact region bounded
by fr. Then the complement of O is O: Ar U"'UA*. Let I : äO :
lr U . . . U I*. Green's function of O is again denoted by

(2e) g(r) - los lrl -los R + O Ollrl).

We regard the boundary curves lr , . . ., I- as electrostatic conductors for
charges obeying a force law with a logarithmic potential. We place a total charge
o1 on 11 , where or 1... + o* -- 1. These charges will reach an equiJibrium
distribution {go(r)} which minimizes the total energy

E_

under the constraint

,1log , ^dg(r)de«)lz-\l l, r lr,tor ä d'e iQ) d,.x«)
TII ITL1sr,,2,/ ./ '

k:t j:l
* l,l,

:1,

f dpx(r) - okt
Jr r

k- 1, . )m.

los lz - (l ap(()

Let

(30) tQ)

be the equilibrium potentiaJ; that is, the conductor potential induced by the equi-
librium distribution of charge. This function is harmonic in O, except for a loga-
rithmic singularity at infinity. It has the properties

(t) d4: los lzl + 0(1114 as z -' oo;
(ii) 7(z):a1 for zelp,lc:1,...,ffi.
Property (i) is easily seen to hold for an arbitrary logarithmic potential. Property
(ii), that the equilibrium potential is constant on each boundary component, is a
special property of the equilibrium distribution; it is proved as follows.



Consider the simple variation p"(z): eQ) + er(z) of the equilibrium distri-
bution, where

(31) [ orpl: o, k: L,...,n't,
Jtt

and e is a small real parameter.
This induces a variation

E*:E+u [ /r.g--1- dp(Odr(z)*o(ez)
Jr Jr lz - (l
nl

= E - ul. I {)dr(z) + o(ez),
7:rJrr

where the definition (30) has been used. Since E* ) E , it follows that

I
J, rtQ) 

dr(z) : g, lc : 7,. . . ,rr'.

Thus in view of (31), 7(z) is constant on I;.
It is now clear that the equilibrium potential has a close relation to Green's

function:

744 P.L. Duren and M.M. Schiffer

(32) tQ): sQ) +iowo(,),
&:1

where c,rr is the harmonic measure of 13 with respect to O. In particular, by (29)
and property (i) of the equilibrium potential,

(33) å a*LD*(*)-1osB.
,t:1

I\ote finally that by Gauss' tlreorem

(84) * lrrfrto,l - ok, k :1,.. .,m,

where 0l 0n indicates the inner normal derivative with respect to O .

Using (1), (3), and (34), s€ find by integration of (32) that

(35) op_ l,l,(oo)+f aiPix, k-1,.. .)m.
j:1
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on the other hand, since ,y(z) 
= @,c on I;, it follows directly from the definition

that the minimum energy is given bY

(36) 2E: -iooou.
Ic:l

In order to determine the a*, we use the fact that ![i, Pi* :0 to rewrite (35)

as m-t
o6 -tos(oo) : » (ai - a*)Pi*.

i=l

Introducing the inverse 11p,r)) of the matrix ((fro)), we conclude that

m-l

(37) DPo,("l-ro(*)):oti-otm'
Ic= I

In view of (28), (33), (37), and (36), a simple calculation now gives

tn m-7 m

,b:»atc.rl,(m) + » @1- a*)(oi -c.,"i(m)) : f *;oi : -28.
ft=l ,=l j=l

This identifies the functional t/ defined in (28) as twice the negative of the min-
imum electrostatic energy with charge o,c on the conductor lt (&:1,...,m),
where ot*"'*o*:L.

5. Invariance of the energy functional

Up to this point we have required that the number n of functions /, be

greater tha.n or equal to the connectivity rn of the domain O, so that their ranges

D, caa ufill all of the holes". We now assume that n, ( rn and that all of the
points (i :0. Specifically, we require that the range D;.: "ft(D) lie inside I*

nnn
,p:» » x1*1,toslfilo) - /r(o)l +L*?toglyjlo;1,

j:t k=t,j+k i=r

where the ri are nonzero real parameters with sum s. The lariational argument
given in Section 3 (or in [3]) is still valid, and we find that in the extremal con-

figuration the boundary components l* of O are arcs of a lemniscate. Adapting
the formula (19) to this special case, we fi,nd more precisely that

(38) F(z):i*ioglr- å(0)l : "*, z e tp.
,=1
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The function F is harmonic in the whole plane except for singularities at the
points /i(0), i :1,....n. Thus it follows from the maximum principle that I*
is a rectifiable Jordan curve for 1 < k ( n, while Ip degenerates to a slit for
n1lc4m.

We may now conclude as before (cf. formulas (22) and (23)) that

n
(40) !c1r^r;(m): slogB,

i:r
where g is Green's function of O and c.r; is the harmonic measure of li, while .B
is the transfinite diameter of Ö.

Now comes the main observation. Since n < rn, we may also represent f-
with respect to the domain Ö : O bounded only by Ir, . . ., Ir. Let f be Green's
function of O, let öi be the harmonic measure of li with respect to Ö, and let
Ii be the transfinite diameter of (O)-. Then because F is actually harmonic in Ö
except for a Iogarithmic singularity at infinitS we may conclude in similar fashion
that

(3e )

and

(41)

and

(42)

m,

F(r)- ss(z) +»cju)j(r), z€0,
j:l

åF(r)- ss(z)+»cj6j(r), ze {t,
j:t

» cjå j(oo) - s 1og.å.
j:t

Taking normal derivatives in (39) and integrating around I1, we find by (88),
(1), and (3) that

(43)
rn

s,)k(oo)+ 
äcipik- {;: 

, 'r!r==Z

In similar fashion, the expression (41) gives

n

j:1'



(45)

and

(46)
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The equations (40), (42), (43), and (aa) now allow the calculation of the

energy functionals

l,-s2 losE+58 pik(r*i(oo)- ri)(rr*(*) -rk)
j:L k:1

,i)-s2 losn+ii Lix(röi(co)- ri)(rö*(m)- nk)
j:l lc=t

where 11pio)) u"d ((pir)) are the inverse matrices a ((ri*)) and (P;t)),-re-
spectively- ti, 1+S; ii is ,rndetttood that rk : 0 for n ( k I m. Proceeding

exactly as in Section 3, one finds

t) -» nkck,,

k:1

But the same calculation gives

Thus rh:$.
This is a remarkable result. Given a fixed

n level curves of a function
lemniscatic domain §} bounded bY

F(r) - i 16 log lz -0el
[=r

each surrounding a single point 43, plus rn - n level arcs of the same function, we

may compare the functionals r/ for- O and r/ for the larger domain Ö obtained
from O by removing the rn - n boundary slits. The Riemann matrix ((Pir)) , tfr"
harmonic measures ,r(*), and the transfinite diameter -E of the boundary will
all vary strongly from O to Ö, yet the combinations $ and $ ur" always equal.

The result may be stated as follows'

Theorem 2. Let {l be an m-tuply connected domain in the extended com-

plex plane, containing the point at infinity. Let its boundary consjst of n closed

lemniscates Ilr, .. ., lo which ale level curves of a function F(z) of the form
(47), each surrounding a single point ap, plus m - n sijts lu*1r ..., f* which

are level arcs of the same function F(z), Let Q be the larger domain bounded

onlyby Il, ...,ln,where !In1m. Let,1, "od$ b"tt"energyfunctionaJs
of Q a;nd (i, defrned by (ab) and (46), respectively, where sk : 0 for n 1 lc I m.
Then $ : $.

,h: i nkcts.
Å':1

(47)
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We may now use the conformal invariance of the functionals considered to
formulate a more general result.

Theorem 3. Let Ö b" u domain containing the point at infinity and bounded
by n disjoint continua Ir, ..., I,i andlet 0Q):0Q,*) beGreen'sfunctionof
Q. Let {l be a subdomain of {l bounded by the same continua 11 , . . ., ln and by
(*-") slit continua fa+r, ...,T^ withequations §(z): ck,lc - n*1-,...,rn.
Then the corresponding energy functionaJs rlt uod rf: are equal.

One simple example may be noted. Choose n: Lt tt:1, and or : 0 for
2 < k < rn. Then the equations (38) define a domain bounded by a circle of radius
-E and rn - L concentric circular arcs of larger rad.ius. Thus we may conclude that
,1, : logB for every domain of this type, regardless of the sizes and positions of
the circular slits.

6. Variation of the energy functional

We shall now study the behavior of the energy functional

under a variation of the domain O. (We suppose for convenience that s : 1.) It
will turn out that ty' has a perfect square in its variation, so that the variational
method is an effective tool for solving extremal problems.

Choose a point zo e {l and consider the interior variation

(48)

(53)

rn-l
?h - 'r(O) - los R+ »

i=1

m-1

» Pix(oi(m) - ni)(ru(oo) - nk)
k:l

(49) z* - z

where e is a small complex parameter.
formulas [12]

e+-rz-zo

This leads to the well-known variational

(50)

(51)

(52)

where p(r) and u: x(z) are the
the harmonic measure wx(z),
corresponding formula

log.R* - log.B - R"{ ep'(2il2} + O(r'),

,i(oo) - ap(oo) + R"{ ep'(zo)u,'xQo)} + O(u'),

* Re {u*'iQo)n|1ro)} + O(r'),

analytic completions of Green's function g(r) and
respectively. Fbom (52) it is easy to deduce the

- Re {rr'iQo)uLQo)} + o(r'),

Pir - Pik

*
Pjx _ pjk
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for the inverse matrix, where

m-l
(54) uiQ):lnix*x(r).

Ic=1

A straightforward calculation, using (48), (50), (51), (53), and (54), now reveals

the elegant formula

m-l

(b5) ,bn : rl,- n"{e (r'tro)- t ,'iQo)(ri(*) - rr))'} + o1"'1.
j:r

In a forthcoming paper [5], we apply the formula (55) to the solution of various

extremal problems. The lengthy calculations involve Robin's function of a multiply
connected domain, roughly described as a kind of interpolation between Green's

function and Neumann's function.
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