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UNIQUENESS THEOR,EMS FOR
HOLOMORPHIC CURITES

Peter Hall

A celebrated theorem of Neranlinna ([9], [11], [12], see also [16]) asseris that
if / and g are meromorphic functions on the entire plane and there are 5 values
cttt ..., a5 for which l-'@;): g-'(ot), not counting multiplicities, then / is
identically equal to g. Theorem 2 of this paper is an analogue of Nevanlinna's
theorem for holomorphic curves in 2-dimensional projective space. The 5 points
ai a.re replaced by 18 lines .t;;, which are required to be in a special configuration,
which is never in general position. We take f , $ C --+ CP2 to be full holomorphic
curves such that, for each line .t;r', the inverse images f-l(Lri) and g-1(.t;r) *"
the same, counting multiplicities up to 2, and prove that / is identically equal
to g. In other words, we distinguish between simple zeros and multiple zeros,
but make no distinction between multiple zeros of different orders. Theorem 6
is a theorem of the same type for a somewhat more complicated configuration in
which the lines may be in general position. The need to count multiplicities up
to 2 comes from the ramification term in Cartan's version of the Second Main
Theorem.

A theorem of this type has been published by H. Fujimoto [6,II, Theorem 1].
He considers lines in general position and proves a uniqueness theorem for the
special case in which / and g do not pass through 3 of the lines at all. Other
generalizations of Nevanlinna's theorem to higher-dimensional ranges have been
published by S.J. Drouilhet ([4], [5j) and L.M. Smiley ([15], [17, Section 13]). In
their work there is no need to count multiplicities up to 2, but the assumption
on common values of / and g is that every point of some divisor has the same
inverse image under / as under g.

Nevanlinna also proved that if / and g are meromorphic functions on the
entire plane and there are 3 values ert e2, a3 for which f-'("t): g-1 (o;),
counting multiplicities, then / is identically equal to g, unless / and g belong
to a small family of exceptions ([1t], [12]). Fujimoto [6] has obtained several
generalizations of this theorem to holomorphic curves in CP'.

The Supplement at the end of the monograph by B.V. Shabat [14] contains a
survey of work in this area.

Our arguments use the value-distribution theory of a holomorphic curve /: C
--+ CPo. There are two approaches to this theory. Cartan ([2], [7], [10]) uses
Wronskians to reduce to the 1-dimensional case, whereas Ahlfors ([1], [3], [14], [19])
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works directly with singular densities in CP". In this paper we follow Cartan's
approach, and in particular we rely on his treatment of ramification. Since Cartan's
approach has only been worked out for the entire plane C as domain, we only
consider holomorphic curves defined on C.

To outline the ideas in this paper, let /, g:C --+ CP2 be full holomor-
phic curves. The assumption that, for certain lines "t;; , f-'(L;i) is the same as

g-'(L;i), counting multiplicities up to 2, is used to bound the number of times /
and g pass through the lines L;i. A contradiction follows from the second main
theorem of value-distribution theory. The application of the second main theorem
is similar to that of Nevanlinna [12], but the estimation of the number of times /
and g pass through .t;i is quite different, so we now explain it.

Define a holomorphic curve h: C -, CP2* by letting h(z)be the point in
CP2* corresponding to the line joining /(z) and g(z). This is defined except
when /(z) : SQ). We seek a bound on the number of times ä passes through
the points -[[ dual to certain lines -t;i. It turns out that the Nevanlinna-Cartan
characteristic fi,(r), defined later in the paper, can be estimated by Ty(r) +
Tn(r) * O(1). We can consider the line A joining any 2 of the Zi; and estimate
the enumerative function for Å in the usual way. The bound thus obtained is not
good enough for our purpose, but if there exists a line through 3 of the .ti; we
obtain a better bound. These considerations lead to the configuration of 15 lines
described in the statement of Theorem 1.

It remains to discuss the points where f (z) : g(z). It happens that the
formula we use to bound fi.(r) gives at the same time a bound for the total
number of points where f (r) : g(z), or rather for an enumerative function N"(r)
that we define for these points. The common value f(r) : g(z) rr,ay be the
intersection of 2 or 3 of the lines "t;;, and so some consideration of multiplicities
is needed.

Theorem 2 of this paper, the uniqueness theorem discussed above, is a simple
consequence of Theorem 1. Theorems 3 and 4 are similar to Theorems 1 and 2 but
concern a different type of configuration of lines. In Theorems 5 and 6 we treat
certain configurations where the lines are in general position in the linear sense
but subject to quadratic or cubic relations.

Let f : C -r CP" be holomorphic. If
by (/0,...? f"), where for..., fn: C
commott zeros, we say that ("f0,..., f") is

Given any reduced representation ("f0,

Cartan characteristic of f to be

f is given in homogeneous coordinates
C are holomorphic functions with no
a redu ced representation of f .

. . . , f ") of f , we define the .lflevan ]inna-

T;") : * lr'" 
maxtoglfi(r eiellae- maxroglfi(o)1.

This definition does not depend on the choice of reduced representation.
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We consider a hyperplane ä in CP" and also write H for the homogeneous

linear form defining H.Assuming H o f is not identically zero,let Dy(2,ä) be

the minimum of n and the multiplicity of the zero of H o f at z. Then

n1Q,H): » D1Q,H)
lzllr

is the number of zeros of If o / in the closed disc D(0, r), counting multiplicities
up to n. (We regard the point 0 as D(0,0).) The enumerative function is

N1(r,rJ) - ['nilt'H) '.nr(}'H) &*nill,ä)1ogr.' Jo t
We shall use the following form of the Nevanlinna inequality. The Nevanlinna-

Cartan characteristic ?y can be used to bound the enumerative function defined

by counting all multiplicities instead of multiplicities up to n, but we shall not
need that function in the present paper.

Nevanlinna inequality ([2, p. 15], [7, formula (2.5)]). If f is aholomorphic
curve in CPo and H is a hyperpla,ne that does not contain the image of f , then

(1) N7g,n13rr?) + o(1).

We say that / is a fuII curve if the image of / is not contained in any proper
linear subspace of CP".

Second rnain theorem ([2, formula (3)] , 17,

f : C --+ CP'" be a full holomorphic curve and let
general position. Then

q

i:1
where the symbol ll on tåe right indicates that (2) may fail for vaJues of r in a
set of finite measure.

In the next lemma we define a special enumerative function counting all mul-
tiplicities, but we shall only use it to estimate multiplicities up to 2.

Lemma l. Let go, . . ., goi C -+ C be holomorphic functions, not identi-
cally zero. Let §: C --+ CP" be the holomorphic cure defined by (p0,. . . ,?n),
with analytic continuation across the common zeros of go, ..., go. Then

"o(r) 
+ n"(r) : * lr'" 

maxloglpi( ,"ie1lae+ o(1),

where

t["(r) : 
lo" 

""(t) -r""Q) dr * n"(0) log r

and n"(r) is the number of common zeros of go, . . ., gn ;n D(0, r) , counting all
multiplicities.

Theorem 3.5], [10, p. 223]). Let
Ht r . . ., H q be hyperplanes in

(2)
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Proof. Let (xs, . . . , Xo) be a reduced representation of o, so that there exists
a holomorphic function ,h , ,!@) f 0, such that

? j : zh'bxi, 0r. . . rfr,j-

where h- r"(0). Then

1fzn
* J, *r?*loslpiU"")1 ae

: * lr" *r,*tos lxi4",r)l d,o + * l,
- ro(') + *p*loslxi(o)l + rogl+foll +

Iog l?"n')u rh?"nr)l do

lr'ry&+n"(o)togr

2r

by Jensen's formula, since the zeros of zhrf; are precisely the common zeros of gs,
...r Pn. a

we shall use a construction from Grassmann algebra. lf p, q are distinct
points of cP2, the line through p and g is a point of the åual space cp2*
denoted by pA S. If f , g: C ---+ CP2 are holomorphic and / is noCidentically
equal to g, then f Ag is defined except on the discrete set where y1r1 : g1ri.
The singularities of f A g are removable and so we obtain a holomorphic ärrrrr"
f n g: C --+ CP2*.

If (es, etrez) isabasisfor C3, (e1Ae2re2A€s,,eoAer) isabasisfor CB*. With
respect to these bases, if / is given by (fo, h, fz) inhomogeneous coordinates and
g is given by (go,9r,9z), then /Ag is given by

Even if "f u,,d g are given by reduced representations, the vector (3) may not be
a reduced representation of f A g.

If p € cP2 and /: c -+ cP2 is holomorphic, the projection of / into the
line polnr to p will be denoted, by an abuse of laogu.ge, by p n /. This is an
example of the contracted curves introduced by Ahlfors [1j and described in detail
by Wu [1e].

Lemma 2. Let f , g: c cP2 be holomorphic curves, f not
equal to g . Let p be a point of CPz and p* be the line in CP2* dual
imageof f Agliesinp* if andonlyif pAf :pAg.

Proof. First assume

(3) (frg, - frgr,, fzgo - fogz) fogt - frgo).

identically
to p. The

(4) p.(f A g) = 0.
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Take a unitary basis (es, et,ez) for c3 such that p is the point with coor-

dinates (0,0,1). Then p* has coordinates (0,0,1) with respect to the basis

(eyAe2,e2Aes,egAel) for CP2*. lf f , g have representations (/s,h,fz),
(go,gr,9z), equation (4) yields

(5) fogr - ågo = 0.

Now p A / and p A g axe given in coordinates by (,fo,fi) and (so,gr), and (5)

shows that these are identically equal as curves in CPI .

Conversely if. p A f = p A g then (5) holds, which implies that (a) holds. s

We now prove Theorem 1, the conclusion of which is a degeneracy condition
of theform p Af : pAg. Theorem l will be used to derive auniqueness theorem
as Theorem 2.

Theorem L, Let L;j, i - 1,.. .,5, i :1,2,3, be L5 distinct lines in CP2
such that
(1) for i : lr. . . ,5, Ln, L;2, and L6 have a common point p;;
(2) the 10 fines L;j, i - 1,...,5, j:7,2 are in generalposition,a,nd similarly

for j :1,3 and j :2,3.
Let f,g: C --+ CP2 be full holomorphic curves such that for i :7,-..,5,

j : !,2,3, f-t(L;) is the sarne as g-l(L;i), counting multiplicities up to 2.
Then p; A f = p; A g for some i in !,...,5.

Proof. By hypothesis (2) of theTheorem, thelines .L;;, i:1,...,5, i:!,2,
are in general position. By the second main theorem (2)

52
7r1Q) < »» NyQ,L;i)+o(logrry(g)). ll

i:t j=l

There are similar inequalities for j : 1,3 and i :2,3. Averaging these three
inequalities, we obtain

53

TrrO) < »» NvQ,Li)+o(logr\@))' ll
i:r j:t

Adding this to the corresponding inequality for g, we obtain

53
g) l@yQ) + 4(')) < I It,V ilr, h)+ rir(', zri)) + o(log rry@)rnQ)), ll

f=1 j=l

For any line ä, let n6(r,I/) be the number of points z in D(O,r) such that

u(f (,)) : H(sQ)) :0,
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counted twice if ff o / and ä o g both vanish to at least second order at z. Let

ffo(r,ä) : [' no\'H) -.no(}'H) di + ns(o,,fr)Iogr.' Jo t

The assumption that f-'(L;) ard g-t(L;.i) are the same, counting multiplicities
up to 2, implies that

N/r,L;1) + Fr(t, Lu) :2Ns(r,L;).

The inequality (6) becomes

53
(7) T@tO +rnQ)) < 2» Dro(', Ld * o(log r\e)rn@)). ll

i:t j=1

Wenow assume that, for i:7,...,5, ptAl is not identically equal to p;Ag,
and proceed to derive a contradiction from (7). The method is to estimate the
right-hand side of (7) in terms of. TyQ) * To(r).

Define a holomorphic curve h: C --+ CP2* by setting h(z) : f n g(z). If
(fo,, h,"fz) is u, reduced representation for ,f .od (go,grr92) is a reduced represen-
tation for g , then lz is given in homogeneous coordinates by

(3) (frs, - fzgr, tzso - fosz, fogr - hgo).

This is not in general a reduced representation, since the coordinates may have
common zeros. We defi.ne

Lemma l gives

(8) T{r) + n"(') : O(r) + o(r),

where, as in the statement of Lemma r, I/"(r) is the enumerative function for the
common zeros of the components (B) of h.

To estimate O(r), we remark that

m.f logl/ie r - f*sil I m.?xlog(l f is*l + Ifosl) < qf log(2lf ishl)

: log 2 * maxlog l,fil * maxlog lgel.

Therefore

(e) o(') < ry@)+ro@)+o(t\

o(r) - * lr" **tos lfiigr - f xg)(renr)1 ae.
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Combining (8) and (9), we have

(10) Tn(r) + lr"(r) s Tr?) + rnu) + o(1).

We now distinguish 2 contributions to l[o(r,tr;i). Let.n"(r,.L;;) be the num-

ber of points z e b(O,r) such that I,i(/(r)): f';iQQ»:0, countingmulti-
plicities up to 2, and aJso f (r): g(z)' Lef

N"(r,.L;i\ - [' n"(t'L;i) - n'(0'Lu) 
di + n.(0, L;)logr'- Jo t

and

(11) N*(r,L;i): No(t, L;i) - N.(r,L;i).

We begin by estimating N"(t, .D;;). For a point z e D(O,r) we write u.(2, L;i)
for the contribution that z makes to n"(rr-t6r'). Thus

n"(r,L6i): » u"(2, L;i).
1,13,

We write u.(z) for the contribution that z ma.kes to n"(r). We distinguish 4 cases

according to the type of ramification.

Case L. If z is not a branch point of / or I and none of the lines L;i is

tangent to / at /(z), then, since at most 3 of the tr;; pass through any point of
CP,,

Dr.Q,Ld SIu.(z).
i,j

Case 2. If z is not a branch point of f o, g and one of the lines, say -to6,
is tangent to / at /(z), then by hypothesis tro6 must also be tangent to g at

f(z). Ltmost 2 othersof thelines.L;i canpassthrough /(z),and / and I must
intersect them with multiplicity L, so that in this case

» u"(z,L;) I 4u"(r).
i,j

Case 3. If / has a branch point at z and g has not, then / intersects any

line through f(r) with multiplicity at least 2, and the only line through /(z)
that g intersects at that point with multiplicity greater than 1 is the tangent to
g. Similarly if g has a branch point at z ar:d / has not. Therefore in this case

» uu(z, Lu) I Zu"(r).
irj

757
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Case 4. If both "f "t 
d g have a branch point at z , each of them intersects

every line through /(z) with multiplicity at least 2. In this case the components
(3) of ä have a common zeto of multiplicity at least 2. Since at most 3 of the
lines -t;; pass through any point of CP2,

f u"(2, Lu) I 3u"(r).
i'i

To summarize, i* all four cases when f(r) - g(z) we have

» u"(z,Lu) 14u"(r).
irj

53

» »N"(', Lu) < 4"^r"(').
i:1 j=l

Now we estimate N,(r, L;i). This is where we use the hypothesis (1) of the
Theoremthat,for i:1r...,5, Lt, L;z and -t53 haveacommonpoint p6. The
dual of p5 is a tine pi in CPz*, and on p| there are three points Lir, Lt alad
T*Lig,

For any z such that /(z) * sQ), the point h(z) : t ns@) € CP2* is dual to
the line through /(z) and s(z). When f(r) * s(z) arLd t 4GQD : Lu(s(r)) :
0, h(z) is at the point .Di;. If further Lti o I ard L;i o g vanish to second order
at z, h has a branch point at z.

Recall that our assumption for reductio ad absurdum is that, for f : 1, . . . , 5,
pt A f is not identically equal to p1 A S. By Lemma 2, this implies that the image
of / n g is not contained in the line pi. Since .Di lies on pl, we have

3

E lr"(r, Lu) < ffa(",pi) < Tn(r) + O(1)
i:t

by the Nevanlinna inequality (1), and hence

53

» »tr"(r,L;j) a lTn(') + o(1).
i:l j:\

Applying successively (11), (12), (13) and (10), we have

This yields the estimate

(12)

( 13)

53 53 53

i:L j:t i:1 ,:1
(14) »»Åh(', L;j) - »»N.(', L;j) + »» IVu(r,Lu)

i:t j:l

1 4rv"(") + \Tn(r) + O(1) < 5 (rr(") + TnuD + O(1).
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This inequality (1a) establishes that the sum on the right-hand side of (6) can be
estimated by 10("y(r) + 41r1;. With this estimate (6) becomes

( 15) TrU) * Tn(") - O(1og ,Tf (r)To(')) .

\Me now pursue a standard argument to derive a contradiction to the assump-
tion that, for i : 1, ..., 5, pi A/ is not identically equal to p; Ag. The estimate
(15) implies that 71 *rd 7s are O(logr). Therefore / and g are rational, for
the same reason as in the case of maps into CP1 [12, Paragraph 21]. Now, for
rational functions, the error term in the second main theorem (2) is in fact O(1)

[9, proof of Theorem 2.3(a)]. Our inequalities therefore give

rr(r)+Tr(r) -o(1),
which implies that f and g are constarrt. s

Theorem 2. Let Ltj, i- 1, ,6, i : 1,2,3, be 18 distinct lines in CPz
such that
(1) for i:1,...,6, La, Li2 and L;t haveacommonpoint p;;
(2) the 72 lines L;j, i:7,...,6, j:7,2, arein generalposition, and similaily

for j:1,3 and j:2,3.
Let f,g: C --+ CP2 be full holomorphic curves such that for i :1,...,6,

j :1,2,3, f-l(L;i) is the same as s-r(Lil), counting multiplicities up to 2.
Then f : g.

Proof. Apply Theorem 1 to the 15 lines L;j, i - 1,.. .,5, j : 7,2,3, to
conclude that for some d we have p" A f = po Ag. Now apply Theorem 1 to the
15 lines.t6i with ila to obtain blawith ptAf =ptAg.

Suppose that / is not identically equal to g, so that the curve /Ag is defined.
By Lemma 2, lhe image of / A g is the point "t* : pä fl pi. This point .t* is
dual to a line L in CP2 and the image of / must lie in .L, contradicting the
assumption ihat / is a full curve. tr

We now consider to what extent it is possible to vary the confi.guration of 15
lines in Theorem 1. Let L;j, i - 1,.. .,A, j - 1,...,8,be -48 distinct lines
such that
(1) for i:7,...,r4, the lines .L61 , ...,Lta have a common point p;;
(2) for å in L, . . ., B, the lines Lil, i : 1,. . ., A, j : b,å+1, with the convention

that B * 1 stands for 1, are in general position.

We can attempt to follow the proof of Theorem L. Corresponding to inequality
(6) we have

AB

»»(nr(',
i:l j:l

Lu)+lr, (r, Lu)) +O (1og ,Tt?)Tn(r)) .
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Corresponding to (12) we have

and corresponding to (13) we have

AB

( 16)

Peter HaLL

AB

»»rr,(',
i:1 ,:1

q

i:1

» » rv u(r,, Lu) < ATn(") + o(1).
i:l j=l

The conclusion will follow if

iB(zA- B) > 2max(A,,B + 1).

The solutions of (16) with ä > 0 and B > 0 are the pairs (-4,.B) satisfying
A) 4, B > 5 or A) 5, B )3. Theorem L is the case Ä :5, B:3. Thesame
argument with Ä : 4, B : 5 proves the corresponding proposition for a certain
configuration of 20 lines. Corresponding to Theorem 2 there is a proposition
about a configuration of 25 lines. We can obtain uniqueness theorems for some
other configurations of lines by using a version of the second main theorem due
to E.I. Nocl:ka [13]. The corresponding theorem in the Ahlfors theory is due to
C.-H. Sung [18].

Second main theorem (Nochka's version). Let f : C -+ CP" be a holomor-
phic cuwe such that /(C) spaas a lc-dimensional linea.r subspace of CP". Let
Ht r . . ., H, be hyperplanes in general positionin CP", such that, for i : 1r. . ., g,
H; does not contain /(C). 

"åen
(q-2n*k-1)71(r) Nr(r, n) + O(l"s rTf(r)), ll

where N y@, H;) is the enurn erative function defined by counting multiplicities up
to k.

From a diflerent point of view, Nochka's theorem may be regarded as a the-
orem on holomorphic curves in CPe in relation to configurations of hyperplanes
that fail to be in general position to a bounded extent. This is the view that we
shall take in Theorems 3 and 4.

Theorem 3. Let A:5, B>4 or A)6, B>3. Let Lil,'i:1,...,A,
j : 7,.. ., B , be AB distinct fines in CPz such that
(1) for i : 1,..., A, the lines L;1,..., L;B have a common point, p;;
(2) at most B of the L6i pass through any point of CPz .

Let f ,g: C --+ CPz be ful| holomorphic curves such that,for i:1,...,A, j :
1,..., B, f-l(hi) is tåe sameas s-l(L;i),countingmultiplicitiesupto2. Then
ptAf =p;Ag forsomei in1r...,A.
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Remark. The possible values of ,4. and B are obtained by reasoning similar
to the discussion following Theorem 2.

Proof. The only difference from Theorem 1 is that we use Nochka's version
of the second main theorem. Regard CP2 as a linear subspace of CPB. By a

standard general position argument, there exist hyperplanes Hil, i:1,...,4,
j :1,...,8, in general position in CPB, such that L;1 - H;i n CP2 for all i
and j. Nochka's version of the second main theorem gives

(AB - 28 + 1 )(rr(r) + rnU))
AB

s »»(nr(,,1u)+
i=l j:l

+ O(l"s ,Tf (r)Tn(')) , ll

corresponding to (6) in the proof of Theorem 1. Now the argument proceeds as

before. o

Theorem 4. Let A:6, B> 4 or A)7, B)3. Let L;i, i:7,...,4,
j : 7,. . ' , B , be AB distinct fines in CPz such that
(1) for i:L,,...,A,thelines L;1 ,..., LiB haveacommonpointp;;
(2) for a in 1,...,A, if 5 is the set of lines L;i such that i t' a, then at most

B of the fiaes in .S pass through any point of CP2 .

Let f ,g: C --+ CP2 be full holomorphic cuwes suejn that f-'(L;i) is the sarne as

S-l(L;i), counting multiplicities up to 2. Then f = S .

Proof. This follows from Theorem 3 in the sarne way as Theorem 2 follows
from Theorem 1. o

In each of Theorems 1 to 4 it is an essential condition that, for a fixed index
i, the lines L;i have a common point p;. This linear relation among the lines .L;i
is used to obtain an estimate for the terms N,(r) in the form of the inequality
(13). In Theorem 5 we replace this with a quadratic condition; in geometrical
language, the lines L; are assumed to lie on aline conic C C CPz*. The lines .Ll
of Theorem 5 are thus in general position. The conclusion of Theorem 5 is that
/ and g satisfy a certain algebraic identity that is quadratic in eachl this is not
so simple as for Theorem 1, but it is still the case that 2 such conditions imply
f =s.If C is a curve in CP2* we shall also write C for the homogeneous form
defining C.

Theorem 5. Let C be a non-degenerate curve of degree 2 in CPz* . Let L1 ,

..., Ln bedistinct fineson C. Let f,g,C --+ CP2 befullholomorphiccurves
such that, for i : 1,..., 10, f-'(L;) : s-r(Li), counting multiplicities up to 2.
Then C(f A s) = 0.

If, ( ,, L;))
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Proof. We introduce the enumerative functions l[o(",.å;), N"(r,.L;) and
N"(r, L;), satisfying

(17) Ns(r, L;): ff"(r, Lt) + N"(r, Lt),

as in the proof of Theorem 1. The lines -t; are in general position, and so by the
second main theorem (2)

10

(18) z(qQ) +roQ)) <2»Ifo(',trr) + o(log rr7@)ro@)), ll
i:1

corresponding to (7) in the proofof Theorem 1. Corresponding to (12) we have

10

(1e) D.lr"(r,r;) < 3rr"(r),
i=l

since at most 2 of the lines -t; pass through any point of CP2. We now wish
to estimate the terms Nu(rrL;). If (cs, at,fiz) are homogeneous coordinates on
CP'*, the Yeronese embedding V: CP2* --+ CP5 is defined by

(20) V(r,s,a1,x2): (r2o,nsr1,nsn2,rl,x1a2,azr).

The image under V of. C is the section of Y(CP2*) by . hyperplane ä. We have
C : H oY as forms on CP2*. Suppose, to obtain a contradiction, that C o(f ng)
is not identically zero. Wriie ä : f A g. For i: L,...,10, V(L:) lies on V(C),
and so by the Nevanlinna inequality (1) we have

l0
(21) I lf"(r, L;) I Ny.1,(r, H) < Tv,n(r) + O(1).

i=1

The formula (20) for the Veronese embedding I/ gives

(22) Tv.n(r) :2Tn(r).

Combining (21) and (22) we have

10

(23) I lr"(r, L;) < 2r1,(r) + o1r;,
i=l

which corresponds to (13) in the proof of Theorem 1. Applying successively (17),
(19), (23) and (10), we have

10 l0 10

I ah(', ro) : f N"(r, L;) + ! ar,(r, rr)
i:1 i:l i:1

< s/v"(r) *2r{r) + o(1) S 3(4(r) +ToQ\ + o(1).



[Jniqueness theorems for holomotphic culves

Hence the sum on the right-hand side "f 
(18) can be estimated by

A contradiction follows as in the proof of Theorem 1. E

The method of Theorem 5 applies to curves in cP2* of any degree. In
particular, if we replace the conic C with an irreducible cubic, then, provided no

three of the lines L; ate concurrent, we have

N,(r, L;) a \Tn(r) + O(1),

corresponding to (23), and the rest of the proof remains the same. For curves C
of degree 4 or higher, the number of lines Z; has to be more than 10.

By taking two curves Cr, Cz C CP2* , we may obtain a theorem with the

conclusion that / : g. For simplicity we consider only curves of degree 2 ot 3.

Theorem 6. Let Ct, Cz be distinct non-degenerate cuwes of degree 2 ot 3

in CP2* . Let L1s, . . ., Lto,t be distinct lines on C1 , no three of them concutrent,
a,nd let Lt,z, . . ., Lu,z be distinct Jines on C2, no thtee of them concurrent. Let

f ,g:C --+ CP2 befullholomorphic curves suchthat,for i:1,...,L0, j:\,),
l-'@;i) : s-l(Lii) , counting multiplicities up to 2. Then f = s .

Proof. we have observed above that Theorem 5 remains true if c is of
degree 3. Applying Theorem 5 we obtain Cr(f A 9) = 0 ar;.d Cz(f A 9) : 0.

Therefore the image of f Åg lies in C{1Cz and so /Ag is a constant curve. As in
the proof of Theorem 2, this contradicts the assumption that / is a full curve. o

The hypotheses of Theorem 6 allow some of the lines L;,1 lo coincide with
some of the lines L;,2. If. this happens there are less than 20 lines in the configu-

ration. For example, if, C1 and C2 are cubic curves that intersect in nine points
Pt, ..., Pg, we may take trir : Li,z - P; for i:1,...,9. A suitable choice of
.t1s,1 and -L1s,2 gives a configuration of LL lines in general position that satisfies

the hypotheses of Theorem 6.

For my invitation to Washington University, where this research was done, I am grateful to
the Mathematics Department and in particular G.R. Jensen. For their comments on this paper I
thank Dr. Jensen a.nd A. Baernstein II.
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