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UNIQUENESS THEOREMS FOR
HOLOMORPHIC CURVES

Peter Hall

A celebrated theorem of Nevanlinna ([9], [11], [12], see also [16]) asserts that
if f and ¢g are meromorphic functions on the entire plane and there are 5 values
ai, ..., as for which f~1(a;) = ¢7'(a;), not counting multiplicities, then f is
identically equal to g. Theorem 2 of this paper is an analogue of Nevanlinna’s
theorem for holomorphic curves in 2-dimensional projective space. The 5 points
a; are replaced by 18 lines L;;, which are required to be in a special configuration,
which is never in general position. We take f, g: C — CP? to be full holomorphic
curves such that, for each line L;;, the inverse images f~(L;;) and ¢g~'(L;;) are
the same, counting multiplicities up to 2, and prove that f is identically equal
to ¢g. In other words, we distinguish between simple zeros and multiple zeros,
but make no distinction between multiple zeros of different orders. Theorem 6
is a theorem of the same type for a somewhat more complicated configuration in
which the lines may be in general position. The need to count multiplicities up
to 2 comes from the ramification term in Cartan’s version of the Second Main
Theorem.

A theorem of this type has been published by H. Fujimoto [6, II, Theorem 1].
He considers lines in general position and proves a uniqueness theorem for the
special case in which f and ¢ do not pass through 3 of the lines at all. Other
generalizations of Nevanlinna’s theorem to higher-dimensional ranges have been
published by S.J. Drouilhet ([4], [5]) and L.M. Smiley ([15], [17, Section 13]). In
their work there is no need to count multiplicities up to 2, but the assumption
on common values of f and ¢ is that every point of some divisor has the same
inverse image under f as under g.

Nevanlinna also proved that if f and ¢ are meromorphic functions on the
entire plane and there are 3 values ay, az, az for which f~(a;) = ¢~ !(ai),
counting multiplicities, then f is identically equal to ¢, unless f and g belong
to a small family of exceptions ([11], [12]). Fujimoto [6] has obtained several
generalizations of this theorem to holomorphic curves in CP™.

The Supplement at the end of the monograph by B.V. Shabat [14] contains a
survey of work in this area.

Our arguments use the value-distribution theory of a holomorphic curve f: C
— CP". There are two approaches to this theory. Cartan ([2], [7], [10]) uses
Wronskians to reduce to the 1-dimensional case, whereas Ahlfors ([1], [3], [14], [19])
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works directly with singular densities in CP™. In this paper we follow Cartan’s
approach, and in particular we rely on his treatment of ramification. Since Cartan’s
approach has only been worked out for the entire plane C as domain, we only
consider holomorphic curves defined on C.

To outline the ideas in this paper, let f, g: C — CP? be full holomor-
phic curves. The assumption that, for certain lines L;j, f~1(L;;) is the same as
9~ %(Lij), counting multiplicities up to 2, is used to bound the number of times f
and g pass through the lines L;;. A contradiction follows from the second main
theorem of value-distribution theory. The application of the second main theorem
is similar to that of Nevanlinna [12], but the estimation of the number of times f
and g pass through L;; is quite different, so we now explain it.

Define a holomorphic curve h: C — CP?* by letting h(z)be the point in
CP?* corresponding to the line joining f(z) and g(z). This is defined except
when f(z) = g(z). We seek a bound on the number of times h passes through
the points L}; dual to certain lines L;;. It turns out that the Nevanlinna-Cartan
characteristic Th(r), defined later in the paper, can be estimated by Ty(r) +
Ty(r) + O(1). We can consider the line A joining any 2 of the LY; and estimate
the enumerative function for A in the usual way. The bound thus obtained is not
good enough for our purpose, but if there exists a line through 3 of the L}; we
obtain a better bound. These considerations lead to the configuration of 15 lines
described in the statement of Theorem 1.

It remains to discuss the points where f(z) = g(z). It happens that the
formula we use to bound Tj(r) gives at the same time a bound for the total
number of points where f(z) = g(z), or rather for an enumerative function N(r)
that we define for these points. The common value f(z) = g(z) may be the
intersection of 2 or 3 of the lines L;;, and so some consideration of multiplicities
is needed.

Theorem 2 of this paper, the uniqueness theorem discussed above, is a simple
consequence of Theorem 1. Theorems 3 and 4 are similar to Theorems 1 and 2 but
concern a different type of configuration of lines. In Theorems 5 and 6 we treat
certain configurations where the lines are in general position in the linear sense
but subject to quadratic or cubic relations.

Let f: C — CP" be holomorphic. If f is given in homogeneous coordinates
by (fo,.-.,fn), where fy, ..., fn: C — C are holomorphic functions with no
common zeros, we say that (fo,..., fs) is a reduced representation of f.

Given any reduced representation (fy,..., fn) of f, we define the Nevanlinna—
Cartan characteristic of f to be

27

1 ‘
Ty(r) = o . m?xlogffj(re'e)! do —m}'qulogtfj(O)l.

This definition does not depend on the choice of reduced representation.
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We consider a hyperplane H in CP™ and also write H for the homogeneous
linear form defining H. Assuming H o f is not identically zero, let 7s(2,H) be
the minimum of n and the multiplicity of the zero of Ho f at z. Then

ag(r,H)= > vp(z,H)
|z|<r
is the number of zeros of H o f in the closed disc D(0,r), counting multiplicities
up to n. (We regard the point 0 as D(0,0).) The enumerative function is

Nf(r,H)=f0 nf(t’H);nf(O’H) dt + 740, H) log r.

We shall use the following form of the Nevanlinna inequality. The Nevanlinna—
Cartan characteristic Ty can be used to bound the enumerative function defined
by counting all multiplicities instead of multiplicities up to n, but we shall not
need that function in the present paper.

Nevanlinna inequality ([2, p. 15], [7, formula (2.5)]). If f is a holomorphic
curve in CP™ and H is a hyperplane that does not contain the image of f, then
(n Ny(r, H) < Ty(r) + O().

We say that f is a full curve if the image of f is not contained in any proper
linear subspace of CP™.

Second main theorem ([2, formula (3)], [7, Theorem 3.5], [10, p. 223]). Let
f: C — CP™ be a full holomorphic curve and let Hy, ..., H; be hyperplanes in
general position. Then

(2) (q -—n-—- 1)Tf(r) < Z Nf(r’ Hi) + O(longf(r))’ ”

=1
where the symbol || on the right indicates that (2) may fail for values of r in a
set of finite measure.

In the next lemma we define a special enumerative function counting all mul-
tiplicities, but we shall only use it to estimate multiplicities up to 2.

Lemma 1. Let ¢g, ..., ¢n: C — C be holomorphic functions, not identi-
cally zero. Let ®: C — CP™ be the holomorphic curve defined by (¢o,...,¢n),
with analytic continuation across the common zeros of ¢q, ..., ¢n. Then

27

1 .
Ta(r) + Ne(r) = 5 | maxloglipj(re™)[ db + O(1)

where

_ [ ne(t) = n(0)
N.(r)= /(; __t—_dt +n.(0)logr

and n.(r) is the number of common zeros of g, ..., pn in D(0,7), counting all
multiplicities.
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Proof. Let (xo,-..,Xn) be areduced representation of ®, so that there exists
a holomorphic function ¥, ¥(0) # 0, such that

@j=zh¢Xja j=0,-")nv
where h = n.(0). Then

27

5 J, m?xloglgoj(reieﬂdg

27

1 i 1o i i
=5 A m?xloglxj(re 9)| dé + -2—7;/0 logl(re haw(re ‘9)[ dé

=Ts(r) + m]a,x log[xj(O)I + log|¢(0)| + /Or ?ﬂ—_tn—c(o—)dt + n:(0)logr

by Jensen’s formula, since the zeros of 2"3 are precisely the common zeros of Yo,
city Pp. O

We shall use a construction from Grassmann algebra. If p, ¢ are distinct
points of CP?, the line through p and ¢ is a point of the dual space CP?*
denoted by pA¢. If f, g: C — CP? are holomorphic and f is not identically
equal to g, then f A g is defined except on the discrete set where f(z) = g(2).
The singularities of f A g are removable and so we obtain a holomorphic curve
fAg: C— CP?*.

If (eo, e1,€2) is a basis for C?, (e Aey, eaAey, eo/Aey) is a basis for C3*. With
respect to these bases, if f is given by (fo, f1, f2) in homogeneous coordinates and
g is given by (go,91,92), then f A g is given by

(3) (f192 = f291, f290 — fog2, fogr — f190).

Even if f and ¢ are given by reduced representations, the vector (3) may not be
a reduced representation of f A g.

If pe CP? and f: C — CP? is holomorphic, the projection of f into the
line polar to p will be denoted, by an abuse of language, by p A f. This is an
example of the contracted curves introduced by Ahlfors [1] and described in detail

by Wu [19].

Lemma 2. Let f,g: C — CP? be holomorphic curves, f not identically
equal to g. Let p be a point of CP? and p* be the line in CP2* dual to p. The
image of f A g lies in p* ifand only if pA f =pAg.

Proof. First assume

(4) p*(fAg)=0.
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Take a unitary basis (eq,e1,e2) for C* such that p is the point with coor-
dinates (0,0,1). Then p* has coordinates (0,0,1) with respect to the basis
(e1 A ez, e2 A eg,eq A ey) for CP2?*. If f, g have representations (fo, f1,f2),
(90,91, 92), equation (4) yields

(5) fog1 — f190 = 0.

Now pA f and p A g are given in coordinates by (fo,f1) and (go,¢1), and (5)
shows that these are identically equal as curves in CP!.

Conversely, if pA f = pA g then (5) holds, which implies that (4) holds. o

We now prove Theorem 1, the conclusion of which is a degeneracy condition
of the form pA f = pAg. Theorem 1 will be used to derive a uniqueness theorem
as Theorem 2.

Theorem 1. Let L;;, i =1,...,5, j = 1,2,3, be 15 distinct lines in CP?
such that
(1) fori=1,...,5, Li1, Liz, and L;3 have a common point p;;
(2) the 10 lines L;j, i =1,...,5, j = 1,2 are in general position, and similarly

for j=1,3 and j =2,3.

Let f,g: C — CP? be full holomorphic curves such that for i = 1,...,5,
j =1,2,3, f~Y(L;;) is the same as g~'(L;;), counting multiplicities up to 2.
Then p; A f =p; Ag for somet in1,...,5.

Proof. By hypothesis (2) of the Theorem, the lines L;;, ¢ =1,...,5, 7 =1,2,
are in general position. By the second main theorem (2)

TTs(r) < Z Z Ny(r, Lij) + O(log rTy(r)). I

There are similar inequalities for 5 = 1,3 and j = 2,3. Averaging these three
inequalities, we obtain

BTy(r) < Z E Ng(r, Lij) + O (log 7T¢(r)). Il

Adding this to the corresponding inequality for g, we obtain

(N4(r, Lij) + Ny(r, Lij)) + O (log r Ty (r) Ty (7)) » ||

©) 2T+ 1) <3

3
=1 j=

For any line H, let no(r, H) be the number of points z in D(0,r) such that

H(f(2)) = H(g(2)) =0,
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counted twice if H o f and H og both vanish to at least second order at z. Let

No(r,H) = / no(t, H) ; no(0, H) dt + no(0, H) log .
0

The assumption that f~!(L;;) and g~!(L;;) are the same, counting multiplicities
up to 2, implies that

Nf(r, L,’j) + ]Vg(r, L,'j) = 2N0(7‘, L,‘j).
The inequality (6) becomes
5 3
(M) B(Ts(r) + Ty(r)) <2 ) No(r, Lij) + O(log rTy(r)T,(r)). Il
i=1 j=1

We now assume that, for 2 = 1,...,5, p; A f is not identically equal to p; A g,
and proceed to derive a contradiction from (7). The method is to estimate the
right-hand side of (7) in terms of Ts(r) 4+ T,(r).

Define a holomorphic curve h: C — CP?* by setting h(z) = f A g(2). If
(fo, f1, f2) is a reduced representation for f and (go, g1, g2) is a reduced represen-
tation for g, then h is given in homogeneous coordinates by

(3) (fig2 = f291, f290 — fog2, fog1 — f190)-

This is not in general a reduced representation, since the coordinates may have
common zeros. We define

27

O(r) = = [ maxlog| Fige — fugy)(re™)] o,
Lemma 1 gives
(®) Th(r) + Ne(r) = ©(r) + O(1),
where, as in the statement of Lemma 1, N,(r) is the enumerative function for the
common zeros of the components (3) of h.
To estimate O(r), we remark that
maxlog| figk — fig;| < maxlog(Ifigul + |fegsl) < max log (2|f;gx|)
=log2+ mjz_;mxlog |fi] + ml?xlog |9k |-
Therefore

9) O(r) < Tp(r) + Ty(r) + O(1).
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Combining (8) and (9), we have
(10) Ti(r) + Ne(r) < Ty(r) + Ty(r) + O(1).
We now distinguish 2 contributions to No(r, L;j). Let ne(r, L;;) be the num-
ber of points z € D(0,r) such that L;;(f(z)) = Lij (9(2)) = 0, counting multi-
plicities up to 2, and also f(z) = g(z). Let

" etaLi' - 7L”
Ne(r,L;j)=/0 ne(t, Lij) tne(O ij) dt + n(0, L;j)logr

and
(11) Nu(r, L,‘j) = No(‘l“, L,‘j) bl Ne(T‘, L,‘j).

We begin by estimating N,(r, L;;). For a point z € D(0,r) we write ve(z, Li;)
for the contribution that z makes to n.(r, L;;). Thus

ne(raLij) = Z Ve(z’Lij)'

lz|<r

We write vc(z) for the contribution that z makes to n.(r). We distinguish 4 cases
according to the type of ramification.

Case 1. If z is not a branch point of f or g and none of the lines L;; is
tangent to f at f(z), then, since at most 3 of the L;; pass through any point of
CP2?,

> ve(z, Lij) < 3ve(2).
i,J

Case 2. If z is not a branch point of f or g and one of the lines, say Lqs,

is tangent to f at f(z), then by hypothesis L,; must also be tangent to g at

f(2). At most 2 others of the lines L;; can pass through f(z),and f and g must
intersect them with multiplicity 1, so that in this case

z I/e(z, L,']') S 41/c(z).

i)j

Case 3. If f has a branch point at z and g has not, then f intersects any
line through f(z) with multiplicity at least 2, and the only line through f(2)
that ¢ intersects at that point with multiplicity greater than 1 is the tangent to
g. Similarly if ¢ has a branch point at z and f has not. Therefore in this case

z ve(z,Lij) < 2v.(z).

i)j
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Case 4. If both f and g have a branch point at z, each of them intersects
every line through f(z) with multiplicity at least 2. In this case the components
(3) of h have a common zero of multiplicity at least 2. Since at most 3 of the
lines L;; pass through any point of CP?,

> ve(z, Lij) < 3ve(2).
4,

To summarize, in all four cases when f(z) = g(z) we have

Z ve(z, Lij) < 4ve(2).

i,J
This yields the estimate
5 3
(12) >N N(r, Lij) < 4N(r).
i=1 j=1

Now we estimate Ny(r, L;;). This is where we use the hypothesis (1) of the
Theorem that, for 1 = 1,...,5, L;;, L;» and L;3 have a common point p;. The
dual of p; is a line p! in CP?*, and on p} there are three points L}, L}, and
L.

For any z such that f(z) # g(z), the point h(z) = fAg(z) € CP?* is dual to
the line through f(z) and g(z). When f(z) # g(2) and L;;(f(2)) = Li;j(9(2)) =
0, h(z) is at the point L;;. If further L;j0 f and L;j o g vanish to second order
at z, h has a branch point at z.

Recall that our assumption for reductio ad absurdum is that,for : = 1,...,5,
pi A f is not identically equal to p; A g. By Lemma 2, this implies that the image
of f A g is not contained in the line p}. Since L}; lies on p}, we have

3
S Nu(r.Liy) < Ku(r,p]) < Ta(r) + O(1)

i=1
by the Nevanlinna inequality (1), and hence

5 3

(13) > > Nu(r, Lij) < 5Tw(r) + O().

i=1 j=1

Applying successively (11), (12), (13) and (10), we have

(14) ZZNo(r Lu)-ZZN (s u)+ZZN (r, Lij)

i=1 j=1 1=1 j=1 =1 j=1

< AN(r) +5Th(r) + O(1) < 5(T4(r) + Ty(r)) + O(1).
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This inequality (14) establishes that the sum on the right-hand side of (6) can be
estimated by 10(Ty(r) + Ty(r)). With this estimate (6) becomes

(15) Ty(r) + Ty(r) = O(log rTs(r)Ty(r)).

We now pursue a standard argument to derive a contradiction to the assump-
tion that, for 1 =1, ..., 5, p; A f is not identically equal to p; A g. The estimate
(15) implies that Ty and T, are O(logr). Therefore f and g are rational, for
the same reason as in the case of maps into CP! [12, Paragraph 21]. Now, for
rational functions, the error term in the second main theorem (2) is in fact O(1)
[9, proof of Theorem 2.3(a)]. Our inequalities therefore give

Ty(r) + T,(r) = O(1),

which implies that f and g are constant. o

Theorem 2. Let L;;, ¢ =1,...,6, j =1,2,3, be 18 distinct lines in CP?
such that
(1) for t=1,...,6, L;1, Lis and L;3 have a common point p;;
(2) the 12 lines L;j, i =1,...,6, j = 1,2, are in general position, and similarly
for j=1,3 and 7 =2,3.
Let f,g: C — CP? be full holomorphic curves such that fori = 1,...,6,
J =1,2,3, f71(Lij) is the same as g~'(Li;), counting multiplicities up to 2.
Then f=g.

Proof. Apply Theorem 1 to the 15 lines L;;, ¢ = 1,...,5, j = 1,2,3, to
conclude that for some a we have p, A f = p, A g. Now apply Theorem 1 to the
15 lines L;; with ¢ # a to obtain b# a with pp A f=py A g.

Suppose that f is not identically equal to g, so that the curve fAg is defined.
By Lemma 2, the image of f A g is the point L* = pj; N p;. This point L* is
dual to a line L in CP? and the image of f must lie in L, contradicting the
assumption that f is a full curve. o

We now consider to what extent it is possible to vary the configuration of 15
lines in Theorem 1. Let L;;, ¢ = 1,...,4, j = 1,...,B, be AB distinct lines
such that
(1) for ¢ =1,..., A, the lines L;;,..., L;p have a common point p;;

(2) for bin 1,...,B, thelines L;;, t =1,..., 4, j = b,b+1, with the convention
that B + 1 stands for 1, are in general position.

We can attempt to follow the proof of Theorem 1. Corresponding to inequality

(6) we have

1B(2A-3)(Ty(r)+Ty(r)) < >

i=1j

(Ng(r,Lij)+ Ny(r, Li;)) + O (log rT (r)T,(r)).

B
=1
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Corresponding to (12) we have
A B

> T N(r, Lij) < (B+ 1)Ne(r)

i=1 j=1

and corresponding to (13) we have

A B
D> Nu(r, Lij) < AT(r) + O(L).

i=1 j=1
The conclusion will follow if
(16) 1B(2A - 3) > 2max(4,B +1).

The solutions of (16) with A > 0 and B > 0 are the pairs (A, B) satisfying
A>4,B>50r A>5, B>3. Theorem 1 is the case A =5, B =3. The same
argument with A = 4, B = 5 proves the corresponding proposition for a certain
configuration of 20 lines. Corresponding to Theorem 2 there is a proposition
about a configuration of 25 lines. We can obtain uniqueness theorems for some
other configurations of lines by using a version of the second main theorem due
to E.I. Nochka [13]. The corresponding theorem in the Ahlfors theory is due to
C.-H. Sung [18].

Second main theorem (Nochka’s version). Let f: C — CP" be a holomor-
phic curve such that f(C) spans a k-dimensional linear subspace of CP". Let
H,, ..., Hy be hyperplanes in general position in CP", such that, for: = 1,...,q,
H; does not contain f(C). Then

g
(¢=2n+k=DTy(r) < 3 Ny(r, Hi) + OlogrTy(r)), |
i=1
where Ny(r, H;) is the enumerative function defined by counting multiplicities up
to k.

From a different point of view, Nochka’s theorem may be regarded as a the-
orem on holomorphic curves in CP¥ in relation to configurations of hyperplanes
that fail to be in general position to a bounded extent. This is the view that we
shall take in Theorems 3 and 4.

Theorem 3. Let A=5, B>4or A>6, B>3. Let L;j, 1 =1,..., 4,
j=1,...,B, be ABdistinct lines in CP? such that
(1) for i =1,...,A, the lines L;,...,L;p have a common point p;;
(2) at most B of the L;; pass through any point of CP?.
Let f,g: C — CP? be full holomorphic curves such that, for 1 = 1,...,A, j =
1,...,B, f~Y(Lij) is the same as ¢g~'(L;;), counting multiplicities up to 2. Then
piNf=piNg for some ¢ inl,... A.
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Remark. The possible values of A and B are obtained by reasoning similar
to the discussion following Theorem 2.

Proof. The only difference from Theorem 1 is that we use Nochka’s version
of the second main theorem. Regard CP? as a linear subspace of CPE. By a
standard general position argument, there exist hyperplanes H;;, ¢ = 1,..., A,
j =1,...,B, in general position in CP2, such that L;; = H;; N CP? for all 1
and j. Nochka’s version of the second main theorem gives

(AB — 2B + 1)(Ty(r) + Ty (7))
A B
<SS (W, Lig) + Ny (r, L)) + O(log T (r)Ty(r)), |

=1 j=1

corresponding to (6) in the proof of Theorem 1. Now the argument proceeds as
before. o

Theorem 4. Let A=6, B>4 or A>7, B>3. Let L;jj, : =1,..., A,
j=1,...,B, be AB distinct lines in CP? such that
(1) fori=1,...,A, the lines L;;, ..., Lip have a common point p;;
(2) for a in 1,...,A, if S is the set of lines L;; such that ¢ # a, then at most
Bof the lines in S pass through any point of CP2.
Let f,g: C — CP? be full holomorphic curves such that f~Y(L;;) is the same as
g7 1(Lij), counting multiplicities up to 2. Then f =g.

Proof. This follows from Theorem 3 in the same way as Theorem 2 follows
from Theorem 1. o

In each of Theorems 1 to 4 it is an essential condition that, for a fixed index
¢, the lines L;; have a common point p;. This linear relation among the lines L;;
is used to obtain an estimate for the terms N,(r) in the form of the inequality
(13). In Theorem 5 we replace this with a quadratic condition; in geometrical
language, the lines L; are assumed to lie on a line conic C C CP?*. The lines L;
of Theorem 5 are thus in general position. The conclusion of Theorem 5 is that
f and ¢ satisfy a certain algebraic identity that is quadratic in each; this is not
so simple as for Theorem 1, but it is still the case that 2 such conditions imply
f=g.

If C is a curve in CP?* we shall also write C' for the homogeneous form
defining C'.

Theorem 5. Let C be a non-degenerate curve of degree 2 in CP?*. Let L,
..., Ly be distinct lines on C. Let f,g: C — CP? be full holomorphic curves
such that, for i = 1,...,10, f~Y(L;) = ¢7*(L;), counting multiplicities up to 2.
Then C(fAg)=0.
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Proof. We introduce the enumerative functions No(r,L;), Ne(r,L;) and
Ny(r,L;), satisfying

(17) No(r,L;) = Ne(r,L;) + Ny(r, L;),
as in the proof of Theorem 1. The lines L; are in general position, and so by the
second main theorem (2)

10

(18)  T(Ts(r)+ Ty(r)) <2 No(r, Li) + O(logrTs(r)T,(r)), |

=1

corresponding to (7) in the proof of Theorem 1. Corresponding to (12) we have

10
(19) > No(r, L) < 3N(r),

since at most 2 of the lines L; pass through any point of CP?. We now wish
to estimate the terms N,(r,L;). If (zo,®1,%2) are homogeneous coordinates on
CP?*, the Veronese embedding V: CP?* — CP? is defined by

(20) V (2o, 1,22) = (x5, xoz1, T0T2, 77, 7122, 73).

The image under V of C is the section of V(CP?*) by a hyperplane H. We have
C = HoV as forms on CP?*. Suppose, to obtain a contradiction, that Co (fAg)
is not identically zero. Write h = f Ag. For i = 1,...,10, V(L}) lies on V(C),
and so by the Nevanlinna inequality (1) we have

10
(21) > Nu(r, Li) < Nyon(r, H) < Tyon(r) + O(1).

i=1
The formula (20) for the Veronese embedding V gives
(22) TVoh("') = 2Th(7').
Combining (21) and (22) we have

10

(23) > Nu(r, Li) < 2Tu(r) + O(),

=1

which corresponds to (13) in the proof of Theorem 1. Applying successively (17),
(19), (23) and (10), we have

10 10 10
D ONo(r Li) =Y Ne(r,Li) + > Ny(r, L;)
=1 =1 =1

< 3N.(r) +2Th(r) + O(1) < 3(Ty(r) + T,(r)) + O(1).
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Hence the sum on the right-hand side of (18) can be estimated by 6(Ty(r)+Ty(r)) .
A contradiction follows as in the proof of Theorem 1. o

The method of Theorem 5 applies to curves in CP%* of any degree. In
particular, if we replace the conic C' with an irreducible cubic, then, provided no
three of the lines L; are concurrent, we have

10

> " Nu(r, Li) < 8Tw(r) + O(1),

=1

corresponding to (23), and the rest of the proof remains the same. For curves C'
of degree 4 or higher, the number of lines L; has to be more than 10.

By taking two curves C;, C, C CP?*, we may obtain a theorem with the
conclusion that f = ¢. For simplicity we consider only curves of degree 2 or 3.

Theorem 6. Let Cy, C; be distinct non-degenerate curves of degree 2 or 3
in CP?*. Let Ly, ..., L1o,1 be distinct lines on Cy, no three of them concurrent,
and let Lya, ..., L1 be distinct lines on C3, no three of them concurrent. Let
f,g: C — CP? be full holomorphic curves such that, for i = 1,...,10, j = 1,2,
f~Y(Li;) = ¢7Y(Lij), counting multiplicities up to 2. Then f=g.

Proof. We have observed above that Theorem 5 remains true if C is of
degree 3. Applying Theorem 5 we obtain Cy(f Ag) = 0 and Co(f Ag) = 0.
Therefore the image of fAg liesin C1NC2 and so fAg is a constant curve. As in
the proof of Theorem 2, this contradicts the assumption that f is a full curve. o

The hypotheses of Theorem 6 allow some of the lines L;; to coincide with
some of the lines L; ». If this happens there are less than 20 lines in the configu-
ration. For example, if C; and C; are cubic curves that intersect in nine points
Py, ..., Py, we may take L}, = L}, = P; for : = 1,...,9. A suitable choice of
Lio; and Ly gives a configuration of 11 lines in general position that satisfies
the hypotheses of Theorem 6.

For my invitation to Washington University, where this research was done, I am grateful to
the Mathematics Department and in particular G.R. Jensen. For their comments on this paper I
thank Dr. Jensen and A. Baernstein II.
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