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J.L. Fernåndez* and J.M. Rodriguez

O. Introduction

In this paper we study the exponent of convergence of Riemann surfaces and,

especially, its behaviour under quasiconformal mappings.
A Riemann surface is Green if it possesses non-constant positive superhar-

monic functions or, equivalently, a Green's function. It is well known that if two
Riemann surfaces are quasicouformally equila,lent and, one is Green, the other is
Green too ([Pf]). In [Ro] Royden asked if the same result holds for the Liouville
property: i.e., not having non-constant bounded harmonic function. For plane
domains being Green and not satisfying Liouville's property is the same. Not so

for higher genus ([A-S, p. 256], [T1] and [T2]). A few years ago P. Doyle and
T. Lyons ([L]) independently found pairs of quasiisometric (a fortiori quasiconfor-
mally equivalent) Riemann surfaces such that one has Liouville's property and the
other does not.

A basic conformal invariant of a hyperbolic Riemann surface ,S is the bottom
of the spectrum of the Laplace-Beltrami operator, å(S). This can be defined in
terms of Rayleigh's quotient as

ä(s):peå$rsrry#

where ll ll, V and dtr refer to the Poincard metric of ,5. (We assume here and
hereafter that the universal cover of ^9 is the unit disk A or, equivalently, the
upper halfplane U in C; that is what the adjective hyperbolic refers to. From
oow on all Riemann surfaces considered will be hyperbolic. The Poincar6 metric
of A is ds :2ldzl/$ - lrl') and the Poincard metric of ,9 is the unique metric
in ,S such that the universal covering map is a local isometry.)

We remark that the Dirichlet integral is a conformal invariant;it follows that
if ,9: O C C, then

I l*w rtt' * : I I,tY etz drd,v
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where I f , V and d,xd,y refer to the Euclidean metric in the second integral.
The number å belongs to the interval [0, []. Actually, a theorem of Elstrodt-

Patterson-Sullivan says that

where 6(^5) is the exponent of convergence of S ([S, p. 333]).
A Riemann surface is termed bassif å(S):0, or equivalently, 6(5): 1. 11

a Riemann surface has ö(S) ) 0, then it has a Green's functionl in fact there is a
C- positive eigenfunction of the Laplace-Betrami operator satisfying

A'b : ttb

for every , < 6(5). See, e.9., [S, p. 328].
Our sign convention for A is such that -02 1002 : A in the case of the circle.

So A is a positive operator.
We shall prove:

Theorem l. If a Riemann surface ^91 is bass and is quasiconformaJly equiv-
alent to 52 then,S2 is bass.

Thus being bass is a quasiconformally invariant property.
It is easy to see that if "f t Sl --+ ,92 is fr-quasiconformal then fr-16(.91) <

6(5r) ( å6(5r), but, of course, this does not help in the proof of Theorem 1.

We shall see that being bass is a geometrical concept.
We shall say that a Riemann surface S satisfi,es the hyperbolic isoperimetric

inequaJity (HII) if there exists a constant å(.S) > 0 so that for every relatively
compact open set G with smooth boundary one has

(1)

Here and hereafter, ,4s and .ts refer to Poincar6 area and length of .9.
Domains G as above will be said to belong to 2(S).

Of course, the hyperbolic plane satisfies the HII with ä : 1.
A general result of Cheeger says that if a Riemann surface ,5 satisfies HII then

it is not bass and actually ä(.9) > 1,14h(S)2. It turns out that negative curvature
forces an inequality in the.opposite direction. Namely:

Theorem 2. A Riemann surface S is not bass if and only if it satisfres HII.
Ivloreover, for an absolute constant C, we have
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This result is well known. It also holds in higher dimensions and with weaker

assumptions on curvature, see [B, p. 228]. But our proof is direct in our situation
and the argument we use is needed for Theorem 1.

Next, we move on to study which plane domains are bass. Green plane do-

mains are those whose complements has positive logarithmic capacity. Deciding
when a plane domain is bass is more delicate. For instance, A - {0i - {1/2"}P1
is bass while A - {1 - 712"}7=, is not.

We do have a necessary condition and a sufficient condition for a plane domain
to be bass which are quite close.

A domain G in the sphere is called modulated if there is an upper bound
for the modulus of every doubly connected domain H C G which separates the
boundary of G. The lowest such upper bound is called the modulus of G.

There is a number of characterizations and known properties of these domains.
(See e.g. [B-P], [Po1], [Po2], [M]).

Theorem 3. Assume that G is modulated and that {a"}f;:1 is a sepatated
sequence in G, i.e.

i2f. d6@",o-) > 0.

Then the domain G : G - {r,}år is not bass.

Here, and hereafter, d6 means Poincard distance in G.
In [F1] it was shown that modulated domains are not bass.
Let B a compact set in the complex plane.
If p belongs to B, we define for r, 0 < r < diamB,

and

,(p,r) : cap(Ä(p, 
") 

n B),

1

0@,r)-:itf{,: a(p,t) nBf A(p,r)nB ).

If .Ff is a plane domain and oo belongs to H, it is known, [Po1, p. 192 and
193], [Po2, p. 302 and 307], thai ä is modulated if and only if inf.r,,a(p,") > 0

and also that ä is modulated if and ouly if irlfo,,§(p,r) ) 0, where in both
instarrces the set B involved is B: äIf . Notice that a(p,r) < O(p,r). A set B
with inf{a(p,r) : p e B,O< r < diamB} > 0 is called uniformly perfect.

We have the following converse of Theorem 3.

Theorem 4. Assume that H is a pla,ne domainwhich is not bass and q € H .

Then C\ ä is a disjoint union P U I, where I is theset of all isolated points of
0H . The points of I are sepa.rated A Ö \ P : H U I and there exist constants

e and c2 so that if p e P then

0@,r) ) cr
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ot
o(p,r/(p,r)) > 

"z
where a and B are as above with B replaced by P.

Aiso cap(Ä(p,r) o P) > 0 for each p € P, for each r ) 0.

We have examples showing that the condition of Theorem 3 is not necessary
while that of Theorem 4 is not sufficient.

Notation. By C we will mean an absolute constant which can change its value
from line to line, and even in the same line.

If O is a plane domain, Äe means the density of the Poincard metric in O, d
means Euclidean distance in C, A(a, r) is the Euclidean open disk with centre a
and radius r , A,(a,r)* : A(o, r) - {o}, A' : A(0, r) and Ar : A.

If .F is a closed set Fi : iso(F) means the set of all isolated points of F,
and .Fd : der(-F) means the set of all accumulation points of .F (the derived set

of .F) and cap(.F) denotes the logarithmic capacity of the set F.
The organization of the paper is as follows. In Section 1 we prove Theorem 2.

The proof of Theorem 1 appears in Section 2, and finally Theorems 3 and 4 are
dealt with in Section 3 and 4, respectively. Section 5 contains some remarks.

1. Proof of Theorem 2

If ,S satisfies HII then as we have already remarked it follows from Cheeger's
inequality ([Che], [Cha, p. 95]) that ,5 is not bass and, in fact,

å(^e)ä(s), > ä.

Let us assume that .9 is not bass and we shall see ihat ,S satisfies HII.
Our first step is to verify that we only have to check that HII holds for geodesic

domains in ^9. By a geodesic domain we mean a domain G C S, such that 0G
consist of finitely many closed simple geodesics, and .45(G) is finite. G does not
have to be relatively compact since it may '(surround" finitely many punctures.
Thus we may consider punctures as non-proper closed geodesics of zeto length.
We first dispose of some elementary cases.

Lemma 1.1. a) If ^9 
js a simply or doubly connected Riemann surface then

HII holds with consta,nt 1..

b) If S is a Riemann surface and Q e D(S) is simpJy or doubly connected
then

As(O) < Ls(aA).

Part a) is elementary and part b) follows from a).

Lemma L.2. Assume that ,9 satisfes HII for geodesic subdomains;then S
satisfies HII.

J.L, Fernåndez and J.M. Rodriguez
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Proof. Assume that CI € D(S) and that

169

(1.1) ,s(äf}) < e,As(o)

where e < l. We shall see that there is a geodesic subdomain G with

(1.2) Ls@G). t'-uo'{).
This will finish the proof'

Because of Lemma 1.L we may assume that 0O consists of finitely many closed

simple disjoints curves 'Yt, ..., 7o, so that 7;, 1i ate not freely homotopic if. i # i ,

and 7; is not homotopic to 0.
Let öl be the geodesic in the homotopy class of 7; (recall that 6; could be

a puncture) . Let G be the domain "bounded" by the å;. Then G is a geodesic

domain, and Ls(\G) < .ts(AO). Now we have to compare As(G) with .45(O)

and in fact we will see that

(1.3)

(1.4)

When we replace . 7; by a å; we loose at most an area of Ls(l;) + Ls(bi).
This follows , if. yrrb; : 0 , from Lemma 1. L b) since they bound a doubly connected

domain, and if T fl h f 0 , then we lift to the unit disk and use the HII there to
obtain the inequality. If ä; is a puncture, we actually gain area.

From (t.f ) and (1.3) we obtain

rs(ao) < 7\or{r1
and since Ls(AG) < ,s(AO) we obtain the result.

Moreover, if we have As(G) < hs(S)Ls(0G) for every geodesic domain G,
then

ä(S) <2*hg(^S).

We need information about geodesics and punctures, which we record in the
following lemmas.

Lemma L.3. Let S be a Riemann surface and I a closed simple geodesic in
S. Let O be O: {r€ S: its(p,"/)<d}. Then

As(fr) < zsinh( d) ' Ls(t).

The inequality is sharp.
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Proof. Let T be the Möbius transformation from [/ onto U representing ?.
We may assume, since this can be achieved by conjugation, that Tz : ),2 with
translation length log.\: Ls(l), and zr (the universal covering map) maps

i: {iV: L 1y . 
"r's?)}

onto 7.
If Ö : {z e U : dry(2,7) < d,7 < lrl< "rs(r)}, then n'(Ö) : 0 and

h@) : zsinh(d)' Lu(il : 2 sinh(d)' Ls(i.
Now,

,as(Q) < Au(O):2sinh(d) .Ls(t)

where the inequality follows because holomorphic mappings do decrease area, by
Schwarz's lemma.

Let E1 , E2 be nonvoid disjoint sets on the Riemann surface ,S and denote
by I the family of connected arcs which join "81 and Ez. We write ls(f) :
Ås(Er, E2) and call this quantity the extremal distance of ,81 and E2 relatively
to ^9, where )s(f) is the extremal length of I in ,S (for details see [A-S, p.
220-225)).

If ^9 is the interior of a compact bordered surface ^9 and Et,Ez consist of
a fi.nite number of arcs or full contours on the border, then there exists a unique
bounded harmonic function u which is 0 on Et, t on E,2, and whose normal
derivative vanishes on the remaining part of the border.

Theorem ([A-S, p. 2251). The extremil distance between E1 and E2 is
equal to tlD(u).

We recall that the extremal length and the Dirichlet integral D(u) are con-
formal invariants.

Let p be a puncture on .9. A collar about p is a doubly connected domain
in .S bounded by p and a Jordan curve (called the boundary curve of the collar)
orthogonal to the pencil of geodesics emanating from p. A collar about p of area
B will be called a B-collar: Cp(p).

LemmaL.4. If p is apuncturethengiven 0 <l and e ) 0, thereexists
a: a(0,e) sucå that the harmonic function in CB@) \ C"(p) which is I on the
boundary curve of CB@) and 0 on the boundary curve of C,(p), satisfies

lVrl' ( €:.

Proof. Represent S as U ll and assume, since this can be achieved by con-
jugation, that I contains a primitive element z --+ z f 1, and that the canonical
map ?r : U --+ U ll : 

^9 takes vertical lines in U into geodesics ema"nating from

llr,(p)\c.(p)
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p. This implies that a collar about p is the image under r of aregion 0 ( r ( 1,

y > 11 (for some ? > 0) on which zr is injective. One computes at once that, for a

B-col7ar,q:110.
It is known (see [Kr, p. 60-61]) that there is a B-collar for every P <1.
We lift u to a function w it U:

u(x * iy) -

Then

lvrl' - lV. l'dy dr -

(* -u) t(:- bl

lL,(p)\c,(p) l,' l,' ,l ," 1l*-Ilp

if o: tlOl0 +1le).
Now we start the proof of Theorem 2. We assume that ä(S) > 0. Let G be

a geodesic domain in ^S. Let 7i be the proper closed simple geodesics bounding
G, i:1, ..', n and let p6 bethe puncture§ttsurrounded"by Gri:1, "', tu'
Fix a positive constant d.

Let Oi be O; : int{r € S\G, ds(p,l) 3d}.
Let Hp be the connected component of Uf=rf,}i which contains O6. To

simplify notation we assume that I/r : Or UOz U"'UO* . Let up be the harmonic
function in H* suchthat u:1in 7rU"'U7* and u:0 in Ex:lHx \UfZi.

Denote by I the collection of all curves in .[fr which join Ep to 71 U ' ' ' U 7t .

The theorem in [A-S] gives

I(f ,p)2 \ .L(f ,ps)z 4z-.;,M,W:M$ rr lv" xl2 dAs

and using Lemma 1.3 we obtain

d2L

As(Or) +.. .* As(O,t)
d2

+ Ls(t)] .

f(d): sinh(d)/d2 2 /(do) where ds :1.91500806... and /s : f(do) < 0.9053.
Of course, we choose d : do.

We want to use

o < å(s) . II )YPl'IIe
for some g with compact support.
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We would like to define ? as follows

(1 in G

'= t ä* :lft","
but cp must be 0 in a neighborhood of the puncturesl so we will have to define cp

around the punctures in a different way. We do ihis as follows.
There exists B6 such that CB,(pr) C G for all i : 1,...,rn and CB,(pu)n

Cp"(pi):0ifi*i.
If e e (0, *§o), lhen C"1*(pr) is contained in G and As(UTC"nbr;) : 

".We use Lemma 1.4 with 9: elm, o: 912: e/2m, and let u5 be as in the
lemma and u;:0 in C.(p;).

Then

lvr,; l' _

/A:

ll,,(pi)
e

rTL

If
{1 inG\ufCB@n)
I u; in C p(pt)

l"* ir,Hp
\ 0 elsewhere

then

for all € < m§0. Therefore

and (1.4) implies that

and since b < å, *" obtain that

å(^s)s/0ffi

ä(,S) <2+-&-.
6(^9)'

6 + fols()G)
As(G) - ,

Therefore
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2. Proof of Theorem 1

\Me assume that / : §1 -+ ,sz is a k-quasiconformal mapping from the Rie-

mann surface .Sr onto the Riemann surface ,S2.

We shall need the following lemma which is certainly known.

Lemrna 2.L.
Denote by 0,; the
a; in S;. Then

Proof. If o; is 0 then either ol is homotopic to zero or "surrounds" a punc-

ture. Therefore the a;'s a,re zero simultaneously.
So we may assume that a10,2 ) 0.
Let A; be a Möbius transformation from A onto A representing a;, i : 1,2.

Then the A;'s are hyperbolic, al : translation length of A; : infr6a d6(2, A;z),
and .41 arrd A2 are conjugates by a lift / "f / (/ : A -+ A).

Let Ql be the quotient Riemann surface Ll@;l , i : L,2. Then O; is a ring
whose modulus is r f a;. Therefore

n <kL.
a2 Ct'1

'we assume now that ,s2 satisfies HII and we shall chec,k that §1 must satisfy
HII. Because of Lemma 1.2 it is enough to check that there exists a constant C1

so that if Or is a geodesic domain in ,51, then

Äs,(Or) l CtLst(OOr).

Let theboundarycurves of O1 bed.enotedby ai, i:1,...,n (recallthat
oi cotild be a puncture). Let Bi, i :1,...,n be the shortest curve in the free

homotopy class of l@i). Thus B; is a closed simple geodesic. Let O be the
domain bounded by the 0;'s. Then ,4s,(ö): Ås,(Or), because of the Gauss-
Bonnet theorem. But

As,(o) < hrf Ls,(pi < h2kLs,(ol1)
j=1

and so we see that ,Sr satisfies HII with a constant h1 satisfying

h 12 + h2la < 3h2k.

In particular we have seen that

ö(sr)' < ckzb$2)

where C < 36(å + lo)2 <Zz.

Let a1 be a closed simple curve on ^9r and let d,2 _ /(*t ).
infimum of the lengths of all closed curves freely homotopic to
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3. Proof of Theorem 3

Let us denote by t the ifro+*d6(an,a^),
Instead of showing that å(G) ) 0, we will prove thaf h(e) < C.
In this section, by C we wiII mean a constant which depends only on f and

the modulus of G.
Letfbef:{a"}å"=r.
The proof is easy if. I : 0:
In [O] it is proved that

Since G is modulated, there is Co > 0 such that

)c(r)> &
Therefore lVloglc(r)l < C\6(z).
We have )ä : L log )6 because the metric Åsldzl has Gaussian curr,rature

-1. If D belongs to D(G), then, using Green's formula,

Ac(D) : I lrsbQ) 
d,a d,y - I lr"log)6(z) 

dx dy : 
luoo 

ror\c(,). d ld,zl

where 7 is the unit outer normal of. 0D,
And so

tt
Ac(o) 3 I lVlog)c(r)l ldzl < C | \6(z)ldzl : CLc(?D).

J aa Jao

Therefore G has HII with h(G) < Z/Co.
The idea of the proof of Theorem 3 is to divide G into two pieces: the first

piece will be "far" from f and then Åc - )c I the second part will be "around" f
and then )o - ,\4.. We will choose the neigborhood of I so that the constants
appearing in the estimates will be independent of the neighborhoods.

Lemma 3.1. If S : G \ U,>rA(a, ,led(an,0G)) with e ) 0, then

for all z € S.

\c(z) S \eQ) < CÅ c(z)
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Proof. Since G c G, ),6(z) < lA(r) for all z e G .

Let z €.9. It is easy to check that

l, - ol2 ,l;aQ,aq, for all a e I.

Therefore d(2, 0G) : d(2, I u 0G) > e I Q + e)d(2, 0G) .

And so, because of Schwarz's lemma, we finally get

\ae) < å6='ffi='#^oor.
Lernma3.2. ?åe disJrs {Ä(o,, ed,(an,äG))},r, are disjoint if e : tl(4+2t) '

Furthermore,if Kr=eK :@+2rt)e4 and z eä1o,ed,(a,1G)) where ae I,
then

1

fr\ o{,, n, o@, a q). (z) < \ eQ) 3 \ d1o,z, a1o,o c11, Q).

Proof. Assume that the disks are not disjoint. Then there are m,n, (m f n)
such that

lon-o*l<2ed(a",1G).
Let 7 be the line segment which joins o, with o- ; if. z e 1

d(a*,7G) l lon - zl + d(2,0G) <2ed(an,Ac) + d(2,0G).

and then l
d(a*,1G) < fi;atr,Oc1.

It follows that

dc(o.,a*). [^o6la4=[-'lo'l - 2 | ld'l
J1 tr riQ,aCl > 1Jc Jr{""@G)

and so

do(o,,o*) 1(Wrq< f u:t,
which contradicts the definition of t.

Therefore, the disks {A(o,, ed(an,OG))},r, are disjoint.
The second inequality is then obvious.
The first inequality follows from Theorem L of [B-P].
Now we start the proof of Theorem 3.

Let D be a domain which is relatively compact in G with 0D : g U 0, U

-'.ug*uB1u...u0t.
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The B, 0i, 0i are Jordan curves. We may assume that they are disjoint.
Also, B is the outer connected component of. 0D, the Bi are not homotopic to
zero in G, and the Bi are homotopic to zero in G, with g; :|Bi where Bi is a
closed Jordan domain in G.

If B :DU{Ui:lBt}\f then the boundary curves of. B are 0U hU "'U 0*.
It is enough to show that

Aa@) < cLc(08)
since we have increased the area and decreased the length.

Let dn: d(on,0G) and define Is = {a,: B fi L,(an,led) { A},
11= {an: 0B n L(on,ird.)* I A} afi 12 = {an: A(a,, *ud*)* c B}.

Observe that .[ i 12 :0 and I1l-) 12 - f o.
Lemma 3.2 implies that

au({t, - aÅ : ri:l:;H[:o, ]) = f;dob.,*,,"). ({ }, { })

Jr'oe los(kl14 = a'

We distinguish two cases.

Case 7. LG(AB o A(o,n, ed")*) ( a for some o, ( 11.

Since d6({l ,-anl: Lredo}, {lr-o.l : ,d.}) ) a, 0BflL,(an,,edn)* contains
a boundary curve 7 of B. Then 7 is a 0i or 1- B. Actuallg 7 can not be
a Bi silace 1 C L(an,edr) and so it is homotopic to zero in G. So 7 : B and
we conclude that B C L(a",edr)* and B is simply or doubly connected. By
Lemma 1'1 

Aa@) < LG@B).

Case 2. Le@Bfl A(o,, 
"d,)*) 

) a for all an€ /r or h : 0.
We have

(3.1) ,AG(B)aAa@ ns)+ I auto(a*,,1ed,.)*)+ » A6(L(a.,Lrd").).
an€Iz an€It

We will treat each summand separately.
First, A6(.8 n S) < CAc(B O,9) because of Lemma 3.1.
Seccnd, A6(L(a*,*"d").) < CA6(L,(a.,led*)*) because of Lemma 3.2.
Then

(3.2) Aa@ n,9)+ I ,u(o(a.,ledo)*)
an€Iz

<CA6(8 nS)+ C » A6(A,(a,,*"d*).)
aaCfz

< cAc@) < cLc(08) < cLe(aB).
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Finally, we deal with the last term. We have

A6(at ant *rd")") S C

because of Lemma 3.2.
Since a,n € /r , we have that

177

and so

(3.3) » AG(a(",,*rd,)*) <C » L6@B na(o*,edn)*) <CLG(aB).
a n€It an€-lt

because the disks {A(o,, ,d^)}.>, are disjoint.
And so (3.1), (3.2) and (3.3) give

Ae@) < CLG@B).

4. Proof of Theorem 4

Lemma 4.1. Let E be a compaet set, E C L,, with {0,L} C E and
capB e. Thereis auniversal constant C suchthat if R>2 then

å(aa\E) s c(i"cfu. #)
Proof. We can find an open set ä with C*-boundary urrd containing "8,

such that if we let u be the harmonic function in A2 \ .4 with boundary values

!u:0 hlA
lu:1 inlzl:2

then tf._.^ c
J J lv"l' < Gä, and "(,)> | ia1z1> l,

where C is an absolute constant.
Let l?' be a positive number less than .R.
Define a function I/ on A6 \.E as follows

u ={ I - ,o* ltzt/tosr*, ll fl\å 
= 

.,
\ 0 elsewhere.
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and

Clearly

J.L. Fernå,ndez and J.M. Rodriguez

tvvt: 
{yä11,,.* *a),

inA2\A
in2<lrl<R'
elsewhere.

We have that

ll^-\, lvvt' : ll^z\A

I l^-\, lvvt'

also

ll^-\rv Å1,*\E' > ll,,,st,ts,u 
Å1,,\E

lVrl'+ tt
J J z<lrl<Rt lrl'(los *a')'

i log(Lle) ' log *R"

Therefore

for each Rt < .8, and so

\ fe deduce the following consequences:

Corollary 1. Let E be a compact set contained in Är, where
Assume that {0, ,} C E and also that cap E l, ( e . Then

i v \log(Lle) ' los(712))'

Corollary 2. Let E be a compact set contained in Lr, where
Assurnethat 0 belongsto E, E* {0} and capE:0. Then

- 'L 
log( I l2r) 

rÅ

Corollary 3. If a,b e A, then

where h(t) - C llog( | cotanh |t).
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This is proved in [F2] without the explicit expression for h..

The following lemma will be frequently used. It will allow us to glue parts of
the boundary while keeping 6 under control.

Lemma 4.2. Let Q be a domain in the complex plane. If G is a connected

closedset sucJr that GnAA+0 and Ö i", connected component of O\ G,then

6(0) > 6(0).

Proof. In Ö there are fewer curves and they are longer. See [Ca, Theorem 5.1].

Lemma4.3. Let E be aa infinite compact set contained in the plane domain
O. Assume that cap E : 0. Then

6(0\E):1.

We should think of O as being A.
Proof. The theorem of Cantor-Bendixson (see, for instance, [Ku, p. 183])

implies that E : P UE where P is the maximal perfect subset of .E and E is a
countable set.

We distinguish two cases.

Case (A): P : 0. Then E : R is a closed countable set.

Write E : Ed U Ei. Letus see first that .Ei and Ed arenon-empty.
If Ei :0, then E(: Ed) is a perfect set. It follows that E C P:0 which

contradicts that E is infinite.
lf. Ed :0, then E(: E;) is a compact discrete set. If follows that .E is finite

which contradicts our hypothesis.
Now, Ed : (Ed)d U (Eri. Notice that (Ed)i is non-empty for if (Eo)o : A,

then .Od(: (Eo)o) is a perfect set. It follows that Ed C P :0 contradicting that
Ed +0.

If e belongs to (Ed)i, there is r ) 0 such that A(e,Zr)nEd: {e}. Since e
belongs to Ed, we have that A(e, r)nI,: {e} U {on}n with o, € E' and q.n --+ e.

With the notation of Lemma 4.2 and setting G : A(e,r)" and 3 : {e} U

{on}n, we see that
6(ft \ E) > 6(A(e, r) \ B).

In [Pa, Theorem 4.1] it is proved that if ,9 is a hyperbolic Riemann surface
artd A is a discrete subset of ,S, then

6(s\A) >6(s).

It follows that

6(^(e,r)\B)>6(era,T)\{e,,an})_6(^r{o,T})
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Corollary 2 implies that

,(or{o,lf}) =,- rfiha
Then

6(()\E).r- 
^4;7ft;=6,

for each n.
And so the lemma is proved in this case.

Case(B): P+4.
The set P is not uniformly perfect because cap P : 0. It follows that if k

is a natura,l number greater than L, then there must be a point ap in P and a
positive number r1 such that Br O P = 0, where .86 is the ring

{r,+<lz-a6l </cr;} co.

Notice that EnBe(: AnBk) is a closed countable set. It follows that there
äre s1,t1, with sk e lrklk,rolJEl, tx e l{kr*,tnr*], suctr that

{1, - "xl: s*} fl E :0 and {1, - "ol: tr} fl E :0.

If Lr is the ring {r, "1, 
<lz-o*l<t*}, then A*nP:0 and ApnE(:

Ak n R) is a compact set contained in the interior of. A*.
If .4r O E is infinite for some k, then lve are in case (A).
So we may assume that A* l1 E is finite for all b > 1. Lemma 4.2 implies

6(0 \ E) > 6(A(ap,tr) \ E).

Applying Patterson's theorem again, we obtain

6(§) \ E) > 6(A(o1, tr) \ {E fi A(o3, ,*)})2 t - ffi7xö,
therefore

/1

6(0\E) 21- --"- for all & > 1,
log ä/

and so
6(0\E):1.

Now we start the proof of Theorem 4.
Letusdefine P:C \fJ\I.
Let us observe that P is not empty.
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If P were empty then fl would be the Riemann sphere minus finitely many
points, but this is ruled out since 6(I{) < 1.

Moreover, we will see that

cap(1,(p,r) n f) > O for each p e P and r > 0.

Assumenot,thenthereexist p e P and r ) 0 suchthat cap(A(p,r)nf) :6'
We may assume that p : 0 and r : lrand then cap(A o P) : 6.
Let.R betheset {s € (0,1) : {lzl: s}n(PUD*0}. R isaclosedset

in (0,1) and cap.R: 0. Therefore there are s € (0,1) and e > 0 such that
-En[s -e,s):Q.

Then the set .E defined as E : A"fl (P U/) : Aa-e n(PU.I) is a compact
set in A, and cap.E : 0. Notice that E is infinite because p / I .

Therefore, using Lemma 4.2 ar,d Lemma 4.3 we deduce that

6(r/)>6(^."\E)=L

which contradicts å(I/) > 0.
We conclude that ".p(A(p,r)n 

P) ) 0 for each p € P, for each r > 0.

Next we checl< that the points of -I are separated in Ö \ P. Fix a point g

of. H.
Let f' be a universal covering map F : A --r Ö \ .P such that .F(0) : q.
Define J = F-tQ) andlet G bea universalcovering map G: A - A\/

such that G(0) : g.

Then fI : Fo G : A --+ I/ is a universal covering map of I/ and fi(0) : q.

Let 7 be an isometry of A. If G o 1 - G, then II o7 - II.
It follows that the group 9(G) of covering transformations of G forms a

subgroup of g(n), the covering transformations of II . Therefore

§ /1- lr(0)l\, . \- /t - l,y(o)l\,

,#*r\t + 1710;;/ = .,.?*r\t +;710;1/ '

and so 6(^ \ /) < 6(ä) < 1.
If i, j belong to f, then there are k,l belonging to J sucfr that d.5(k,l) :

detr(i,f). Then, using Patterson's theorem and Corollary 3

6(r/) > 6(a \ /) > 6(a \ {&,,}) > 7 - h(d^(l,,t)).

Therefore

dav(i, j) ) 2Argtanh (å"*r(#r))
Finally we check the behaviour of c ar,d P.
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Fix p € P and 0 < r < |aiamf. Let' B : §(p,r)..
Let Ct be such that if 0-< 2Q then C ltog(tlQil) . it@). Also C, < L.
If p <2C1,then

-L(p,0i o P : A(p, r) n P, and Br < lr.
Since cap(A(p, 

") 
n P) > 0 (notice that A(p, r) n P has at least two points),

we can use Lemma 4.1:

å(a(p,") \ p) < "(# . r"gd(2F»)
Now we apply Lemma 4.2 ar,d Patterson's theorem to see that

6(II) > o(a n 
^(p,,)) 

: o(a(p,') \ (P u I)) > 6(a(p,") \ P)

and so
å(H)<å(a(p,r)\P).

Therefore b(H)<ffi
and then

=g+Pl),""o(#) =cn.
It follows that

cap(Ä(p,0') n P) .= .,.______fi-,un,
i.e.

o(n,rg(n,r)) > Ct.

Now we consider the case l diamP ( r ( diamP.
If 0@,r) < Cr(< l) then-r!(p,r): *r0@,|r) and 0@,lr):20(p,r) <

2Ct.
It follows that

cap(L(p,rg@,r)) n P) _ cap(L(p, Lrg@, Lr)) n P) . 
".W@-"2'

i.e.
o(n,rg(n,r)) > cz.

This finishes the proof.

Remark. In [F1] there is an example of a plane domain which is not bass

while its boundary is not uniformily perfect but it is perfect. It is also easy to
construct examples of bass plane domains which satisfy the conclusion of Theo-
rem 4. It would be interesting to have euclidean criteria for deciding whether a
plane domain is bass or not.
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