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THE EXPONENT OF CONVERGENCE OF RIEMANN
SURFACES. BASS RIEMANN SURFACES

J.L. Fernidndez* and J.M. Rodriguez

0. Introduction

In this paper we study the exponent of convergence of Riemann surfaces and,
especially, its behaviour under quasiconformal mappings.

A Riemann surface is Green if it possesses non-constant positive superhar-
monic functions or, equivalently, a Green’s function. It is well known that if two
Riemann surfaces are quasiconformally equivalent and, one is Green, the other is
Green too ([Pf]). In [Ro] Royden asked if the same result holds for the Liouville
property: i.e., not having non-constant bounded harmonic function. For plane
domains being Green and not satisfying Liouville’s property is the same. Not so
for higher genus ([A-S, p. 256], [T1] and [T2]). A few years ago P. Doyle and
T. Lyons ([L]) independently found pairs of quasiisometric (a fortiori quasiconfor-
mally equivalent) Riemann surfaces such that one has Liouville’s property and the
other does not.

A basic conformal invariant of a hyperbolic Riemann surface S is the bottom
of the spectrum of the Laplace-Beltrami operator, 5(S). This can be defined in
terms of Rayleigh’s quotient as

_ e JIVelPde
b5 = s, I pdw

where || ||, V and dw refer to the Poincaré metric of S. (We assume here and
hereafter that the universal cover of S is the unit disk A or, equivalently, the
upper halfplane U in C; that is what the adjective hyperbolic refers to. From
now on all Riemann surfaces considered will be hyperbolic. The Poincaré metric
of A is ds = 2|dz|/(1 — |z|?) and the Poincaré metric of S is the unique metric
in S such that the universal covering map is a local isometry.)

We remark that the Dirichlet integral is a conformal invariant; it follows that

if S=QcCC, then
/ / IVl de = / / V|2 dady
Q Q
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where | |, V and dzdy refer to the Euclidean metric in the second integral.
The number b belongs to the interval [0, ;]. Actually, a theorem of Elstrodt-
Patterson—Sullivan says that

1 £0
’S) = {5(5)(1 —§(s)) if}

where §(S) is the exponent of convergence of S ([S, p. 333]).

A Riemann surface is termed bass if b(S) = 0, or equivalently, §(5) = 1. If
a Riemann surface has b(S) > 0, then it has a Green’s function; in fact there is a
C* positive eigenfunction of the Laplace-Betrami operator satisfying

Ay =ty

for every t < b(S). See, e.g., [S, p. 328].

Our sign convention for A is such that —92/96% = A in the case of the circle.
So A is a positive operator.

We shall prove:

Theorem 1. If a Riemann surface S; is bass and is quasiconformally equiv-
alent to S, then S, is bass.

Thus being bass is a quasiconformally invariant property.

It is easy to see that if f : S; — Sy is k-quasiconformal then k~1§(S;) <
8(S2) < ké(S1), but, of course, this does not help in the proof of Theorem 1.

We shall see that being bass is a geometrical concept.

We shall say that a Riemann surface S satisfies the hyperbolic isoperimetric
inequality (HII) if there exists a constant h(S) > 0 so that for every relatively
compact open set G with smooth boundary one has

(1) As(G) < h(S)Ls(IG).

Here and hereafter, As and Lg refer to Poincaré area and length of S.
Domains G as above will be said to belong to D(S).

Of course, the hyperbolic plane satisfies the HII with A = 1.

A general result of Cheeger says that if a Riemann surface S satisfies HII then
it is not bass and actually, b(S) > 1/4h(S)%. It turns out that negative curvature
forces an inequality in the opposite direction. Namely:

Theorem 2. A Riemann surface S is not bass if and only if it satisfies HIIL
Moreover, for an absolute constant C', we have

L<H(SA(S)?  and  B(SA(S)<C <.
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This result is well known. It also holds in higher dimensions and with weaker
assumptions on curvature, see [B, p. 228]. But our proof is direct in our situation
and the argument we use is needed for Theorem 1.

Next, we move on to study which plane domains are bass. Green plane do-
mains are those whose complements has positive logarithmic capacity. Deciding
when a plane domain is bass is more delicate. For instance, A — {0} — {1/2"}5%,
is bass while A — {1 —1/2"}%2, is not.

We do have a necessary condition and a sufficient condition for a plane domain
to be bass which are quite close.

A domain G in the sphere is called modulated if there is an upper bound
for the modulus of every doubly connected domain H C G which separates the
boundary of G. The lowest such upper bound is called the modulus of G.

There is a number of characterizations and known properties of these domains.

(See e.g. [B-P], [Pol], [Po2], [M]).

Theorem 3. Assume that G is modulated and that {a,}5%, is a separated
sequence in G, i.e.
inf dg(an,am) > 0.
n#Em

Then the domain G = G — {a,}3%, is not bass.

Here, and hereafter, dg means Poincaré distance in G.

In [F1] it was shown that modulated domains are not bass.
Let B a compact set in the complex plane.

If p belongs to B, we define for r, 0 < r < diam B,

a(p,r) = cap(A(p, r)N B)r

and

B(p,r) = %inf{s : A(p,s)NB D A(p,r)N B}

If H is a plane domain and oo belongs to H, it is known, [Pol, p. 192 and
193], [Po2, p. 302 and 307], that H is modulated if and only if inf, , a(p,r) > 0
and also that H is modulated if and only if inf,,8(p,r) > 0, where in both
instances the set B involved is B = OH. Notice that a(p,r) < f(p,r). A set B
with inf{a(p, r):peEB0<r< diamB} > 0 is called uniformly perfect.

We have the following converse of Theorem 3.

Theorem 4. Assume that H is a plane domain which is not bass and oo € H.
Then C\ H is a disjoint union PU I, where I is the set of all isolated points of
OH . The points of I are separated in C\ P = H U I and there exist constants
c1 and cy so that if p € P then

/B(par) 2
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a(p,rB(p,r)) 2 ¢

where o and (3 are as above with B replaced by P.
Also cap(A(p,m)N P) > 0 for each p € P, for each r > 0.

We have examples showing that the condition of Theorem 3 is not necessary
while that of Theorem 4 is not sufficient.

Notation. By C we will mean an absolute constant which can change its value
from line to line, and even in the same line.

If Q is a plane domain, Aq means the density of the Poincaré metric in Q, d
means Euclidean distance in C, A(a,r) is the Euclidean open disk with centre a
and radius r, A(a,r)* = A(a,r) — {a}, A, = A(0,r) and A; = A.

If F is a closed set F* = iso(F') means the set of all isolated points of F,
and F¢ = der(F) means the set of all accumulation points of F' (the derived set
of F') and cap(F') denotes the logarithmic capacity of the set F'.

The organization of the paper is as follows. In Section 1 we prove Theorem 2.
The proof of Theorem 1 appears in Section 2, and finally Theorems 3 and 4 are
dealt with in Section 3 and 4, respectively. Section 5 contains some remarks.

1. Proof of Theorem 2

If S satisfies HII then as we have already remarked it follows from Cheeger’s
inequality ([Che], [Cha, p. 95]) that S is not bass and, in fact,

b(S)h(S)? > 1.

Let us assume that S is not bass and we shall see that S satisfies HII.

Our first step is to verify that we only have to check that HII holds for geodesic
domains in S. By a geodesic domain we mean a domain G C S, such that 9G
consist of finitely many closed simple geodesics, and Ag(G) is finite. G does not
have to be relatively compact since it may “surround” finitely many punctures.
Thus we may consider punctures as non-proper closed geodesics of zero length.
We first dispose of some elementary cases.

Lemma 1.1. a) If S is a simply or doubly connected Riemann surface then
HIT holds with constant 1.
b) If S is a Riemann surface and Q € D(S) is simply or doubly connected
then
As(2) < Ls(09).

Part a) is elementary and part b) follows from a).

Lemma 1.2. Assume that S satisfies HII for geodesic subdomains; then S
satisfies HII.
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Proof. Assume that Q € D(S) and that
(1.1) Ls(09) < eAs(£2)

where € < 3. We shall see that there is a geodesic subdomain G with

(1.2) Ls(8G) < 1

AS(G)

This will finish the proof.

Because of Lemma 1.1 we may assume that 9 consists of finitely many closed
simple disjoints curves 71, - .., Ya, S0 that ;, v; are not freely homotopic if ¢ # j,
and +; is not homotopic to 0.

Let b; be the geodesic in the homotopy class of 7; (recall that b; could be
a puncture). Let G be the domain “bounded” by the b;. Then G is a geodesic
domain, and Lg(8G) < Ls(0f2). Now we have to compare As(G) with As(Q)
and in fact we will see that

(1.3) As(G) > As(Q) — 2L5(09).

When we replace a 7; by a b; we loose at most an area of Lg(v;) + Ls(b;).
This follows, if 4;Nb; = @, from Lemma 1.1 b) since they bound a doubly connected
domain, and if 4; N b; # @, then we lift to the unit disk and use the HII there to
obtain the inequality. If b; is a puncture, we actually gain area.

From (1.1) and (1.3) we obtain

3
Ls(09) < ——45(G)

and since Lg(0G) < Lg(9§) we obtain the result.
Moreover, if we have As(G) < hy(S)Ls(0G) for every geodesm domain G,
then

(1.4) h(S) < 2 + hy(S).

We need information about geodesics and punctures, which we record in the
following lemmas.

Lemma 1.3. Let S be a Riemann surface and v a closed simple geodesic in

S.Let @ be Q={peS: ds(p,v) < d}. Then
As(Q) < 2sinh(d) - Ls(7).

The inequality is sharp.
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Proof. Let T be the Mdbius transformation from U onto U representing ~.
We may assume, since this can be achieved by conjugation, that Tz = Az with
translation length log A = Ls(y), and « (the universal covering map) maps

= {iy: 1Sy<eL5(7)}

onto 7. .
IfQ={z2€U:dy(z,7) <d,1 < |z] < s} then 7(Q) = Q and
Ay(Q) = 2sinh(d) - Ly(5) = 2sinh(d) - Ls(v).
Now,

As(Q) < Ay(Q) = 2sinh(d) - Ls(v)

where the inequality follows because holomorphic mappings do decrease area, by
Schwarz’s lemma.

Let E;, E; be nonvoid disjoint sets on the Riemann surface S and denote
by T' the family of connected arcs which join E; and E,. We write Ag(T) =
As(Eq, E3) and call this quantity the extremal distance of E; and E; relatively
to S, where Ag(T') is the extremal length of T in S (for details see [A-S, p.
220-225]).

If S is the interior of a compact bordered surface S and E;, E, consist of
a finite number of arcs or full contours on the border, then there exists a unique
bounded harmonic function u whichis 0 on E;, 1 on E,, and whose normal
derivative vanishes on the remaining part of the border.

Theorem ([A-S, p. 225]). The extremal distance between E; and E, is
equal to 1/D(u).

We recall that the extremal length and the Dirichlet integral D(u) are con-
formal invariants.

Let p be a puncture on S. A collar about p is a doubly connected domain
in S bounded by p and a Jordan curve (called the boundary curve of the collar)
orthogonal to the pencil of geodesics emanating from p. A collar about p of area
B will be called a f-collar: Cy(p).

Lemma 1.4. If p is a puncture then given 3 < 1 and € > 0, there exists
a = a(B,¢€) such that the harmonic function in Cg(p)\ Cyu(p) which is 1 on the
boundary curve of Cg(p) and 0 on the boundary curve of C,(p), satisfies

// [Vol? <e.
Cs(p)\Ca(p)

Proof. Represent S as U/T" and assume, since this can be achieved by con-
jugation, that " contains a primitive element z — z + 1, and that the canonical
map 7: U — U/T' = S takes vertical lines in U into geodesics emanating from
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p. This implies that a collar about p is the image under 7 of aregion 0 <z <1,
y > 7 (for some n > 0) on which 7 is injective. One computes at once that, for a
B-collar, n = 1/8.

It is known (see [Kr, p. 60-61]) that there is a f-collar for every 8 < 1.

We lift v to a function w in U:

weri)=(3-9)/ (- 3)

1 l/a 1
Vo2 = / / Vwltdyde = —— = ¢
‘/‘/Cﬂ(l’)\ca(l’) o Ji/s 1/a-1/B

if a=1/(1/8+1/e).

Now we start the proof of Theorem 2. We assume that 5(S) > 0. Let G be
a geodesic domain in S. Let v, be the proper closed simple geodesics bounding
G, j=1, ..., n and let p; be the punctures “surrounded”’by G,¢ =1, ..., m.
Fix a positive constant d.

Let Q; be Q; =int{pe S\ G: ds(p,7;) < d}.

Let Hj be the connected component of U7_;{; which contains Qr. To
simplify notation we assume that Hy = Q1 UQ2U---UQ. Let ur be the harmonic
function in Hy such that u=1in v U---U~; and u = 0 in Ey = 0Hj \ UF;.

Denote by T' the collection of all curves in Hy which join Ep to y1U---U~g.

The theorem in [A-S] gives

Then

1 o KT LTyps)? &
Ja, [Vui|?dAs o A(Hi,p) = A(Hx,ps)  As(Hr)

and using Lemma 1.3 we obtain

As(Hy As() + -+ As(Q
[ 1upans < 2 < As)x o2 A5G0
Hy

< %)-[Ls(’h) + -+ Ls(m)]-

f(d) = sinh(d)/d?* > f(dy) where dy = 1.91500806... and fo = f(do) < 0.9053.
Of course, we choose d = dj.
We want to use

0<b(S)§%

for some ¢ with compact support.
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We would like to define ¢ as follows

1 inG
=4 ur in Hg
0 elsewhere

but ¢ must be 0 in a neighborhood of the punctures; so we will have to define ¢
around the punctures in a different way. We do this as follows.

There exists By such that Cgy(p;) C G for all 7 = 1,...,m and Cg,(p;) N
Coo(py) = 0 if i # .

If e € (0,mpo), then Ce/m(pi) is contained in G and As(U{"Ce/m(p,')) =e.

We use Lemma 1.4 with § =¢/m, a = /2 =¢/2m, and let v; be as in the
lemma and v; =0 in Cya(p;).

Then
/f Vo2 = =
Cp(pi) m

1 in G\UPCps(pi)
v; in Cg(p;)

ur in Hy

0 elsewhere

If

AN
n

then
I 1V _ &+ foLs(0G)

| P W (c)

for all € < mfBy. Therefore
Ls(9G)

b(S) < fom

and (1.4) implies that

fo

h(S)<2+ b—(—s—,

and since b < i—, we obtain that
h(S)b(S) < 3 + fo.

Therefore
h(S)b(S) < %
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2. Proof of Theorem 1

We assume that f: S; — S; is a k-quasiconformal mapping from the Rie-
mann surface S; onto the Riemann surface S;.
We shall need the following lemma which is certainly known.

Lemma 2.1. Let oy be a closed simple curve on S; and let ay = f(aq).
Denote by a; the infimum of the lengths of all closed curves freely homotopic to
o; in S;. Then

1
P < ay < kas.

Proof. If a; is 0 then either «; is homotopic to zero or “surrounds” a punc-
ture. Therefore the a;’s are zero simultaneously.

So we may assume that a;jaz; > 0.

Let A; be a Mdbius transformation from A onto A representing a;, 1 = 1,2.
Then the A;’s are hyperbolic, a; = translation length of A; =inf,ea da(z,Aiz),
and A; and A, are conjugates by alift f of f (f: A— A).

Let ©; be the quotient Riemann surface A/(4;), ¢ =1,2. Then ; is a ring
whose modulus is 7/a;. Therefore

<kl
az ai

We assume now that S, satisfies HII and we shall check that S; must satisfy
HIIL Because of Lemma 1.2 it is enough to check that there exists a constant C
so that if ©; is a geodesic domain in Sp, then

As, (Ql) < CiLg, (691)

Let the boundary curves of §; be denoted by aj, j = 1,...,n (recall that
aj could be a puncture). Let 8;, j = 1,...,n be the shortest curve in the free
homotopy class of f(a;). Thus B; is a closed simple geodesic. Let ® be the
domain bounded by the §;’s. Then Ag,(®) = Ag, (1), because of the Gauss—
Bonnet theorem. But

n
As,(®) S ha Y Lsy(Bj) < hakLs, (8)
j=1
and so we see that S; satisfies HII with a constant h; satisfying
hy <24 hak < 3hok.
In particular we have seen that
b(S1)? < Ck*b(Sz)
where C' < 36(3 + fo)? < 72.
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3. Proof of Theorem 3

Let us denote by t the infpzm dg(an,am).

Instead of showing that 5(G) > 0, we will prove that MG < C.

In this section, by C we will mean a constant which depends only on ¢ and
the modulus of G.

Let I be I ={an}32,.

The proof is easy if I = 0:

In [O] it is proved that

2

[VlegAg(2)| < 4z, 00)"

Since G is modulated, there is Cy > 0 such that

Co

ral2) 2 G aey

Therefore |Vlog Aq(z)| £ CAg(z).
We have )% = Alog\g because the metric Ag|dz| has Gaussian curvature
—1. If D belongs to D(G), then, using Green’s formula,

Ag(D)=//D)\zg(z)dmdy=//DAlogAg(z)dxdy=LDVIOgAg(z)-W|dz]

where 7 is the unit outer normal of 8D.
And so

Ag(D) < /a [VIogA(e)]ld=| < € /a _Xo(2)|dz] = CLo(0D).

Therefore G has HII with h(G) < 2/C,.

The idea of the proof of Theorem 3 is to divide G into two pieces: the first
piece will be “far” from I and then A4 ~ Ag; the second part will be “around” I
and then Ay ~ Aa~. We will choose the neigborhood of I so that the constants
appearing in the estimates will be independent of the neighborhoods.

Lemma 3.1. If §$ = G \ Un>1A(an, 3ed(an,dG)) with € > 0, then
Aa(z) € Ag(2) < Cha(z)

forall z€ S.
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Proof. Since G C G, Ag(z) < Ag(z) for all z € G.
Let z € S. It is easy to check that

€
2+¢

|z —al > d(z,0G), foralla € I.
Therefore d(z,8G) = d(z,IUdG) > ¢/(2 + €)d(z,0G).

And so, because of Schwarz’s lemma, we finally get

2 _22+¢) _22+¢)

1.0 S w50 = 20 o)

Aglz) £

Lemma 3.2. The disks {A(an,ed(an, 8G))}n>l are disjoint if € = t/(4+2t).
Furthermore, if K; = eX = (3 + 2v/2)e* and z € A(a,ed(a,0G)) where a € I,
then )

E)‘A(a,lﬁd(a,aG))‘(z) < )\G(Z) < >‘A(a,2sd(a,3G))"(Z)'

Proof. Assume that the disks are not disjoint. Then there are m,n, (m # n)
such that
lan — am| < 2ed(an, 0G).

Let 7 be the line segment which joins a, with an;if z € v
d(an,0G) < |a, — z| + d(z,0G) < 2¢d(an,0G) + d(z, 0G).

and then
1

d(an,0G) < 75

d(z, 0G).

It follows that

2|dz| 2 |dz|
m) < < <
d6(an, am) < LAG(Z)MZ[ = ) d(z0G) = T-2¢ /7 d(an, 0G)

and so o) | .
an —a €
d nyam) < = = =
6lansam) S 0 qan, 0G) < 1= 22
which contradicts the definition of ¢t.
Therefore, the disks {A(an,¢d(an,dG))}, ., are disjoint.
The second inequality is then obvious. -
The first inequality follows from Theorem 1 of [B-P].
Now we start the proof of Theorem 3. X
Let D be a domain which is relatively compact in G with 0D = U ;U
---U,BkUﬂIU--'UﬂI.

t
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The B, B;, B¢ are Jordan curves. We may assume that they are disjoint.
Also, B is the outer connected component of 8D, the §; are not homotopic to
zero in G, and the B' are homotopic to zero in G, with 3! = OB’ where B' is a
closed Jordan domain in G.

If B=DU{U!_,B*}\ I then the boundary curves of B are SUB U---US;.
It is enough to show that

Ag(B) < CLy(9B)

since we have increased the area and decreased the length.
Let d,, = d(an,0G) and define Ip = {an : BN A(an, %edn) # Q)},
I = {an : BN A(an, 3edn)* # 0} and I, = {an i A(an, 2ed,)* C B}.
Observe that 1 NI, =0 and I UL, = Ip.
Lemma 3.2 implies that

45 ({17 = anl = edal}, {Iz = anl = edn}) > Tedatansan (001 1})

L losh/e)
V2 Eloglkife)

We distinguish two cases.

Case 1. Ls(0B N A(an,edn)*) < a for some a, € I;.

Since dg ({|z—an| = Ledn}, {|z—an| = €dn}) > a, 8BNA(an,ed,)* contains
a boundary curve v of B. Then v isa f3; or ¥ = . Actually, v can not be
a f; since ¥ C A(an,ed,) and so it is homotopic to zero in G. So v = B and
we conclude that B C A(an,edn)* and B is simply or doubly connected. By
Lemma 1.1

As(B) < L (0B).

Case 2. Lé(aB n A(an,sdn)*) >aforall a, €, or I, = 0.
We have

(3.1) A6(B) < 46(BNS)+ 3 Ag(A(an, bedn)*) + Y Ag(Alan, beda)).
an €l an€ly

We will treat each summand separately.

First, Ag(BNS) < CAg(B N S) because of Lemma 3.1.

Seccnd, AG(A(an, %edn)*) < CAg(A(a,,, %sdn)*) because of Lemma 3.2.
Then

(3.2) As(BNS)+ > Ag(A(an, 3edn)*)
anGIZ
<CAG(BNS)+C > Ac(A(an, 3edn)?)
an€l,
< CAg(B) < CLG(dB) < CLy(9B).
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Finally, we deal with the last term. We have
As(Aan, 2edn)*) < C

because of Lemma 3.2.
Since a, € I, we have that

As(Alan, 3edn)*) < gLG(aB N Aan,edn)*).

and so

(3.3) D Ag(A(an, 3edn)*) SC Y Le(@BN A(an,edy)*) < CL(8B).
an €l an €l

because the disks {A(an, 5dn)}n>1 are disjoint.
And so (3.1), (3.2) and (3.3) give

Au(B) < CL4(0B).

4. Proof of Theorem 4

Lemma 4.1. Let E be a compact set, E C A, with {0,1} ¢ E and
cap E < €. There is a universal constant C such that if R > 2 then

1 1
HAr\E) < C(log(l/e) + log %R)

Proof. We can find an open set A with C*-boundary and containing E,
such that if we let u be the harmonic function in A, \ A with boundary values

{u=0 in 0A

u=1 inlz|]=2

then o
T —— >1 >3
//IVuI S Toa(1/) and u(z) > 5 inlz| > 3,

where C is an absolute constant.
Let R' be a positive number less than R.
Define a function V on Ag\ E as follows

u in A\ A
V=q1-logilz|/logiR" in2<|z| <R

0 elsewhere.
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Clearly

|Vu inA;\ A
|VV|? = 1/|2|*(log %R’)2 in2<|z|<R
0 elsewhere.

We have that

OV = [ // FFos T
//AR\El | A4 IVul 2<|2|<R! |Z|2(108§R')2

2
//AR\E VI s -1og<1/e) 1og1R"

and also

JL ez [ e Mans(( <l <2)
R z

/A 5 V2’\AR\E' AC\{O 1}({2 < |2:| < 2}) =
R

Therefore

[JIvvE L ;
b(Ar\ E) < [TV = C(log(l/s) * log %Rl)

for each R' < R, and so

1 1
AR\ E) S C(log(l/e) + log %R)'

We deduce the following consequences:

Corollary 1. Let E be a compact set contained in A,, where 0 < r < 1.
Assume that {0,7} C E and also that cap E/r < e¢. Then

1 1
HANE) < C(log(l/s)  fog(d /zr))'

Corollary 2. Let E be a compact set contained in A,, where 0 < r < 1.
Assume that 0 belongs to E, E # {0} and capE = 0. Then

C

AANE) 21 - i

if r < ro.
Corollary 3. If a,b€ A, then
8(A\{a,b}) > 1— h(da(a,bd)) if da(a,b) < do.
where h(t) = C/log(} cotanh t).
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This is proved in [F2] without the explicit expression for h.
The following lemma will be frequently used. It will allow us to glue parts of
the boundary while keeping § under control.

Lemma 4.2. Let Q be a domain in the complex plane. If G is a connected
closed set such that GN AN # 0 and Q is a connected component of Q\ G, then

5(9) > 8(Q).

Proof. In ) there are fewer curves and they are longer. See [Ca, Theorem 5.1].

Lemmad4.3. Let E be an infinite compact set contained in the plane domain
Q. Assume that cap E = 0. Then

§(Q\E)=1.

We should think of  as being A.

Proof. The theorem of Cantor-Bendixson (see, for instance, [Ku, p. 183])
implies that E = P U R where P is the maximal perfect subset of E and R is a
countable set.

We distinguish two cases.

Case (A): P =0. Then E = R is a closed countable set.

Write E = E4U E*. Let us see first that E* and E? are non-empty.

If E‘ =0, then E(= E%) is a perfect set. It follows that E C P = § which
contradicts that E is infinite.

If B¢ =0, then E(= E') is a compact discrete set. If follows that E is finite
which contradicts our hypothesis.

Now, E¢ = (E%)? U (E%)'. Notice that (E?)? is non-empty, for if (E?) =0,
then E¢(= (E%)?) is a perfect set. It follows that E¢ C P = § contradicting that
Ed 4.

If e belongs to (E%), there is r > 0 such that A(e,2r) N E? = {e}. Since e
belongs to E¢, we have that A(e,r)NE = {e}U{an}. with a, € E* and a, — €.

With the notation of Lemma 4.2 and setting G = A(e,r)¢ and B = {e} U
{an}n, we see that

6(Q\ E) 2 §(A(e,r) \ B).

In [Pa, Theorem 4.1] it is proved that if S is a hyperbolic Riemann surface
and A is a discrete subset of S, then

85(S\ 4) > §(5).

It follows that

§(A(e,r)\ B) > 6(A(e,r)\ {e,an}) = 6(A \ {o, "“"T_ ¢ })
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Corollary 2 implies that

d(an {025 21— ey

¢
log(r/2|an — €l)’

Then
S(A\E)>1-

for each n.
And so the lemma is proved in this case.

Case (B): P # 0.

The set P is not uniformly perfect because cap P = 0. It follows that if %
is a natural number greater than 1, then there must be a point a; in P and a
positive number ry such that By N P = (, where By is the ring

{z: %§|z—ak|§krk}cﬂ.

Notice that E N By(= RN By) is a closed countable set. It follows that there
are sg,tr, with sp € [rk/k,rk/\/ﬁ] , tr € [\/Erk,krk] , such that

{lz—ar|=sx}NE=10 and {lz —ar] =t} NE =0.
If Ay is the ring {z s < Jz—ap| < tk}, then Ay NP =0 and Ay N E(=
Ar N R) is a compact set contained in the interior of Ay.

If Ax N E is infinite for some k, then we are in case (A).
So we may assume that Ax N E is finite for all £ > 1. Lemma 4.2 implies

5(9 \ E) > 5(A(ak,tk) \ E)

Applying Patterson’s theorem again, we obtain

C
> c : e P TN
S(Q\B) 2 6(Aar, ) \ {E N Alar, 1)) 2 1 = T
therefore c
) >1-
(Q\E)>1 log % for all k£ > 1,
and so

§(Q\E)=1.

Now we start the proof of Theorem 4.
Let us define P=C\ H\ I.
Let us observe that P is not empty.
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If P were empty then H would be the Riemann sphere minus finitely many
points, but this is ruled out since §(H) < 1.
Moreover, we will see that

cap(A(p,r)NP) >0 foreachpe P andr > 0.

Assume not, then there exist p € P and r > 0 such that cap(A(p,r)NP) = 0.

We may assume that p=0 and r =1, and then cap(ANP)=0.

Let R be the set {s € (0,1): {|z| =s}N(PUI)# 0}. R is a closed set
in (0,1) and capR = 0. Therefore there are s € (0,1) and ¢ > 0 such that
RN[s—e¢,s]=0.

Then the set E defined as E=A,N(PUI)=A,_.N(PUI) is a compact
set in A, and cap E = 0. Notice that E is infinite because p ¢ I.

Therefore, using Lemma 4.2 and Lemma 4.3 we deduce that

6(H) =2 8(A\E)=1

which contradicts b(H) > 0.

We conclude that cap(A(p,r) N P) > 0 for each p € P, for each r > 0.

Next we check that the points of I are separated in C \ P. Fix a point ¢
of H.

Let F be a universal covering map F : A — C\ P such that F(0) = g.

Define J = F~!(I) and let G be a universal covering map G : A — A\ J
such that G(0) = 0.

Then I = FoG: A — H is a universal covering map of H and II(0) = g.

Let v be an isometry of A. If Goy =G, then o~y =1I.

It follows that the group G(G) of covering transformations of G forms a
subgroup of G(II), the covering transformations of II. Therefore

1 - y(0)l\ 1 - (O)\!
> < 2 -
'reg(G)(l * I'y(O)I) 750(11)(1 * |7(0)|>
and so §(A\J) < 6(H) < 1.
If 7,7 belong to I, then there are k,! belonging to J such that da(k,!) =
dé\ p(4,7). Then, using Patterson’s theorem and Corollary 3

§(H) > 6(AN\JT) > 6(A\{k,1}) > 1~ h(da(k,1)).

Therefore

dC\P(i,j) > 2Argtanh (-;- exP(_l—:——&C(v_H—)—))'

Finally we check the behaviour of « and 3.
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FixpePand 0<r< %diamP. Let 8 = B(p,r).
Let C; be such that if 8 < 2C; then C/log(1/(28)) < $b(H). Also C1 < }.
If 8 < 2Cy, then
A(p,fr)N P = A(p,r)N P, and fr < %r.
Since cap(A(p,r)N P) > 0 (notice that A(p,r)N P has at least two points),
we can use Lemma 4.1:

b(a@ )\ P) < -

1
+ .
log(Br/ cap(P N A(p,r))) ~ log(1/ (2ﬂ)))
Now we apply Lemma 4.2 and Patterson’s theorem to see that

8(H) 2 6(HNA(p,r) =6(Ap,r)\ (PUD) 2 8(A(p,m)\ P)

and so
b(H) < b(A(p,r) \ P).
Therefore
Cs
") < fogBr T can(P N AT
and then

cap(P N A(p,r)) —Cs3\ _
Gr > exp(m) = Cy.

cap([&(p, gr)n P)
Br

It follows that

> 04’

le.
a(p, rB(p, r)) > (4.

Now we consider the case %diamP <r<diamP.

If B(p,r) < Ci(< }) then rB(p,r) = 3rB(p, 3v) and B(p, 37) = 26(p,r) <
2C;.

It follows that

cap(A(p, rB(p,r)) N P) _ cap(A(p, 37A(p: 37)) N P)
rB(p,r) 37B(p, 57)

> 02,

ie.
a(p,rB(p,r)) > Co.
This finishes the proof.

Remark. In [F1] there is an example of a plane domain which is not bass
while its boundary is not uniformily perfect but it is perfect. It is also easy to
construct examples of bass plane domains which satisfy the conclusion of Theo-
rem 4. It would be interesting to have euclidean criteria for deciding whether a
plane domain is bass or not.
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