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COMPLETIONS OF H.CONES

Sirkka-Liisa Eriksson-Bique

Introduction

I/-cones ([Z]) and hyperharmonic cones ([5]) are ordered convex cones possess-

ing order properties similar to those of positive superharmonic and hyperharmonic
functions, respectively, on harmonic spaces. An ä-cone can always be extended
to a hyperharmonic cone by adjoining to it an element m. This extension does not
generally have potential-theoretic properties. In this paper we construct a com-

pletion of an ä-cone which resembles a set of positive hyperharmonic functions
on an §-harmonic space. We recall that a harmonic space X is S-harmonic if for
any r € X there exists a positive superharmonic function on X which is strictly
positive at r.

In §-harmonic spaces every positive hyperharmonic function is a pointwise
supremum of an upward directed family of positive superharmonic functions [3,
Corollary 2.3.71. In our completion of an ä-cone ,5, every element is a supremum
of an upward directed family of elements in 

^S.

We present three characterizations of a completion. A completion of an ä-
cone .9 is a set of some functions in ^9 (Theotern 2.7). This idea of a completion
is stated in [4, p. 18]. Moreover, a completion is a set of upward directed families
for which an equivalence relation is defined (Theorem 2.8). This extension was

considered in [6, Proposition 2.2.]. Lastly a completion of an ff -cone § is a set

of some subsets of .9 (Theorem 2.9).
If infima of pairs of functions and suprema of upward directed families are

pointwise in an If -cone ^9 of functions, then its completion is a set of functions
that are pointwise suprema of upward directed far,nilies of functions of ,9. It is an
open question whether this fact holds without the assumption that infima of pairs
of functions are pointwise. A completion of the dual of an I/-cone is given in [4,
Proposition 2.6].

Our basic structure
a neutral element 0 and

(1.1)

1-. Preliminaries

is a partially ord.ered abelian semigroup (W,+, S) with
having the properties

u > 0
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and
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(1.2) ulv 
- 

u*w1u*w

for all u, a, w €W.
Along with the initial order ((), we use another partial order l, called

specific order, defined as follows:

ula if a : u * u' for some u' €W.

A structure (W,*,() satisfyiug (1.1) and (1.2) is called ut ordered convex
cone if it admits an operation of multiplication by strictly positive real numbers
such that for all a, 0 € R+ \ {0} and c, A €W

a(a *y): orc *ory, @+ 0)x: ax * 0r

("§)* : a(|x), 1-0 : &,

0<Y =+ aa1aY.

A mapping g fxom an ordered convex cone C onto an ordered convex cone
D is called an isomorpåism if it satisfies

s(t ++ p(s)3p(t),

p(s*r):p(s)+e$),
v@s): @9(s),

forall s, t€ C and o€R-p\{0}. Orderedconvexcones C and D arecalled
isomorphic if there exists an isomorphism tp from C orato D ,

Deftnition 1.1. An ordered convex cone (W,*, () is called a hyperharmonic
cone if the following axioms hold:

(H1) for a^rry non-empty upward directed family F CW there exists a least upper
bound ! F satisfying

!{"+ F):*+Vr
for all x €W,

(H2) for any non-empty family F C W there exists a greatest lower bound A f'
satisfying

[{r+ F):x+44
(H3) for arly u, u1 and uz €W such that u (-u1+rr2 there exist u1 aa.:.d u2 eW

satisfying the properties u : ur * uz, ut (u1 and u2 I u2.

The theory of hyperharmonic cones is developed in [5], [6], [7] and [8]. We
need the following result:
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Theorem L.2. Let (W,+r<) b" an ordered convex cone. The structute
(w,+,() is a hyperharmonic cone if and only if axiom (H1) and the following
properties hold:

denoted by Sou and Sru 4u,
(b) every non-empty subset E of W has a greatest

([S,Theorem 2.3]).
A partiatly ordered abelian semigroup with a neutral element 0 andsatisfying

(1.1), (1.2) and (a) is called a hyperharmonic structure by Arsove and Leutwiler
in [1].

Note that (H3) leads to the inequality

uA(u*to) 3u Au *uAw

u is cancellable <==+ u- A
n€N

u*u-?t,)

u + ?.1 : ?tt

ula-

u + u, \ has a least element

lower bound.

u + ?1,: Ll.

for all u, u and to in a hyperharmonic cone 17.

Anelement u e W is called ca.ncellable if r*u 1y *u implies x 1y
for all *, A e W . Catcellable elements in hyperharmonic cones are the sarne as

cancellable elements with respect to the specific order [5, Theorem 3.9]. A useful
characterization of cancellable elements is the condition

(1.3)

( 1.4)

(1.5)

(1.6)

( 1.7) u 1u

ul:0.
n

The element q (u e W) satisfies the followit g properties:

uSu €+

=+ U 4U ===+

The proof of the above mentioned properties is stated in [5, Theorem 3.9].

The next result is helpful for handling uncancellable elements

Proposition 1.3. If (W,1, () is a hyperharmonic cone and u an element of
W then (u * W,+, <) i" a)so a hyperharmonic cone, Moreover, u is ca.ncellable

in u lW ([5, Proposition 4.1]).
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Definition 1.4. The set of cancellable elements of a hyperharmonic cone is
called an If-cone.

Referring to [5, Remark 2.6 (a)] and [5, Theorem 3.13] our definition of an
ä-cone is equivalent to one given by Boboc, Bucur and Cornea 12, p. 271. In the
theory of }f-cones the notation R(" - r) is used for the greatest lower bound of
the set {s : s ) u -r} (see [2, p. a0]). We prefer the notation S,u, since the
subtraction is not generally defined in a hyperharmonic cone. If ,5 is an I/-cone
then .t?(u - *): S,u for all u, c € ^9.

Let W be an ordered convex cone. A subset ,9 is called soiid in W if for arry

elements u it W and s in,5 the condition u ( s implies u €,S. A subset,S is
called order denseia W if. for any u ir W there exists an upward directed subset
tr' of .9 such that u : !.F.

Theorem L.5. If an ordered convex cone W satisfies (H1) and (H2) a.nd has
a solid and order dense subset possessing property (a) of Theorem 7.2 then W is
a hyperharmonic cone.

Proof. Let W be an ordered convex cone satisfying (H1) and (H2). Denote by
.9 a solid and order dense subset of W enjoying property (a) of Theorem 1.2. Let
u and r be arbitrary elements of W . In order to prove that W is a hyperharmonic
cone it is enough by Theorem 1.2 to show that theset .E: {w eW:u 1w*t}
has a greatest lower bound and fl E 4u. Write u : V tr' for an upward directed
subset .t' of ^9. We verify that

( 1.s) A'- V s,n,t'
rcF

Note that ,S1n,f exists for all t e F and c € 17 since ^9 is solid and (a) holds
in ^9. The set {,51art : t e W} is directed upwards. Indeed, let s, f and r be
elements of F such that r ) s and r ) t. From the inequalities s (,S,nrr {s
and r 1 S,n,r I r A x we infer that

s - s A r S (Srn*r +s) A (S"^rr + r A r) : Srnrr +s A r.

Hence we have Srn"r ) Sr,.rs. Similarly we see that ^Srnrr 2 ,Stnrl. Thus the
family { S"^,s : s € F } is directed upwards and by (H1) has the least upper
bound denoted by .0. The element to6 belongs to .E since

a*wo)cAt*Stx,t)t

forallte F andtherefore n+wa)u,.
Let u be an arbitrary element of Vr satisfyirrg n + u) ) ?1 . Then

w + r At - (, *r) A (, *r) > u A(tr., +t) > t
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forall t€F. Thereresults w) S6rt forall t€F andfurther u)l':rs. Hence

tos is the least element of E, verifying (1.8).
Lastly we show that ue{u. From Strctlf it follows that I - Strct*wt

for some rnl € ,9. Put
u": A mt

lii
for s € F. Let s, t and r beelements of F such that r ) s and r ) t. Thenwe
have

u" * Stnrt I m, + Srtrr : r ( 'u,.

By taking the least upper bounds we obtain

too+ V v"1u.
s€F

On the other hand,
wo*rmt) Srnrt*mt:t) s

for all t e F with t ) s. This result implies trlo*o, ) s for all s € F, yielding
too * V"e. o" ) u. Hence the equality too * Vrer Ds : 't!, holds and therefore
wolu, completing the proof.

Corollary 1.6. If a,n ordered convex cone W saiisfies (H1) and (H2) and
has a solid order dense subset S which is an H -cone then W is a hyperharmonic
cone.

This Corollary follows from [2, Proposition 2.1.2] and Theorem 1.5.

2. Completion of an .Ff -cone

Let ,S be an ä-cone. A hyperharmonic cone W is called a completion of an
ä-cone S if ^S is isomorphic with a solid and order dense subset of. W and W
satisfies the axiom

(H4) V.^f:*^(Vr)
leP

for all upward directed families F C W ard w e. W .

Note that (H4) does not generally hold in hyperharmonic cones. A counter
example is given in [5, Remark 4.18]. However, we can prove the following version
of (Ha):

Lemma 2.L. Let W be a, hyperha,rmonic cone. Then the identity

Vr* V, n / : (Vr) A (u., + Vr)
leF

holds for any upward directedsubset F of W and w eW.
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Proof. Let F be an upward directed subset of W and to be an element of
17. Without loss of generality we may assume that to S V .F' . Indeed, we have

Vfn,: V(/n(.,nVrl)
leF leF

and further by (1.5)

(Vrl n (to * V") : (Vrl n (u, * V") n (!r + !r1
-:(Vrln11,ny.)+Vr).

The inequality
ta+Vr)w)V_trln/

ler
is clear. On the other hand ta < ! F implies that

Vr* V.n/: V ((f +yr')A(u+Vrl) >w-tf
lep lep

forall I eF. Hencewehave V.F+Yrep*Af >w +V,F.Applyingnow(1.5)
we obtain

Vr* V,n f>w+Vr.
feF

This completes the proof.

Corollary 2.2. Let S be an H -cone. Then

(2.1) vrn,:(vF)As
leF

for any upward directedbounded subset F of S and s €,S.

Proof. If F C .S is bounded then ! F is cancellable. This assertion follows
from the preceding lemma.

Applying an observation stated in [4, p. 183], we will show that a completion
of an ä-cone is a set of mappings given below:

Deflnition 2.3. Let ^9 be an H -cone. Denote by S the set of mappings
g:S'-+Ssatisfying

(2.2) e@ Au): e(u) Au

for all u, u € S.
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Proposition 2.4. Let S be an H -cone and g a mapping ftom S into itself.
Then the following statements a,re mutually equivalent:

(1) p satisfres (2.2);
(ii) p(uAu): p(u)A9@) for aJI u, u e S and if s ( 9@) for some s, u € S

then g(s) : s;
(iii) rp(u) : VgesuA g(s) for all u e S.

Proof. Assume that g satisfies (2.2) and u, u €,S. Then g(u Au) : u Ap(a)
arrd 9(u A u) : a A 9@), which yields

9@ Ao): u np(v) Au A9@): p(u) 
^p(r).

This completes the proof of the first part of (ii). Suppose now that s < 9(u) for
some s and u in ,S. Since

p(u): p(u) np(u): p(p(u) 
^ 

r) - p(p(u nu)): e2(u)

we obtain
p(s) : 9(s n9@)) : s Ag2(u): s A p(u) : s.

Hence (ii) holds.
Assume next that (ii) is true. Since unp(") < p(") and rp(s) < p(s) we have

u A 9(s) : p(u n e(")) and rp(s) : pz(s) by the second part of (ii). It follows
that

V " n p(s) : V e("ne(s)) : I r(") np'("): \r/ r(")^p(r) : p(u).
s€S reS s€S EeS

Lastly assume that (iii) holds. Using Corollary 2.2 we notice that

p(uAr): V uAtsAp(s):rA V uAe@)-e(u)nu,
s€,9 s€S

completing the proof.
A function g satisfying (2.2) possesses the following properties:

Proposition 2.5. Let S be an H -cone. If a mapping g : S --+ ,9 safisfies
(2.2), then the following properties hold for dl u and u in S :

(2.3) p(u) < u,

(2.4)

(2.5)

ulu ===+ p(")<p(u),

?2 (u) - p(u),
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(2.6)

(2.7)
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p(u * r) a s(") * p(r),

p(u * u) - p(v(") + p(r)),

:A9:9,

p a tp ===+ t, I Q,,

@(") - av@14 -&@),,

(GpX") - (e@) + p@)) Au,

(2.8) r(!f1 : ! r(/) for ill upward directed bounded subsets F of S.

leF

Proof. The properties (2.3)-(2.5) are obvious. Applying (2.2) we see that

v(u) : p(("+u)nu) = v(u*u)nu an{ p(r) : p(u-lu)nu. Hence by (1.3) we

have
u A9(u+ o)* o A9(u* r) > (u * u) A9(u * o) : 9@ * o).

This result gives (2.6).
The inequalities 9(u) ( u and p(u) < o lead by Q.$ to g(u*a) > p(p(")+

e@)). Since the converse inequality follows from (2.4)-(2.6), the property (2.7) is
true.

Lastly Corollary 2.2 and Proposition 2.4 ensure that

r(!r1 : VfVr)ne(s): V V /np(,): ! r(,)
g€,9 s€S /€F f eP

finishing the proof.
Increasing mappings from ,S into ,S induce mappings satisfying (2.2).

Lemma 2.6. Let S be an H -cone and denote by F the set of increasing
mappings g : S - S. Define a mapping ^: F --» F by

,?("):Vp(r)n" (ue S).
g€S

Then the mapping ^ possesses the following properties:

(2.e) Q eS,

(2.10)

(2.11)

(2.12)

(2.13)

(2.14) Gp -,pq[,,,
forallu € S,g, LLe F and ae f[1 \{0}.
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Proof. Property (2.9) follows from Corollary 2.2, and (2.10) from Proposi-
tion2.4 (iii). Properties (2.11) and (2.12) are clear. To prove (2.13), let g ar'd p,

be elements of. f . Since rp is increasing we infer

(O@) +r,(")) nu : V (e(r) n u + p'(t) nu) Au
s€S
,€s

: ! (r(") a pQ)) nu
s€S
,€s

: V (r(") + p(s)) n" : (6TD@).
s€S

Property (2.14) follo'nzs directly from (2.13) and (2.10).
Let us define in S multiplication by strictly positive real numbers and addition

as follows:
o.9: @,

g @ tt: pTp,

fore€R+\i0)andg,peS.
Theorem 2.7. Let.9 be a.n H -cone ar,d 1 the pointwise order in S. Then

(S, O, <) is a completion of S.

Proof. Using Lemma 2.6 it is easy to check that (5, O, () is an ordered
convex cone. We apply Theorem 1.5 to prove that ^9 is a completion of .9. Let
F be an upward directed family in 5. The mapping p : ,S --+ ^9 defined by

tt(s) : Vr.. cp(s) belongs to 5 by Corollary 2.2 and V.F : p. Hence the least

upper bound is translation invariant, and so (H1) holds in 5.
Let .t' be a subset of S. Then the mapping p : S -' ,9 defined by pr(u) :

Ar." rp(s) belongs to 5 
"t 

d A F : F. Thus (H2) holds in 3.
Let us define the mapping i : S -, S by i(s)(u) : sAu for u and s in,S.

Obviously the mapping i is well-defined. We show that i is a one-to-one mapping
from,S onto i(^9). If i(s) <i(t) for s, t€,9 then sAu (tAu forall u € ^S.
Hence s ( I A s ( f . There results

i(r)<i(t) * s<t.

Thus i is a one-to-one mapping from .9 onto f(^9). Since (s A u *t Au) Au:
(s+f)A(u *s)n(t*u)n 2uAu: (s+ t) ttu, the mapping i is also additive.
Using (2.L2) we easily see that a.i.(s): i(as). Consequently (i(,S),O,() is an
ä-cone which is isomorphic with (.9, +, <).
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The cone i(S) is solid in 3. Indeed, assume that r/ e 3 and pr € i(,9) such
t}aat r! ( trr. Then p(t) :s Af for some s e,9 and rb(t) SsAt ( s for all t e .9.

Hence Vres ty'(r) exists and

,b@):(VU(t))n"
r€s

forall ue S whichmeans rh:i(Vresrh$). Toprovethat i(S) isorderdense,
suppose that r! e 3. Then ,b@) : Vres 4(r) A u for all u € ,9 by Proposition
2.4(iii) and furtherb : Y res i(rb(t)) .

Collecting the material proved above we establish by Theorem 1.5 the asser-
tion that 3 i. a hyperharmonic cone. We still have to show that (H4) holds in S.
Let .F c 3 be directed upwards. Using the results stated earlier we notice

(+ n (V r))(") :,b@) 
^ 

(V rxu) : $(") n ! r(").
,reF

Since t/(u) ( u by Proposition 2.5 we obtain by Corollary 2.2

(,1 n (V r))(") : ! r(") n,b@).
tteF

Thus
,r^(vF)(u): vr,ln ti@):(v d 

^p)("),peP peF

completing the proof.
A different type of an extension of an If -cone is constructed in [6, Proposi-

Lior, 2.21. Next we shall show that it is also a completion.

Theorem 2.8. Let S be an H -cone. Denote by Q a fanily of upward
directed subsets of S. An equivalence relation - rn O is defrned by

F-G <+ V"ny:!sAO foralls€^9.
ler sec

The equivalence classes of the relation - is denoted by lPl for F e O and the set
of aJl equivalence classes by W. Addition, multiplication by strictly positive real
numbers and partial ordering are given in W as follows

[r] + [G] : [tr'+ G], a[r'] : [oF],

[r] S[G] <+ Vrn/<!sne foralls€,9.
IeF sec

Then (W,4, () is a completion of S .
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Proof. We show that W and 3 are isomorphic. Define a mapping f : § -, W
by

r(p):[e(s)] , ees.
The mapping I is well-defined, since 9(S) is directed upwards for all I e S.
Indeed., if s and t belong to ^§ then vG * t) : 9(9@) + ,p(r)) by (2.7). Hence

9(s+t) e pG). Moreover, by Q.Q and (2.5), g(s+t) > p(s) and rp(s*t) 2 e(t).
Thus g(^9) is directed upwards.

Assume that p, < tlt for p, tlt € S. Then Proposition 2.4(iii) leads to

! r(r) nu: P(u) <,!@): [ ,/{") n "s€S s€5

for all u e S. Therefore we have [p(S)] < [l/(S)] . The implication

[p(s)] <[,ltsl] + p<,b

can be proved similarly. Hence we have established the relation

p < 1b +=+ r(p) < r(t/)

for all p, tb e §. rct now F € O and define 9: S "+ S by 9(u): V.r.. f Au.
Corollary 2.2 results in g € 3. H"rr." the mapping f is a one-to-one mapping
from W onto 5.

The mapping I is also additive, since

f(p +.i) : i{ (p(") +,/(")) n "' " € s}]
l- ,... \. ^rl: l{ fV p(,)nu+ !,b$) ^u) 

nu: u e s;l
L- s€S t€S J

: 
[{,.yr(p(") 

+'i(')) 
^ 

u : u e'}] : L'(s)l + t'r(s)l'

Using Lemma 2.6 we notice that

r(".p) : [@(s)] : l{ae(tla) : t €,e1] : ol(c).

Consequently, W is a hyperharmonic cone satisfying (Ha) and isomorphic with
§. It is obvious that W is a completion of ^9.

Popa has found a presentation for the preceding set W in terms of solid
subsets A of. S satisfying the following property:

(2.15) If Aq,4.and !Bexistsin,9, then [ae a.

Now we will state and prove this result differently.
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Theorem 2.9. Let S be a,n H -cone. Denote by Wr the set of solid subsets
of S satisfying (2.15) . Addition, multiplication by strictly positive real numbers
and pa,rtial otder in Wr is given by

A+B-{r*b:aeA,beB},

aA:{ooiaeA},
A<B <==+ AgB.

Then (Wr, *, () is a completion of S .

Proof. I\otice that + is well-defined in
and Wt are isomorphic. Define a mapping f

(H3). We show first that
Wt by

Wt by
:3-+

^9

r(p) - P(,s), ? € s.

To show that I is well-defined, let F e p(S) such that \r/F exists in ,9. By
Proposition 2.5

[r>r(!r1 > [ r(/).
ter

Proposition 2.4(ii) results i" p(/) - / for all / e .F, which yields e(V f) > V f'.
Thus we have 9(!.F): V.F', and so !F belongs to 9(S). Hence 9(,S) satisfies
(2.15). Since the set 9(,S) is also solid by Proposition 2.4(ii), the mapping I is
well-defined.

Let pr and ry' be mappings in 5 such that p ( l. Then p(") S r/(u) for all
u € S arrd further by Proposition 2.4(ii), ,b(p@)) : p(u). Hence p(il e ,b$).
Suppose that p(S) g ,ri(S) for some p, tb € 3. Using (2.3) we notice that

r,@) :,b(p(")) S,b@)

for all u e S . There results p S tb. Now we have established the result

p'<1h r(p) < r(,r).

Assume that A is a solid subset of ,S satisfying (2.15). Then evidently the
set .4 is directed upwards. Define a mapping g : ,9 --+ ,S by

vG) - V.f Ar, s€s.
lee

Proposition 2.4(iii) assures that 9 e ^9. Since ,4. satisfi.es (2.15), p(r) e ,4 for all
s € ,9 and therefore p(S) E A. On the other hand, p(/) : / for all / e ,4, whicl:
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leads to A g gQ). Hence p(S) : 1.. Thus we have shown that I is a one-to-one
mapping from ^9 onto W1.

It is easy to check using Lemma 2.6 that l(". p) : ol(p) . Let p, arrd ,/
belong to 3. Then f(p e ,lr): {(p(") + rb@)) nu: u e ,9 }. Since p(S) + /(S)
is solid, we have l(p e ,b) g p(S) +,/(.9). But applying Proposition 2.5 we infer

Hence p(S) + t/(,9) g f(p e ,/). W" have shown that I is additive. Altogether
we have verified that I is an isomorphism from -,S onto Wr. ConsequentlS W1
is a hyperharmonic cone satisfying (Ha) and evideutly a completion of ,9.

Theorem Z.LO. Let an H -cone S be a cone of extended rcaJ-vaJued functions
on a set X such that
(") /n g:irf(f ,g) for all f , 9 e S,
(b) V F(a) :.tP.fer f @) for any dominated upward directed fa,rnily F .

Then the completion of ,9 is the set

C : { }:o./, 
.F g S is directed upwards }.

Proof. We show that C and S are isomorphic. Define a mapping I : §* C
by

I(p): suere(/).

Clearly if p < p then f(e) < I(p). Conversely, assume that f(p) < l(p) for 9
ar'd p, in 3. Then we have

sup P(,f) : sup p("f)

and further

sup inf (r(,f ),s) : inf (sup eU), s) ( inf (sup t ff), s) : sup i".f (p,(f), s)fes 'IeF 'Jep feF

forall SeS. Thisimpliesby(2.2) and(a)that 9(9) Stk) forall seS. Hence
we have proved that

e<p <+ r(e)<r(p).
Let .F be an upward directed subset of 5. Define a mapping p : S --+ ,5 by
P(g) :t*Prer f A s. Then we have

I(p) : sup p(/) : sup./.
leF leP
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Hence the mapping I is a one-to-one mapping from 5 onto C.
Using Lemma 2.6 we easily notice that f("'p) : ol(p). To prove additivity

of l, let g, lt € §. Applying the definitions we obtain

r(p ep) : sup(p,oeX/) :'up(p(./) + e$)) n f
lep .f €s

= ;EB 
p,ff) + p(f): r(p) + r(cp).

To show the converse, we first note that

'"p(p(/) +,p(/))
feF

^ 
/ > 

||g(r(r{fl +,p(fl) + e(p(f)+ e(/)) n (p(/) +.p(/)))

> s"p(/,2(.f)+erUD n (p(/) +e0).
leF

Since by Lemma 2.6 t'U) : p(f) and 92(/) : pU) we have

r(pee))r(p)+r(p).

Hence I is an isomorphism from § onto C. It is therefore obvious that C is a
completion of ^9.
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