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AN INTEGRAL CRITERION FOR AUTOMORPHIC
AND ROTATION AUTOMORPHIC FUNCTIONS

Rauno Aulaskari, Walter K. Hayman, and Peter Lappan

1. Introduction

Let D = {z 2| < 1} denote the unit disk in the complex plane and let T’
denote a Fuchsian group acting on D. Let F' denote the fundamental region of I".
We may think of F as the “Ford fundamental region” Fy = {z € D : |z| < Iv(2)|
for each v € I‘} , but any choice of a fundamental region F' for which the area of
the boundary of F is zero will serve our purposes for most of this paper. We say
that the function f meromorphicin D is an automorphic function (with respect to
the Fuchsian group T') if f(y(z)) = f(z) for each v € T’ and each z € D. We say
that a meromorphic function f is a rotation automorphic function (with respect
to I') if for each v € I' there exists a rotation S, of the Riemann sphere (with
radius 1/2) such that f(y(z)) = S,(f(2)) for each z € D. Also, we say that an
analytic function f is an additive automorphic function (with respect to T') if for
each v € T there exists a complex number A such that f(v(z)) = f(z)+ Ay for
each z € D.

Let f#(z) = 1f’(z)|/(1 + if(z)|2) denote the spherical derivative of f. We

say that a meromorphic function f is a normal function in D if
sup { (1 — |212)f#(z) :2€D} <o

and we denote the class of normal functions by N (see [14]). We say that an
analytic function f is a Bloch function if

sup { (1 — |2[*)|f'(z)| : z€ D} < 0

and we denote the class of Bloch functions by B (see [18]). It is clear that B C V.

For a Fuchsian group I', we say that an analytic function g is an automorphic
form of weight 1 if g(v(2))7'(z) = g(z) for each y € T and each z € D. It is easy
to see that if f is an additive automorphic function then f' is an automorphic
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form of weight 1. For 1 < p < oo, we denote by AP(T) the collection of all
automorphic forms of weight 1 which satisfy the condition

(1) //F (1- |z|2)p_2|g(z)|pd:c dy < oo,

and, for p = co, we denote by A°°(T") the collection of all automorphic forms of
weight 1 which satisfy the condition

sup {(1— |z!2)|g(z)| 12 € F} < o0.

The Banach spaces AP(T'), 1 < p < oo, are known as the Bers spaces. It is
obvious that if f is an additive automorphic function then f' € A%(T) if and
only if f € B.

The Bers spaces AP(I") have been very useful in the modern theory of Riemann
surfaces. In particular, there was much interest in the so-called “Bers conjecture”:
is AP(I') C A*°(T")? This conjecture was disproved by Pommerenke [18, Theo-
rem 2] in 1976 when he constructed an additive automorphic function f such that
f' € AX(T')— A>(T'). However, several authors, among them Drasin and Earle 6],
Lehner [11], Metzger and Rao [15], [16], and Knopp [10], all proved some version
of the following result: if f is an additive automorphic function with respect to a
finitely generated Fuchsian group I' and if g = f' satisfies (1), then f € B. In the
case of infinitely generated Fuchsian groups, Lehner [12] and [13] proved a similar
result under the assumption that the fundamental region F is not too “thin” in
the sense of the hyperbolic metric (except possibly near parabolic vertices). Fi-
nally, Niebur and Sheingorn [17] gave a complete description for when the Bers
conjecture is valid. Their description says, in effect, that the Bers conjecture has
an affirmative answer if and only if the fundamental region is not too “thin” in
Lehner’s sense.

We observe that the Bers conjecture was really a question about additive
automorphic functions. In this paper we address a similar general question about
rotation automorphic functions. Here, the class A of normal functions plays the
role of B, which is equivalent to A°°(T') in the sense described above. We look at
the following question: if f is a rotation automorphic function which satisfies the
condition

(2) //F (1- |zl2)p_2(f#(z))pdx dy < oo

for p > 2, under what conditions is f € A'? In [4, Corollary 3, p. 88], the first
and third authors gave an example of a rotation automorphic function f which
is not a normal function but which satisfies (2) with p = 2. Pommerenke [19,
Corollary, pp. 194-195] has proved that an automorphic function f which satisfies
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(2) for p = 2 is a normal function. In Section 2 we prove that Pommerenke’s
result is valid for all p > 2, that is, if an automorphic function satisfies (2) for
some p > 2, then it is a normal function. In fact, our result gives some additional
information about the bound on the expression (1 — |2]?) f#(z) in the case p > 2.
In Section 3 we prove two results giving other positive answers to our question.
We show that if the fundamental region satisfies some mild “thinness” conditions
due to Lehner, and f is a rotation automorphic function, then (2) implies that
f is a normal function. And also, if T is a finitely generated group and f is
a rotation automorphic function which satisfies (2), then f is a normal function
and, in addition, we have (1 — |z|?)f#(z) — 0 as |2| — 1 from within F.

In Sections 4 and 5 we give some results suggested by a result of Metzger and
Rao [15, Theorem 3]: If f is an additive automorphic function with respect to a
finitely generated Fuchsian group I' of the second kind, and if

//F 1|f':(|2’)l|2 dr dy < o0

then f is a constant function. In Section 4, we prove that if f is a meromorphic
function satisfying

(3) // {ﬁ(| )l2 drdy < oo,

where p > 1, then either f is a constant or else limsup,_,. (1- |2|2) f#(z) = o0
for each point ¢ € dD. If p > 2 here, then f must be a constant. We note that
if f is rotation automorphic and satisfies condition (3) for p = 1, then we have

/1, 1ff(|§|2d W= Z//<F>J—f%d’”dy<°°’

and since each of the integrals in the sum on the right have the same value, we
have that either I' contains only a finite number of elements or else f must be
constant. Thus, our result is related to but somewhat different from the Metzger
and Rao result.

In Section 5, we show that examples of non-constant meromorphic functions
satisfying (3) exist for each p satisfying 0 < p < 2. In fact, what is actually shown
is a somewhat more general result, where the integrand in (3) is of a more general
form. The example given is an automorphic function for the finitely generated
rotation group (I' = {identity,v:}, where y1(2) = —z), which shows that the
analogue to the Metzger and Rao result is not valid for automorphic functions
(or rotation automorphic functions) for which the group I' has a finite number of
elements.

Finally, in Section 6 we clarify by an example a result from Section 2 about
the class of automorphic functions which satisfy (2).
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2. The case of automorphic functions
In this section we prove the following result.

Theorem 1. Let f be a meromorphic function in D which is automorphic
with respect to a Fuchsian group I', and define

1= [[ =1 () deay

It p>2 and I < oo, then f is a normal function. In fact, if p > 2, then we have
that
sup {(1—[2*) f#(2) : z € D} <3K = 3max{I1/",Il/(”_2)}.

Since Pommerenke [19] has proved the Theorem for the case p = 2, we need
to deal only with the case p > 2. In the proof, we will make use of the following
result of J. Dufresnoy [7 , Lemma II, p. 216].

Lemmal. Ifthe function f is meromorphic in the disk D, = {z:]z] <o},
and if the area on the Riemann sphere of the set f(Dy,) is less than ogm, where

0 <09 <1, then
90

(f#(0)* <

-
oml =

1—0’0'

We remark that the Riemann sphere we are using has radius 1 /2 and thus
has total area =.

Proof of Theorem 1. Let E be the set of all points z € D for which
(4) (1-12)f*(z) > K > 0,

(we may suppose that f is not a constant function) and we define E; = EN F.
Since f is automorphic with respect to the Fuchsian group I', we have that f(E)=

f(Eo). Let S" denote the spherical area of f(E,). If dm(z) = (1- ]zlz)_2 dz dy

denotes the element of hyperbolic area, we have
) s'< [[ (@=L ane)
0
<& [[ {1 - 1R am() < K1 <1
Eq

because of (4) and the definition of K. We now define ¢ by the equation

7TK292
1—p%’

(6) IK?*P =
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and define D, = {z:|2| < ¢}, A= D,NE, and B = D,— A. The spherical area
of f(B) is at most

/A(f#(z))zdxdy</ﬂaji:—w-dmdy

e 27 rdrdf rK?p?
< 2 r = = ’2—p< .
_K/O/O AaE =1 ¢ IK?P<1

Thus, the spherical area Sy of f(D,) is at most 2IK?™? < 2. From Lemma 1,
we have that

# 2 < i So < 2IK2—P
(7) (f (0)) — 92 7r—50 - 92 :

If I > 1, then we have K = I'/(P=2) and (6) yields that

91_2 S (e R W LY s B
Thus we have
2IK?%—P

T = 2(1+ 7rI2/(”_2)) < 2(1 + m) ¥/~ < g2/(p=2),
1%

It follows that
F#(0) < Vor/(e=2) = 311/¢-2) = 3

from (7).
If I <1,then K =I'? and
1 wKP
2 1 7
so .
2”;2 L o(n +1)I0+@-D)/0) L gp2/p

and again, f#(0) < 3I'/? = 3K from (7).

Thus, we conclude that f#(0) < 3K in all cases.

If 20 € D, we may define F(z) = f((z + 20)/(1 + Zoz)) and the previous
argument shows that

F#(0) = (1 - |20*) f#(20) < 3K

for each zp € D. This completes the proof of Theorem 1.
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We remark that if p =2 and I < 7 then Lemma 1 shows that

I

— |212) £# < af ——
(-1 e < o
since I is an upper bound on the spherical area of f(D). If p=2 and 7 < I, we
can choose a number K such that S’ <1 in (5) and then define g by the equation

TK?p?
1— p?

Then the method above yields that
(1= |2P) f#(2) < {201 + nK2)}'*.

However, I{ may be arbitrarily large for bounded I. For instance, if f(z) = kz,
where 0 < k < oo, then f#(0) = k while I < 7. In particular, we see that the
functions for which I < 7, while individually normal, do not form a normal family.
On the other hand, Theorem 1 shows that the automorphic functions satisfying
the hypothesis of that theorem for an arbitrary group T, for a fixed p, where
p > 2, and for I < Iy, where I is a fixed constant, do form a normal family.
In Theorem 5 we will give an example to show that if p < 2 then there exists a
non-normal function which satisfies (2).

For a Fuchsian group I' and a positive number p,let H,(T,p) denote the set
of all functions f meromorphic in D such that f is automorphic with respect to
[ and (2) is satisfied. Then we can obtain the following result.

=1

Corollary 1. If T' is a Fuchsian group and 2 < p < ¢, then H,(T,p) C
H,(T,q). Further, if m(F) < oo, then H,(T',p) = H,(T,q).

Proof. Suppose that f € H,(T',p) and that 2 < p < ¢. By Theorem 1,
f € Hyo(T',p) implies that f is a normal function, so there exists a constant Cy
such that (1 — |z|?) f#(2) < Cf for each z € D. Then

J[ 10 1Ry %) amie)
= [ 1@ =0 [0 - 1) ] dme)

< (Cpy? / /F [(1 = [2P)7#(2)])” dm(z).

Thus f € Hq(T, ¢), which proves the first part of the Corollary.
Now suppose that f € H,(T',q) and that m(F) < co. Then, if A= {z € F:
(1—1[2]%) f#(2) < 1}, we have that

/ /F (1= 2P)7#(2)])” dm(z) < / /F [(1 = [22) ()] dim(=) + m(4) < oo,

and it follows that f € H,(T,p), which proves the second part of the Corollary.
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We will show by an example in Section 6 that, if I' is a group of rotations
about the origin, then the classes Hy(T,p), for 2 < p < oo, are all distinct. In
this case, F' is a sector of the unit disk so that m(F) = oo and thus Corollary 1
does not apply. We do not know if H,(T,p) = Ha(T',q), 2 < p < ¢, can happen
for other Fuchsian groups I' for which m(F) =

Theorem 1 has implications for some rotation automorphic functions, as well
as for automorphic functions.

Corollary 2. Let f be a rotation automorphic function with respect to a
Fuchsian group T' such that (2) is satisfied for p > 2. If the rotation group
¥ = {S,: v € T} is discrete, then f is a normal function.

Proof. Define I' = {y € ' : S, = identity}. Then I' is a subgroup of I,
and f is an automorphic function relative to the Fuchsian group I'. Since T
is a discrete group, there exist n elements v = identity, 71, 72, ..., Yn—1 in
T such that, for each v € T, there exists an element v € I' and an integer j,
0 <j <n—1,such that both y =04 and S0 (S;jl) = identity (see [5]). Let
F' be the interior of the set U"_0 v;(F). Then the union of F' and an appropriate
subset of its boundary forms a fundamental set for the Fuchsian group I''. Thus,
applying (2), we get

//F,( |=[)"” Z(f#(z))pdwdy<n]/ — 23" 2(f#(z)) de dy < oo,

and it now follows from Theorem 1 that f is a normal function.

We note that Corollary 2 generalizes a result of the first author [2, p. 372],
where the result of the Corollary is given for the case p = 2.

3. Rotation automorphic functions

In this section we prove two theorems relating condition (2) for rotation au-
tomorphic functions to normal functions. The first of these generalizes a result of
the first author [1, 1.3 Theorem, p. 209].

Theorem 2. Let T' be a Fuchsian group such that I' consists of the identity
and hyperbolic transformations and there is a constant to > 2 such that [tracey| >
to for all v € T, v # identity. Let f be a rotation automorphic function with
respect to I' which satisfies (2). Then f is a normal function.

Proof. By Lemma 1, it suffices to show that there exist numbers r; and a,
where r; > 0 and 0 < a < 7, such that for each 2y € D,

J[  erady<a
U(z0,71)
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where U(zp,71) denotes the hyperbolic disk
U(zo,m1) = {z € D :|(z — 20)/(1 - Zoz)| <ri}.

But, given o < 7, from condition (2) there exists a positive § such that

//A (1- ‘ZIZ)P—2(f#(z))dedy _ //A [(1 = |2P) £#(2)]” dm(z) < a

whenever A C F and m(4) < §, where dm(z) = (1 — |z|2)—2d:1: dy denotes the
element of hyperbolic area. The hypotheses on the group I' guarantee that there
exist a positive number r; and a positive integer K such that, for each z € D,

n(U(zo,rl), z) <K

for each 2z € D, where n(U(z9,71),2) denotes the number of points in U(zo,r1)
equivalent under I' to z (see [12, Lemma 1, p. 284]). It is no loss of generality to
assume that o < /(K+1) and that r; is so small that both m(U(zo,71)) < a and
m(U(zo,rl)) < 6. Thus, U(zp,r1) can be divided into K regions 4,, 1< v < K,
each equivalent under I' to a subset F, of F. Also, each F, has measure less
than 6. Thus

f#(2)da dy = [(1— 121%) £#(2)]* dm(2)
U(z0,m1) U(zo,m1)
= /fm) [(1 = 12) £#(2)]" dm(z) + m (U (z0,71))

K
<mUen )+ Y [[ 10 1)) dm()
a4+ Ka=(K+1a<mn.

(Here we are using the fact that 22 < z? 4+ 1 for p > 2, z > 0.) Thus, f is a
normal function.

We can also deal with the case that I is a finitely generated group, even if T
has parabolic vertices.

Theorem 3. Let f be a rotation automorphic function with respect to a
finitely generated Fuchsian group I'. If (2) is satisfied for some p > 2, then f is
a normal function and also limsupy,|_,; .er (1 — |2[?) f#(2) = 0.

Proof. Since T is finitely generated, the boundary of the fundamental region
F consists of a finite number of “sides” which are arcs of circles orthogonal to the
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unit circle, a finite number of free arcs on 0D, and a finite number ¢ of parabolic
vertices.

Let W be a connected subset of the closure of F' such that the closure of W
does not contain a parabolic vertex, but W contains a neighborhood of each point
of the closure of each free arc of 0F N 8D . There exist a positive number r and
a positive integer n; such that, for each point zo € W, the disk U(zg,r) meets
at most ny copies of F, including F itself as one of these. Since (1 — |2|?) f#(2)
and (dzdy)/(1 - ]z|2)2 are invariant under I', it follows that we can choose r
sufficiently small so that

// (1= 22?72 (f#(2)) de dy < 7n1/(ny + 1),
U(zo,r)

where ¢ = ¢ + 2. As before, we have
// (F#(2)) dz dy < // )P (f#(2) P de dy + m(U(zo,1).
U(zo,7) (zo0,7)

It is no loss of generality to assume that m(U(zo,r)) < 7/(n1 + ¢1), and thus

#z 2:v ni UVARLS! 1
® Lo G by < o Do+ a)

for zo € W.

Now suppose that F' has a parabolic vertex p. Let 7, be an element of T’
such that v, fixes p, v, # identity, and v, generates the subgroup of all parabolic
elements of I' which fix p. There exists a rotation 5'7 of the Riemann sphere
such that f(v,(2)) = S, (f(z)) for each z € D. It is no loss of generality to
assume that S, (w) = e*"™w, 0 < a < 1, because if & = 0 then the desired
result follows immediately from Theorem 1. Let ¢ be a constant such that icp is
a real number and

1/(7p(2) = p) = c+1/(= - p),
and set ¢ = ¢(z) = exp {27i/(c(z — p)) } . Then t(z) maps a parabolic sector o,
in a one-to-one manner onto a set of the form D* = {t: 0 < |t| < §,d < argt <
2m + d}. If we define G(t) = f(p~1(t)) and define H(t) = G(t)/t*, we see that

/ / )2de dy = / (G*(t))*dz, dy,,

where t = z; + iy,. Further, since the hyperbolic area of the hyperbolic sector
op is finite (we assume that o, is restricted to a suitable neighborhood of p), w.

have // (f#(2)) dxdy—// — |2I?) f#(2)]” dm(z)

< / / (1= [212) £#(2)]” dm(z) + m(oy)
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and so (2) implies that

// (G*(t)"dr i dy, < oo.

By a result in [3, 1.3 Lemma, p. 89], the function H(t) is meromorphic at ¢t = 0.
This means that either G(t) — 0 or G(t) — oo as t — 0 in D*, and this means
that f(z) has the limit either 0 or oo as z — p from within F'. Thus, since S,
is a rotation about the origin (and o), it follows that f(z) has the limit of either
0 or co as z — p non-tangentially in D. For definiteness, assume that this limit
is 0. (We may replace f by 1/f without effecting any of our hypotheses.) It
follows that we can choose the parabolic sector ¢, and r > 0 such that, if z, € o,
then, ‘f(z)| < 1 for z € U(zo,r). This implies that there exists a constant K,
depending only on r, such that |f'(z)|[(1 - |z|*) < K, for z € U(zo,7). Further,
since K, decreases with r, we may choose r > 0 such that

#(y 2 - _ 1212 F# (5 2 (2
©  f[. e =[] a-le) e
< (KEDm(U(z0,7)) < 7/(n1 + a1),

where n; and ¢; are the numbers in (8).

For each of the finite number of parabolic vertices p,let W, be a parabolic
sector contained in ¢, such that (9) is satisfied whenever 2y € W, and r is chosen
as above. Let W = F — U,WW,. Combining the finite number of cases considered
(a finite number of parabolic sectors plus the one region containing the remainder
of F'), and using (8) and (9), we have

//U( ) (f#(z))zdl’dy S(u+g+Dr/(ni+q)<m

for each choice of zy in F'. It follows that f is a normal function in D.

Now suppose that {z,} is a sequence of points in F' such that z, — (, where
¢ € 8D and (1 — |2,|?) f#(2n) = K > 0. We shall show that this assumption
leads to a contradiction. We define

o) = (),

Then, since f is a normal function in D, a subsequence of { fn(w)} converges
uniformly on each compact subset of D to a meromorphic function fo(w). We
may replace the sequence { fn(w)} by this subsequence, and so assume, without

loss of generality, that the sequence {fn(w)} converges to fo(w) uniformly on
each compact subset of D. Also,

F0) = lim £H0)= lim (1-lzal)f#(zn) 2 K.
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Now fix 7 > 0 and define D, = {w : |w| < tanh(2r)}. For w € D,, we have
fi(w) = f§f (w) and

//D (1= w7 (£ (w) dudv = //D (1 fol?) £ )] dm(w)
- //U(ZN) [(1 = |2[?) f#(2)]" dm(z)
=[] QT ey

where w = u + iv. If ¢ is a point of a free arc of OF N 0D, then U(zn,r) can
meet at most two copies of F for n large, and then condition (2) implies that

//D (1 = )P (f# (w)) dudv — 0.

It follows that fc:)# (0) = 0, contrary to hypothesis. If { is a parabolic vertex,
the argument given to show that f is normal again shows that ff (0) = 0. This
contradiction proves that

(1= |2al?) f#(2n) = 0
as z, — 0D in F and this completes the proof of Theorem 3.

4. Some cases where p < 2

For f a meromorphic function in D, we define

L(r)= /0 ﬂf#(reio)r de.

We say that a meromorphic function f is in the class Ti(!) if limsup,_., L(r) =
\ < 1. We define T1 = Uo<i<ooT1(l). For a Jordan curve v in D, we define

£) = [ @)zl
¥
We say that the meromorphic function f is in Ty(1) if there exists a sequence of
Jordan domains {D,} such that UsZ,Dn = D,
Dn C Dn+1 C Dn+1 cD

for each n, and limsup,_ . L(8D,) = A < [. Finally, we define T, =
Uo<i<ooT2(l). We remark that Ty (1) C Ty(l) for each 1 > 0 and that Ty C T,.
The following theorem summarizes some results which the second author proved
in [8] and [9].
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Theorem H. (i) There exists a function f which is not a normal function in
D but f €T [8, Theorem 1, p. 186].
(ii) If f € Tu(l) with | < m, then f is a normal function in D. Thus, if f € T1(0)
then f is a constant function [9, Theorem 4, p. 5].
(iii) There exists a non-constant analytic function in T5(0) [9, Theorem 5, p. 3].
(iv) If f is a function in T, and {( € 8D, then either

(10) lizn sup (1 -2 f*(z) = o0

or f has a continuous extension to an open arc of 8D containing (. In particular,
if f € T, and f is a normal function in D, then f has a continuous extension to
the closure of D [9, Theorem 1, p. 3].

Here, we prove the following result.

Theorem 4. If f is a function meromorphic in D, and if

(11) // (1-12%) f#(z)) dz dy < oo,
where s > 1, then f is either a constant function, or else f satisfies (10) at each

point ( € 0D. If s > 2, then f is a constant function.
Proof. Condition (11) implies that

/Z"/(HTW 1—[22) 7 (F#(2))rdrdé — 0

as r — 1, which, in turn, implies that
Ar=inf {L(t):r <t < (1+71)/2} —0.

This means that f € T3(0). The first part of the theorem now follows from part
(iv) of Theorem H, for a continuous extension of f to an arc of D, combined
with the condition that

lirtr_l_)ilnf L(t) =0,

means that f is constant on an arc of D, and this means that f is a constant
function.
If s> 2, then

/ (1- |zl2)8—2(f#(z))sdac dy < / (1- |z|2)_1 (f#(2))’dz dy < oo,
D D

by (11) and now Theorem 1, with D = F and T' = {identity}, implies that f is
normal, so (10) cannot hold. Thus f is constant in this case. This completes the
proof of the Theorem.
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5. An example to illustrate Theorem 4
In this section we prove that functions considered in Theorem 4 actually exist.

Theorem 5. Suppose that 0 < s < 2 and let k(r) be a positive continuous
function in [0,1). Then there exists a non-constant function f(z) analytic in D
such that

27 p1
(12) AAk(r)(f#(reie))srdrd9<m.

Of course, we have in mind the situation for which k(r) = (1 — r)?, where
B is a suitable negative number. The case s = 1 and # = —1 is a natural case
of interest. This case also gives a clear contrast with the result of Metzger and
Rao [15, Theorem 3] stated in Section 1. Since the general function k(r) does not
cause undue complications in the proof, we give the proof in the general case.

The proof of the Theorem is lengthy, and we will proceed in stages with
several parts. First, we set up some of the constants and notation, and make some
preliminary estimates. Then, we will prove three Lemmas. And finally, in the last
part of the proof we give an estimate for the integral in (12).

To begin the proof, we define ¢ = min{s/2,1/2 — s/4}. We will assume
throughout that k(r) is a strictly increasing function such that k(r) — oo as
r — 1—, for if it is not we can replace it by

K(r)=Q—-r)"" +sup{k(t):0<t <r}.

Let N be the least positive integer such that exp(2¥~3¢) > k(1/2) and, for
n > N, let R, be the solution to the equation

k(R,) = exp(2"30).

Clearly, we have 1/2< R, < Rp41 <1forn > N and R, — 1 as n — co. Let us
define my to be the least positive integer satisfying both 27(m~+1) <« Ry  — Ry
and mpy > N. We define

(13) re = (1/2) = (1/2)¥*,  0<k < my.

This has the properties that r,,, < % < By and rpy —Tmpy-1 < Rny1 — Ry
We can now define the rest of the sequence {r,} inductively.

Suppose that we have defined a strictly increasing sequence of positive integers
MN , MN+1, --., Mm; with j > N, together with a strictly increasing sequence of
numbers r;, 0 < k < mj, such that Tm; < Rj, Tm; —Tm;—1 < Rj31 — Rj, and
Tk —Tk—1 S Tk—1 —Tk—2 for 0 <k <m;. Let p; be the least non-negative integer
such that

Tm; + Pj(Tm; — Tm;—1) < R;.
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(It is possible that p; = 0.) If p; > 0, then for m; < k < mj+ p; we define 7
so that rp — Tk—1 = Tk—1 — Tk—2- Let ¢; be the least positive integer such that

279 (= Tmy—1) < Rjy2 = Rjt1.

We define mjy1 = mj +pj + 45, and for m; +p; < k < mjyy we define 7 such
that rp — re—1 = (Tk—1 — Tk—2)/2.

Our choices of p; and g¢; yield that rm;4+1 < Rjt1 and Tmjy — Tmjp—1 <
Rjt2 — Rjta, which brings us full circle in the construction. Thus, sequences
{mj:j >N} and {ry} can be constructed so that rn,; < R; and so r; < R, for
j > N. Also,

(14) (rk—1 — Tk—2)/2 STk = Tk=1 < Th—1 ~ Tk=2

and so
2= (D) < pp —rpy S Tho1 — Th-2, k>1.

Our construction also ensures that
T'm;+p; < R] < Tm;j+p; + Tm; — Tmj—1-

Thus, rp — 1 as k — oo, since Rj —1as j— 0.
We now define, for n > 0,

P, =42 rl = (e + Tnt1)/2,

and, for n > 1,
E, = {z i <z £ r;}

and

Gn(z) =1+ (Z/Tn)an and gn(z) = H Gk(z)a

k=1,k#n

and

f(z) = 1] Gn(2)

so that f(2) = gn(2)Gn(2), n 2 1.
Lemma 2. We define

B=(4/3)+17) exp(— (k)
k=1
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and, forn > 1,
o0
I a-2-6t),
J=n+1

and
n—1

M, = A, exp { ZPj(rn - rj)/4}.

i=1
Then, for n > 3 and z € E,, the following are valid:
(i) My < |ga(2)| < (M),
(il) M, >exp(2"~ ') > 2""! and
(iii) |gn(2)/gn(2)| < BP,.
Proof. For 1< j<n and z € E,,
Tho1 "\ Fi
e I R Tn
(r,- ) 1< |G5(2)] < (]) +1.
By (14) we have that
1\ Fi Tnoy — T\ Fi Tn— 1\ b
Tn-1\"7 _ Tno1 7T5\5 o n—Tj
(15) ( r; ) (1+ r; ) - (1+ 2 )

J
Z exp( J( Tn T'])) 2 68/3 > 14.

Thus,

]G’j(z)l > exp(PL(rn:?’_——rj)) -1> exp(P—j(InAl;rj—)).

Also, using (13), we deduce that r; > 1/4 and
=1 = (= TR) + (ra =) S 3(ra =) + (rn = 7;) = F(ra —1j),

yielding that
1

P I\ P P
v ()7 =25 =204 0)”
7"]‘ 'f'] 7‘]

<2(1+6(r, —ry)) B < 2exp (6Pj(rn — 1)) < exp (TPj(ry — ri)).

Now, for j > n,

IV

—P; P; ri — 71\ P
‘ (') =(1+ ]r’ ")
n n

(14702 T0) % 5 gyp { Bilfms Z ),

v
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Hence, for j > n we have j 4+ 1 > n + 2, so, using (14) again, we deduce that
(16) ’—’ > exp(491227971/3) = exp(27+3/3) > exp(2i11) > 27+2,

and thus,

[ a-27< I lei=l < JT @+2777%) < 1/4,.
j=nt1 j=nt1 j=nt1
Thus,
Anexp { E Pji(r, — r])/4} < |gn(z)| < —exp { Z TPj(rn — rJ)}

Note that A, > exp(—1), so 1/A, < A¥ exp(31/4). Hence,

(1/Arn) exp { "z::l TPj(rn — rj)} < [An exp { "S:j Pj(rn — rj)/4}]30

provided that E;:ll Pj(r, —r;)/2 > 31/4, and this is certainly true for n > 3
since then Pp_q(rn — rn—1) = 2"*! > 16. This proves (i) of Lemma 2.
Also, we deduce using (14) that, for n > 3,
n—1
M, > exp (= 1/4+ Y Py(ra - rj)/4) 2 exp (27 = 1/4 + Paa(rn = ra2))
i=1

> exp (2771 —1/4 4+ 3(4)"71(2)7" %) > exp(2"7! +1/8).

This proves (ii).
To prove (iii), we have

() NS B/ S Bl

9n(2) 1+(Z/Tj)Pj j=nt1 1+(Z/7'J')Pj

Jj=1
If j <n,then |z/r;|% > 14 by (15) and, since n > 2, |z| > r] > 5/16, and thus

[P,»

P;/r)z/r;|Fi 1 n_lP z[rj
Z(/)|/| El |(|/

1+ z/mlB S & T 1)

< 2(16/5 (14/13)P; < 4 Z P; =4 z 472 < (4/3)P,.

=1
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Now, for j > n, we have from (16) that
|z/r;|F < exp(—27t1) =exp { — (P]~1/2)/2} <1

Thus,

. (P;/r)|z/r;|Fi Y 2 & )
z (Pj/r))l /rj] < Z Z lez/rjlp’

| P}
j=n+1 1 + |Z/7~]| J IZI j=n+1

<(32/5) Y Pjexp{ - LP?Y <7y jexp{ - 1'%} = A

j=n+1 j=1
Hence, for n > 2,
|97.(2)/9n(2)| < (4/3)Pn + A < (A+4/3)Pn = BP,,

and this gives Lemma 2 (iii) and completes the proof of Lemma 2.
Lemma 3. Let § be a fixed number satisfying 0 < § < 1/2. For fixed j,
j>1,and 1<k < Pj, we define
zx = rjexp {(2k + 1)mi/P; }
and
Dy = {z sz —zk| < 37"]'5/1:’]'}.
Then

P
|Gj(2)] >6  for ze{z:]z| <1} = UDk.
k=1

Proof. Assume that z is in D and IGj(z)| < é. Since

Bj

1+ (2/r)T =[] (2x — 2)/ 2,

k=1

we may assume, by symmetry, that z is nearest to z;. Then |1 + (z/rj)Pfl <é
means that (z/r;)F = —1+rée'®, where 0 <7 <1 and 0 < 8 < 2r. It follows
that z/r; is a Pj-th root of —1 + rée'®, which means that |z|/r; is a Pj-th
root of | — 1+ rée®|, so 1 —6 < |2/r;|P < 1+ 6. A consequence of this is
1—(26/P;) < |z/rj| <1+ (26/P;) and, by considering arguments, we get

(r — arctan §)/P; < argz < (7 + arctan §)/P;.
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Thus, z must lie in the set

{z :1—(26/P)) < |2/r;] < 1+ (26/P;),

(m — arctan§)/P; < argz < (7 + arctan 6)/Pj}.

This region is a sector of an annulus containing 2;/rj, and we can compute the
maximum distance of a point w = z/r; in this region from z;/r; by moving first
along |z| = r; and then radially out from the origin. This calculation gives

|(z/r5) — (=1 /ri)| < 28/ P; + (arctané)/P; < 35/ P;.
Thus, |z — z1| < 3é6rj/P;, and Lemma 3 is proved.

Lemma4. If 0 < s < 2, a:min{%s,%— i—s}, n > ng, then

//]:3 (f#(z))sdfl? dy < V/M;a = O(CXp(——Qn_lo’)),

where W is a constant independent of n.

Proof. We define E,o = {2:2 € E, and lGn(z)l > 1/2} and assume that
n >3 and z € E,o. Then, by (13), |z| > (ro + 71)/2 = 1/8, since n > 1, so

'G'n(z)/Gn(z)‘ = Ipn/z”Z/Tnlpn/|1 + (Z/Tn)Pnl <3P /|z| < 24P,
Using this estimate and the result (iii) of Lemma 2, we have
|f'(2)/f(2)] < |Gr(2)/Gn(2)] + |gn(2)/gn(2)| < (24 + B)P,

and also, ]f(z)l = |Gn(2)gn(z)| > M, /2 from (i) of Lemma 2. Thus,

) < |F IR = (1£1(2)/f(2)]) (1/]£(2)]) < 2(24 + B)P. /M,
= 22"*4(48 + 2B) /M, = 2°(2""1)2(48 + 2B)/M,, < C(log M,)? /M,

where C' = 25(48 + 2B) and the estimate 2"~! < log M, is contained in
Lemma 2 (ii). The area of E, is less than 7, so

/ /E (f#(2)) dz dy < 7C*(log My,)** /(M,,)°.

Next, we define

Eng={z€En:27771 <|Gu(2)| <277}
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for ¢ > 1. Assume that z € E, 4. Again we have that both |2/r,| and |z/rp|Fn
lie between 1/2 and 2, so

|GL(2)/Ga(2)] < 2972 |Gr(2)] = 294 [P /2|2 /ra] ™

< 20MY(P,/|z])2 < 29%°P,  (since |z| > 1/8)
and hence by the same reasoning as before,
(17) |f'(2)/ f(2)| < 29%°P, + BP, < 2/F Py,
where F is a constant independent of ¢ or n. Thﬁs,
) £ |1 (F@)| = (1£@FG) (/1£:)
< 21FP, /(277 M,,) = (2F)(49)Po/ M, < (27 F)(49)(log My)? /M.

Since |Gn(z)l < 277, we can use Lemma 3 to conclude that the area of E, , is
not more than Pn7r(37",1/(2‘113”))2 < 97 /(49P,). Thus,

/ / (F#(2)) dz dy < {(27F)(4q)(log Mn)z/Mn}sgw/(zqun)
En,q

= 4767V (log M)** /(M P),

where V is a constant independent of n and ¢. Let @, be the largest integer
such that 491 < M,,. Thus Q; < log M, . Also, if h = max(0,s — 1), we have
that 4961 < M? 1< ¢<@Q;. Thus

Q1
> [ () de dy < V@M 0B M) /(M)

< V(log Mn)28+1M:_3 < V(log Mn)28+an—20~

We note that, by Lemma 2 (i), }f(z)[ < M3° for z € E,,. Let Q2 be the smallest
integer such that 292 > M32°. Then, for @1 < ¢ < @2, we have f#(z) <
|f'()/ f(2)| < 29FP, from (17). (Note that 1/(1+2?) < 1/z for all positive z.)
It follows that

/[E (F#(2)) *dzdy < (29F P,)*(97)/(4P,),

and thus
Q2 Q2
Z // (f#(z))sda: dy < Z OnrFe P~ /(29)2~2
g=Q1+17 7 Fn. ¢=Q1+1

< (97F*)(Q2 — 1)P271/(2%)** < R(log M) P2~ /M —2/?
< R(log M,,)(log M,)*" / M=/
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where R is a constant independent of n. (We use here the fact that 291 < M,ll/ 2
and that (@2 —1)log2 < 30log M, from the way that Q; and Q are defined.)
For ¢ > @), we have

FE(2) < |£'(2)] = |9h(2)Gn(2) + gn(2)Gr(2))|
< |gn ()| {|G(2)] + |Ga(2)]|9n(2)/9n(2)I}
< M {(Pa/lz])|z/rul™ + 2BP,} < M2°P,{16 + 2B}.

Here we use Lemma 2 (iii) and the basic estimates from the earlier part of the
proof of Lemma 4. We now define

Then the area of E, is less than
9P, m(2792/P,)? = 9727222 /P,
and
/ [E , (F#(2)) dz dy < (M3°P,{16 + 2B})*(97)272%2/P,
' < 97{16 + 2B} (M3°) "2 P:~! < L(log M,,)*" /(M30)2~2

where L is a constant independent of n and Q,.
Combining all these four estimates, we obtain

// (f#(2)) dedy < Wmax {M;*/2, M70=/9/2) = whze,
E,

where W is a constant independent of n. (In each case, we used estimates of the
form (logz)?P/z9 < A/x9/?, where A is a constant depending only on p and ¢ for
z > 1.) This completes the proof of Lemma 4.

To complete the proof of Theorem 5, we give an upper bound for the integral
in (12). We can express the unit disk D by

D={z:|z|<1}={z:lz|<1/8}U©En.

Hence, the integral in (12) is equal to

/02"/01/8 k(r)(f#(2))’r drd6 +,§:1//En k(r)(f#(2)) rdr d6.
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For n > ng and z € E,, we have k(|z]) < k(rn41) < k(Rn41) = exp{2"~?0}.
Thus,
// (r)(f#(z) )’rdr df < exp{2" 20 }W/M
< Wexp{(2"7% = 2" 1o} = Wexp{—2""%0}.
Since S exp{—2""20} is a convergent series , the integral in (12) is finite, and
Theorem 5 is proved.
6. An example to illustrate Corollary 1
We shall prove the following result.

Theorem 6. Suppose that 0 < o < 1, that K is a positive integer satisfying
K > 5%/% and that

f(z) = ZI’”(" D K" z € D.

Then f € Hy(Tk,p) ifand only if p > 1/(1—a). Here, T’k is the group generated
by the rotation z — zexp(2mi/K), and Ho(T'k,p) is the class from Corollary 1.
In particular, the classes H,(Tk,p) for different p, 1 < p < oo, are all distinct.

Proof. We shall denote by C;, Cs, ... positive constants which depend on
K and o only. For z € D, we have
(18) f()) < S KM = (1- Ko ) T =G
n=0

Next we define

_alog K +logh _ K(alog K —logh)
Cy = 1 and Cs = 1 .
By hypothesis, K > 52/« > 3. Thus

(K +1)logb

log K > 2logb
alog i > Zlogo > K1 )

so that
K(alog K —logb) > alog K +log 5,

that is, Cy < Cs.
For each positive integer N, we now define

ry = exp(—CsK~N) and riv = exp(—Co K~),
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and suppose that |z| = r, where
(19) rn <r <rhy.

We note that

z2f'(z) = ZK""zK" = ZuN,

n=0 n=0
say. Here, |unt1/un| = KorK"(K-1),
Suppose first that n < N. Then
[un+1/un| = exp (K™"(K — 1)logr + alog K)
> exp ( — KN_I(K - l)CgK_N -+ ozlogK) =5,

Thus
N-1 [
Y lual S fun|Y 57" = Junl/4.
n=0 v=1

Suppose next that n > N. Then

[unt1/un| < exp (KN(K —1)logr + alog K)
<exp(—KN(K-1)C;K™V +alogK) =1/5.

Thus
oo [o o]
> lual < Jun] Y57 = |unl/a.
n=N+1 v=1

We deduce that in the range (19) we have
(20) lunl/2 < |2f'(2)] < 3Blunl/2.
In particular, when |z| = ry we have
|zf'(z)| < 3K*N /2.
Thus, for rn < |2| < rN41, We have
|2f'(2)] < 3KV /2 < Cy(1—rn) ™ < C(1 - |2]) 77,
where Cy = 3(KC3)%/2. Hence, since r; > 1/2, we have for r; < |z| < 1,

FAE) S|P ()] S2Ca(1 = |2]) ™% < 22710 (1 - [27) 7.
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Suppose now that p > 1/(1 — a). Then

J] =yt o) anay <
// (1- |z|2)p_2(f#(z))pdx dy + 27r(2°‘+1C4)p/ (1 —r2)P=27%Pp dr < oo,
[z|<m

T

so that f € H,(T'k,p).
Next, suppose that p < 1/(1 — «) and that |z| = r, where r lies in the range
(19). Then it follows from (20) that
F1(2)] > (1/2)K*N exp(—C).

Also, using (18), we deduce that

) = 7@ 1+ £ 2 GEN.

Thus,
// (1= |22~ 2(f#(2)) dz dy > CeKPoN~P=DN=N > (g,
v <|z|<rly

Thus

//D (1- ‘le)p_2(f#(z))pdx dy = oo,

and the “if and only if” part of Theorem 6 is proved.

Finally, if 1 < p < ¢ < oo, we define @ = (p — 1)/p. Then it follows that
f € Hy(Tk,q) — Ho(Tk,p), so the classes Hq(T'k,p) and Hq(T'k,q) are distinct.
This completes the proof of Theorem 6.
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