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AN INTEGRAL CRITERION FOR AUTOMORPHIC
AND ROTATION AUTOMORPHIC FUNCTIONS

Rauno Aulaskari, Walter K. Haymähr and Peter Lappan

1. Introduction

Lei D - {r,lrl < t} denote the unit disk in the complex plane and let f
denote a Fuchsian group acting on D . Let F denote the fundamental region of l.
We may think of F .t th" "Fård fundamental region" F6: {z e D:lzl S lZ(r)l
for each -f e l) , but any choice of a fundamental region F for which the area of
the boundary of F is zero will serve our purposes for most of this paper. We say

that the function / meromorphic in D is an automorphic function (with respect to
theFuchsiangroup lit f(1QD: fQ) foreach7€f andeach z€D. Wesay
that a meromorphic function / is a rotation automorphic function (with respect

to I ) if for each 7 € I there exists a rotation ,5, of the Riemann sphere (with
radius 1/2) such lhat f (1Q)): Sr(lQ)) for each z € D. Also, we say that an

analytic function / is an additive automorphicfunction (with respect to l) if for
each 7 € I there exists a complex number A, such that f (1Q)) : f(r)* A, for
each z e D.

Let f#(z): lf,Q)ll(t+1ttr)l') denote the spherical derivative of /. We

say that a meromorphic function / is anormal function in D if

and we denote the class of normal functions by Jtl (see [1a]). we say that an

analytic function / is a Bloch function if.

sup {(i - l,l')lf'Q)l : z e D} < oo

and we d.enote the class of Bloch functions by B (see [1S]). It is clear llnat B C N .

For a Fuchsian group I, we say that an analytic function g is an automorphic
formof weight l it g(1QDlQ):sQ) foreach 7 € | andeach z € D. Itiseasv
to see that if / is an additive automorphic function then /' is an automorphic
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form of weight L. tr'or L 1 p I oo, we denote by ,ar(r) the collection of all
automorphic forms of weight 1 which satisfy the condition

(1)

il,(r-

ll,r, lrlr)e-'lne)lo

and, for p: oo, we denote by A-(l) the collection of all automorphic forms of
weight 1 which satisfy the condition

The Banach spaces ar(f), 1 < p ( oo, are known as the Bers spaces. It is
obvious that if / is an additive automorphic function then /' e A-(l) if and
onlyif f eB.

The Bers spaces A'(f) have been very useful in the modern theory of Riemann
surfaces. In particular, there was much interest in ihe so-called "Bers conjecture":
is Ap(l) c A-(l)? This conjecture was disproved by Pommerenke [18, Theo-
rem 2]in 1976 when he constructed an additive automorphic function / such that
f' e.*(f1-,4'"(f). However, several authors, among them Drasin and Earle [6],
Lehner [11], Metzger and Rao [15], [tO], and Knopp [10], all proved ,o*" ,.rrior,.
of the following result: if / is an additive automorphic function with respect to a
finitely generated Fuchsian group r and if g: /' satisfies (1), then f e B. In the
case of infinitely generated Fuchsian groups, Lehner [12] and [18] proved a similar
result under the assumption that the fundamental region F is not too ,,thin,, in
the sense of the hyperbolic metric (except possibly near parabolic vertices). Fi-
nally, Niebur and Sheingorn [17] gave a complete description for when the Bers
conjecture is valid. Their description says, in effect, that the Bers conjecture has
an affi.rmative answer if and only if the fundamental region is not too ,,thin,, in
Lehner's sense.

We observe that the Bers conjecture was really a question about additive
automorphic functions. In this paper we address a similar general question about
rotation automorphic functions. Here, the class ,A/ of normal functions plays the
role of 6, which is equivalent to A-(l) in the sense described above. We look at
the following question: if / is a rotation automorphic function which satisfies the
condition

(2) lrl')e-' (fu (r))o d,* d,y

for p ) 2, under what conditions is f e N? In [4, Corollary B, p.Bg], the first
and third authors gave an example of a rotation automorphic function / which
is not a normal function but which satisfies (2) with p:2. Pommerenke [1g,
Corollary, pp. i94-195] has proved that an automorphic function / which satisfies
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(2) for p : 2 is a normal function. In Section 2 we prove that Pommerenke's

result is valid for all p > 2, that is, if an automorphic function satisfies (2) for
some p ) 2, then it is a normal function. In fact, our result gives some additional

information about the bound on the expression (t - 1"1'z) 1+ (z) in the case p > 2.

In Section 3 we prove two results giving other positive answers to our question.

We show that if the fundamental region satisfies some mild "thinness" conditions

due to Lehner, and / is a rotation automorphic function, then (2) implies that

/ is a normal function. And also, if I. is a finitely generated group and / is

a rotation automorphic function which satisfies (2), ihen / is a normal function
and,inaddition,wehave (t-1r1'z)1+Q)- 0 as lzl ---+1fromwithin F.

In Sections 4 and 5 we give some results suggested by a result of Metzger and

Rao [15, Theorem 3]: If / is an additive automorphic function with respect to a
finitely generated Fuchsian group f of the second kind, and if

[[ lf'@l_ d,rdy 1ooJlrl-lrl'
then / is a constant function. In Section 4, we prove that if / is a meromorphic
function satisfying

(3)

where p)-1,then either / is a constant or else limsup,-6 Q-1r1217+(r): *
for each point ( e aD. If p> 2 here, then / must be a constant. we note that
if / is rotation automorphic and satisfies condition (3) for p : l, then we have

I I "H 
dx dy : p* I [*#* dr dy < a,

and since each of the integrals in the sum on the right have the same value, we

have that either I contains only a finite number of elements or else / must be

constant. Thus, our result is related to but somewhat different from the Metzger

and Rao result.
In Section 5, we show that examples of non-constant meromorphic functions

satisfying (3) exist for each p satisfying 0 < p < 2.Inf.act, what is actually shown

is a somewhat more general result, where the integrand in (3) is of a more general

form. The example given is an automorphic function for the finitely generated

rotation group (I. : {identity,'lt}, where TQ): -z), which shows that the

analogue to the Metzger and Rao result is not valid for automorphic functions

(or rotation automorphic functions) for which the group I has a finite number of

elements.
Finally, in Section 6 we clarify by an example a result from Section 2 about

the class of automorphic functions which satisfy (2).
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2. The case of automorphic functions

In this section we prove the following result.

Theorem L. Let f be a meromorphic function in D which is automorphic
with respect to a Fucåsjan group I , a,nd define

, : II,0 - t,t )o-'(rn(,))o d,r d.y.

If p> 2 artd /( -, then f is anormaJfunction. rnfact, if p>2,thenwehave
that

sup{(t -lzl2)f#(z): z € D} < BK:Bmax {Ir/o,f /@-2)}.

Since Pommerenke [19] has proved the Theorem for the case p : 2, we need
to deal only with the case p > 2. In the proof, we will make use of the following
result of J. Dufresnoy [7 , Lemma II, p. 2l1l.

Lemma L. If thefunction f is meromorphic in the disk D,o : {z : lrl < ,o} ,
and if the area on the Riemann sphere of the set f (Dr) js Iess tha,n o6r, *h"re
0 ( oo I 1., then

(/#(o)), s 1 "o
r2o 1, - os'

we remark that the Riemann sphere we are using has radius L/2 and thus
has total atea r.

Proof of rheorem L Let .E be the set of all points z € D for which

(4)

(we may suppose that f is not a constant function) and we define Eo : E rt F .

Since / is automorphic with respect to the Fuchsian group l, we have that /(E) :
f(Eo). Let ,9' denote the spherical area of /(,E0).If dm(z): (1 - lzl2)-2 tudy
denotes the element of hyperbolic area, we have

{ (r - lrl') t* e)}' d,m(z)

llr"{(r - l,l')f#e)}o d,m(z) < K2-er <1

definition of K . We now define Q by the equationbecause of (4) and the

(6) nKz Qz

I t.,
K2-P

r- p2)
I Kz-P :
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Dr: {z:lzl < a}, A: Dsf)E, and B: Dp-4. The spherical area

at most
and define
of f (B) is

tt
JJs

<K2 1,'lo'"#
Thus, the spherical area ,So of f (D) is at most

nKz pz

we have that

(7)

If I > 1, then we

1

&-
Thus rve have

2I Kz-P

Q-7f-So 
j 

Q2 
'

have K - Itl@-z), and (6) yields that

rKP
I

7- Q2

2(L * r)Iz /(P-2) < gI2 l@-z)

: 3fl l@-z) : 3K

rKP
tlI

2. From Lemma 1,

g2

It follows that

from (7).
If I < 1, then K - I|/P and

1 1_
rr+

Q"

2I Kz-P

T-2(n*

If zs € D , we may define F(r)
argument shows that

1)ft1+(2-p)/p) <gI2lp

(7).
3K in all cases.
_ f ((, * zo) lO + zor)) and the previous

r'#(o) - (r - lrol') f* Qil S Br(

for each zs € D . This completes the proof of Theorem 1.

912 /(P-z)
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We remark that if p - 2 and I < 7r then Lemma 1 shows that

since I is an upper bound on the spherical area of f (D).

nK2 Q2

4-1'
Then the method above yields that

(r - l"lr) f# e) < {2(t + r N2y}1/2 .

However, I( rnay be arbitrarily large for bounded .L For instance, if f (z) - lr",
where 0< k( oo, then /#(0):& while I <r. Inparticular,weseethatthe
functions for which I z-n,, while individually normal, do not form a normai family.
On the other hand, Theorem 1 shows that the automorphic functions satisfying
the hypothesis of that theorem for an arbitrary group I, for a fixed p, where
p > 2, and for I I Io, where .16 is a fixed constant, do form a normal family.
In Theorem 5 we will give an example to show that if p < 2 then there exists a
ron-normal function which satisfies (2).

For a Fuchsian group I and a positive number p,let H,(T,p) denote the set
of all functions / meromorphic in D such that / is automorphic with respect to
I and (2) is satisfied. Then we can obtain the following result.

Corollary 1. If f is a frichsian group and 2 I p < q, then H.(l,p) C
Ho(l,q). Further, if m(F) ( oo, tåen H"(l,p): H,(t,q).

Proof. Suppose that / € If,(f,p) and that 2(.p < q. By Theorem 1,

f e H"(l,p) implies 
-that / is a normal function, so there exists a constant cy

such that (t - 1r1'17+Q) S Cr for each z € D. Then

I l,r (r

If p-2 and Tlf ,we
define A by the equation

lrl') t+ Q))' dm(z)

< (c so-n I lrX, - l,t )f# (,11p amp1.

Thus / e H,(T,g), which proves the first part of the Corollary.
Now suppose that f e H"(l,g) and that rn(.F) ( oo. Then,if A: {z e F :

(t - 1r1',17+Q) < t\, we have thar

ll,x, - tzt\r#e1)e ame) 
= ll,lo - t4)r#(,)lo dm(z)* m(.4) < m,

and it follows that / e H"(l,p), which proves the second part of the Corollary.
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we will show by an example in section 6 that, if I is a group of rotations

about the origin, then the classes I/o(l,p), for 2(-p ( oo, are all distinct. In
this case, F is a sector of the unit disk so that *(F): oo and thus Corollary 1

d.oes not apply. We do not know if I/,(I,p) : Ho(l,q),2 < p < S, can happen

for other Fuchsian groups f for which rn(.F,) : ee.

Theorem t has implications for some rotation automorphic functions, as well

as for automorphic functions.

Corollary 2. Let f be a rotation automorphic function with respect to a
Fucåsjan group f sucå that (2) js satjsfied for p ) 2. If the rotation gtoup

X : {Sz : 7 € f} is discrete, then f is a normal function.

Proof. Define f' : {7 € l: ,5r: identity}. Then l' is a subgroup of l,
and / is an automorphic function relative to the F\rchsian group l'. since I
is a discrete group, there exist n elements 7o : identity, 7r t ^12t ..., 7,-r in
I such that, for each 7 € l, there exists an element 7'€ l' and an integer j,
0 < j < n-7,such that both 7 :'yj07' and ,Sro(,Sr;1): identity (see [5]). Let

F' be the interior of the set u|:-olzr(F). Then the union of -F' and an appropriate
subset of its boundary forms ä fundamental set for the Fuchsian group l'. Thus,

applying (2), we get

I l, (r

and it now follows from Theorem L that / is a normal function.

we note that corollary 2 generalizes a result of the first author 12, p. 372),

where the result of the Corollary is given for the case p - 2.

3. Rotation automorphic functions

In this section we prove two theorems relating condition (2) for rotation au-

tomorphic functions to normal functions. The first of these generalizes a result of
the first author [1, 1.3 Theorem, p. 209].

Tlreorem 2. Let I be a Fhchsia.n group such that I consists of t'he identity
and hyperbolic transformations and there is a constant to > 2 suchthat ltrace 7l 2
ts for all 1 € l, I * identity. Let f be a rotation autornorphic function with
respect to I which satisfies (2). Then f is a normal function.

Proof. By Lemma 1, it suffices to show that there exist numb€rs ?'1 and a,
where 11 ) 0 and 0 < @ < zr, such that for each zs e D,

Il^zo,r,) f#(4rdrdy 1a
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where U (ro, rr ) denotes the hyperbolic disk

But,

U(ro, rr) - {, € D ,l(r - zs)lQ - zor)l . rr }.

for each z e D, where n(tl(zs,r),2) denotes the number of points int)(zs,r1)
equivalent under T to z (see [12, Lemma 1, p. 284]). It is no loss of generality to
ass.ume that a < rI(K+t) and that 11 is so small that both nz(U(,o,rr)) ( a and
m(tl(zs,rr)) < 6. Thus, t|(zg,r1) canbedivided irtto K regions A,,l1u1K,
each equivalent under I to a subset F, of F. Also, each .Fl, has measure less
than 6. Thus

/ Iur"",,r'# 1212 dx oo : I |ur,.,,,, [(' - l'12) f# ('1]2 a*e1

= llrr,,,_, [{r - l,l')f#(,))o a*1,1+m(t/(zs,r1))

(r - lrl')e-' (fu(r))o d* d,y

whenever A c F and rn(,4) < 6, where dm(z): (f - 1z1z)-2ardy denotes the
element of hyperbolic area. The hypotheses on the group I guarantee that there
exist a positive number 11 and a positive integer K such that, for each zo e D,

[(r - l,l,)f#@]' d,*(,)

(Hereweareusingthefactthat s2 lrp *1for p)2, r)0.) Thus, / isa
normal function.

We can also deal with the case that I is a finitely generated group, even if I
has parabolic vertices.

Theorern 3. Let f be a rotation automorphic function with respect to a
finitely generated Fuchsian group l. rf (2) is satisfred for some p ) 2, then f is
a normal function and aJso lim sup;,1* l,ze. (l - lzl2) f# (z) : O.

Proof. Since I is finitely generated, the boundary of the fundamental region
F consists of a finite number of "sides" which a-re arcs of circles orthogonal to the

: ll^

glven

ll"

Sm(,(rr,11 )) .å llr,
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unit circle, a finite number of free arcs on 0D, and a finite number g of parabolic
vertices.

Let W be a connected subset of the closure of .F, such that the closure of 77
does not contain a parabolic vertex, b:ul W contains a neighborhood ofeach point
of the closure of each free arc of 0F f1 0D . There exist a positive number r and
a positive integer n1 such that, for each point zo e W, the disk U(zsrr) meets
at most n1 copies of .F', including F itself as one of these. Since (1 -lzl2)f#(z)
and, (d,r ail I (t - lrl')' are invariant under l, it follows that we can choose r
sufficiently small so that

for zg €W.
Now suppose that F has a parabolic vertex p. Let 1p be an element of I

such that 7p fixes p, lp * identity and 7p generates the subgroup of all parabolic
elements of I which 61 p.- There exists a rotation .9r, of the Riemann sphere
such that f (loQ)) - SroUQ)) for each z €. D. It ii no loss of generality to
assume lhal S"ro(w): 

"2noi-, 0 ( o < L, because if a:0 then the desired
result follows immediately from Theorem 1. Let c be a constant such that icp is
a real number and

[(r - l,l,)t*@]'d*1,1

[(r - lrl')r+@]o d*(,) + m(op)

I l"rzo,r) 
(r - l'l')o-' (r* Q))' d* dv

where h - q. + 2. As before, we have

It is no loss of generality to assume that nx(U (ro,

tl(toQ) - p) : c-t 7/(z - p),

arrd set t: p(z) - exp {Ari/(c(z -p))}. Then t(z) maps a parabolic sector o,
in a one-to-one manner onto a set of the form D* : {t : O < lrl < 6, d < argt <
ztr + d\. If we define G(t) : f (e-'(t)) and define H(t) : G(t)|t", we see that

| 1,,{ru a))2 a* av : I 1,, 
(G# (t1)2 a*, ay,,

where t : ot I iyr. Further, since the hyperbolic area of the hyperbolic sector
o, is finite (we assume that oo is restricted to a suitable neighborhood of p), we
have

I 1,, u* Q))' d,* d,v : I /,,
= ll,,
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and so (2) implies that

By a result in [3, 1.3 Lemma, p. 89], the function I/(t) is meromorphic at l:0.
This means that either G(t) '-+ 0 or G(t) ---, oo as t -r 0 in D*, and this means

lhat f(z) has the limit either 0 or oo as z -+ p from within F. Thus, since ,Sr,

is a rotation about the origin (and m), it follows that f(z) has the limit of either
0 or oo as z ---+ p non-tangentially in D. For definiteness, assume that this limit
is 0. (We may replace I bV tlf without effecting any of our hypotheses.) It
follows that we can choose the parabolic sector oo and r ) 0 such that, if zs € o,
then, l,f(z)l < t for z e U(zs,r). This implies that there exists a constant K',
depending only on r, such that l/'(z)l(t-l"l') (.t{" for z e (J(zs,r). Further,
since 1(, decreases with r, we may choose r > 0 such that

| 1,.

ll"rzo,r)u*Q))'d* 
dv : 

ll"(zo,r) [(r l'l') r*Q\'(e) dm(z)

9, ),

where n1 and (1 are the numbers in (8).
For each of the finite number of parabolic vertices p,let W, be a parabolic

sector contained in o, such that (9) is satisfied whenever zs € Wp and r is chosen
as above. Let W - F - UoWo. Combining the finite number of cases considered
(a finite number of parabolic sectors plus the one region containing the remainder
of -F), and using (8) and (9), we have

(r, +q+1)"/(rt*qr) {r

for each choice of zs in .F. It follows that / is a normal function in D.
Now suppose that {2"} is a sequence of points in .F such that zn --+ (, where

C e 0D and (1 -lr"l')f#(r.) ) I{ > 0. We shall show that this assumption
leads to a contradiction. We define

f,(,):f(##)
Then, since / is a normal function in D, a subsequence of {å(.)} converges
uniformly on each compact subset of D to a meromorphic function /6(to). We
may replace the seque""" {å(.)} Uy tfris subsequence, and so assume, without
loss of generality, that the sequence {/"(trl)} converges to /s(u) uniformly on
each compact subset of D. Also,

(t-lr*l')f*Q)>K-/f(o)-,t'l5 fte) - Jg
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Nowfix r > 0 anddefine D,: {w: lu'l < ta'nh(2r)}' For w e D'' wehave

ft@) -- 1ff(u) and

I 1,.r, - @t')o-' (vff 1*1)e au o, : I 1,.10 - t g tt @))e am@)

: I lu,,_,,,10 - t4) t# Q))' dm(z)

: I lu''-'''(l - l,,l')o-' (f# ('))' a* av 
'

where ,) :,tL * iu. If. ( is a point of a free arc of AF n7D, then U('n,r) can

meet at most two copies of ]7 for n large, and then condition (2) implies that

ll".t, - @l')o-'(Yff1w)Pa"d'u ---+ o'

It follov's that /#(0) : 0, contrary to hypothesis' If ( is a parabolic vertex'

the argument given to show that / is normal again shows that /f (0) :0. This

contradiction proves that

(t - lz"l2)f#Q) -- o

as zn -+ 0D in F and this completes the proof of Theorem 3'

4. Some cases where P < 2

For / a meromorphic function in D, we define

f2n
t 0) : Jo 7# lreielr do.

we say that a meromorphic function / is in the class ?i(r) if limsup,*1 L(r):
) < L \ÄIe define ?r : Uo<t<.""t(r). For a Jordan curve 7 in D, we define

L(i: I tn@wa.
J1

We say that the meromorphic function / is in Tz(t) if. there exists a sequence of

Jordan domains {D,,} such that UprD n : D ,

DnCDnqrCD.+rCD

Uo<r<-?z(/). We remark'thal Tr(t) cT2(t) for eaclr /-2 0 and that ?r CTz'
ft " t"tt"*ing theorem summarizes some results which the second author proved

in [B] and [9].
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Theorem H. (i) There exists afunction f which isnot anormaJfunctionin
D but f e T [8, Theorem 1, p. 186].

(ii) If f e T(l) withl <-r,then f isanormalfunctionin D. Thus,if /e A(0)
then f is a constant function [9, Theorem 4, p. 5].

(iii) There exjsts a non-constant analytic function in 
"2(0) 

[9, Theorem 5, p. 5].

(iv) If f is a function in Tz and e e 0O, then either

(10) lim sup (t - lrl') l#(r) : *
z*C

or f has a continuous extension to an open arc of AD containing e . In pa.rticular,
if f e T2 and f isanormalfunctionin D,then f hasacontinuous extensionto
the closure of D 19, Theorem 1, p. 3].

Here, we prove the following result.

Theorem 4. If f is a function meromorphic in D, a.nd if

as r -+ 1, which, in turn, implies that

Ä, : inf {r,1t1 r I t 1(1 + r)/z} -* o.

This means that / e f2(0). The first part of the theorem now follows from part
(iv) of Theorem H, for a continuous extension of / io a,rl arc of 0D, combined
with the condition that 

fiminf tr(t) : 0,
t+1

means that / is constant on an arc of 0D, ar,d this means that / is a constant
function.

If s 2 2, then

I l,t, - l,l')"-' (f# (,))" d* dy 
= I lrG - t,t')-' 1v+ e))" d,x d,v < oo,

by (11) and now Theorem L, with D : F and f : {identity}, implies that / is

normal, so (10) cannot hold. Thus / is constant in this case. This completes the
proof of the Theorem.

where s ) 1-, then f is either a constant function, or else f satisfres (10) at eaclt

point ( e AD. If s ) 2, then f is a constant function.

Proof. Condition (11) implies that

pr 11-tr)12

J, J, (r - l,l') -' (fu(,))" r d'r d'o --+ o
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5. An example to illustrate Theorern 4

we prove that functions considered in Theorem 4 actually exist.

Then there exists a non-constant function f (r) analytic in D

213

In this section

Theorern 5.
function in [0, 1).
such that

(12)
lr'" lo'

Of course, we have in mind the situation for which k(r) : (l - r)P, where
B is a suitable negative number. The case s:1 and B: -1 is a natural case
of interest. This case also gives a clear contrast with the result of Metzger and
Rao [15, Theorem 3] stated in Section 1. Since the general function ,t(r) does not
cause undue complications in the proof, we give the proof in the general case.

The proof of the Theorem is lengthy, and we will proceed in stages with
several parts. First, we set up some of the constants and notation, and make some
preliminary estimates. Then, we will prove three Lemmas. And finally, in the last
part of the proof we give an estimate for the integral in (12).

To begin the proof, we define o : min{s 12,712 - "la}. We will assume
throughout that fr(r) is a strictly increasing function such that å(r) ---+ oo as
r ---+ t-, for if it is not we can replace it by

K(r) :(1 - r)-, + sup{r1t; : 0 < ä J r}.

Let N be the least positive integer such that exp(2N-3o) > k(llz) and, for
n ) N ,let Rn be the solution to the equation

k(R") : exq(2n-l o).

Clearly, wehave 112 < Rn I Rn+r < L for n ) N and .R, ---+ L as n ---+ oo. Let us
define m7{ to be the least positive integer satisfying fetr6 2-(rnrv+r) < .Biv+r -Äag
and m1,, ) I/. We define

( 13) r1,- (1 12)- (1 lz)k+t, 0( k S TrLN.

This has the properties that r*r, 1l < A, and r-, -rnx-r ( Alr+r - -Bru.
We can now define the rest of the sequence {rr} inductively.

Suppose that we have defined a strictly increasing sequence of positive integers
rnN t rnN*l: ...r rn7 with j > N, together with a strictly increasing sequence of
numbers r7r, 0 I k I mi, such tha,t r*, I Rj, r*i rmi_r I Rj*r-87, and
rk-rk-r 1r*-1 -rk_z for 0 ( lc 1mi. Let pi be the least non-negative integer
such that

r*i * pi(r*i - r*t -r) < Ri.
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(It is possible that pj:0.) If pi) 0, then for mi < k S. mi*Pi we {efi1e 
rt

so that rk - rk-r : rk-L - rk-2 ' Let qi be the least positive integer such that

2-qi (r*i - r^i -t) I Ri+, - Ri+t.

We define mi+t : mi * Pi * g;, and fot mi + pi < lc 3 mi+t we define 16 such

tn* 
ål'-"hlåoJ|*|; ""?i|,)li^<t 

that r*;*t I Ri+t and r,,,*., - r*i+,-t I
Ri+, - Ri+t, which"bringt-lt full circle in the construction' Thus, sequences

tili, i t'It'i'and {r7,} "Jn 
b" constructed so that '*i 1'R; and so r; ( Ri fot

j > N. Also,

(14) (ru-, - '*-z)12(- 
r* - rt-r ( rk-r - rk-2

and so
2-(r+r) I rx - r*-t I rk-L - rte-2t k >7.

Our construction also ensures that

rm;*ni 1 Ri < rmi*pi * r*i - r*i-L'

Thus, 11, -+ L as k --+ oo, since Ri --+ L as j ---+ oo'

We now define, for n 2 0,

Pn : 4n*2 , T'n : (rn * rn+r) 12,

and

Gn(r) - 1+ (, lr,-)'n, and g "(r) 
:

G "(r)

G x(r),
k-

and

f (r)

Lemrn,aZ. We define

:TI
n:7

B - (413) + ?»exp (-
k:7

(*k,t\)

tI
L,k+



An integral criterion for automorphic functions

(t - z-u+z)1 ,

a'nd 
n-L

Mn - Anexp {» 
pi?n

j:t

(iii) lg"(4 lg*@l < BPn.

275

L,

An: il
j:n*L

,)la]|.

id:

By (14)

( 15)

e) "'

rve have that

/ r'"

Thus,

lc i@l' ""r(&P) - r, ""r(&(,ru::i))
Also, using (13), we deduce that ri > 714 and

,'n - ri : 0'^ - r,.) * (rn- ri) < tO" - ri) * @* - ri) : *(r, - r),
yielding that

, . (*) "' .2(*Y' : ,(, *'i;',)''
< 2(1 * 6(r,, - ri))'t < 2exp (ar11r,- ri)) ( exp (ze1r*- ri)).

Now,for j)n,

-'")y
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Hence, for j > n we have i +t> n*2, so, using (14) again, we deduce that

t r t-P.
(10) l:-," ) exp(4j+22-i-t l3): exp(2'+3/3) > exp(2i+t) 2 2i+2,

lril

and thus,

A,: II «, -z-i-\< II lciQ)l< fl t, +2-i-\<1lA*.
j=n*l j-n{l i=n*l

Thus,

n-L

An exp {T r,f,, -, ) I a\ < lo*(41 s l-A-"", 
{ E 

7 Pi@,-'r)}'

Note that A, > exp(-ä), .o 7lA* < Alf exp(3114). Hence,

n-l n-l

(tl A*)"-p { » 7Pi@.-,r)} 
= lo*"-o { » Pi(,n -,)ln\f"

j=l j=7

provided tfrat li=rr PiUn - r)12 > 3tf 4, ar.:d this is certainly true for n 2 3

since then Pn-r(rn-rn-r)> 2n*r > 16. This proves (i) of Lemma 2.

Also, we deduce using (14) that, for n ) 3,

n-1
M. >"*p ( - 1, I 4 + L r,U* - d I a) ) exp (2"-r - 1 I 4 + Pn-z(rn - r,-r))

j:r
) exp (2"-t -ll4+ 3(4)"-r(2)-^-') > exp(2"-1 + 1/8).

This proves (ii).
To prove (iii), we have

g'.(,) _7J et l, )Q I r )Pi -1 * S @i lr )(z lr )? -l
;{» - | t+1rlr;Pi''*u*, tt(zlr1)P;

lf j < n, then lzlrlP; > 14 by (15) and, since n 22,lrl> r't> 5/16, and thus

§Vi/,)l,l,ilP' -' . ts lPil ( 4-f-\
k--tTT;l;F- = !E\Q7;Y, -r1

n-7 n-l n-l
. !{ro7s)(1411s)Pi. 4 » Pi : 4Dn'*' < (4/3)P"'

j:t i=r i=l
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Now, for i ) n, w€ have from (16) that

Thus,

217

»
j-n*L

(Pi I , i)1, l, ilP, -'
1 + lz lr llPi

oo

6\ oo

lryl lJ
lp I j_n*l

oo

j-n*\

Hence, for n>2,

and this gives Lemm a 2 (iii) and completes

Lemma 3. Let 6 be a frxed number

j:t

the proof of Lemma 2.

and

Then

Proof. Assume

P;

6 for z€{z,lrl<1} UD1,.
Ic:1

P;

1 + (, lr)'' - fl(rn - z)lr*,
k:1

we may assume, by symmetry, that z is nearesl'to 21. Then lL+(zlr)Pil < O

means lhaf (zlr1)Pi - -L + r6ei0, where 0 ( r ( 1 and 0 < 0 I 2r. It follows

that zf ri is a Pi-th root of -'1, * r6eie, which means that' lzllrl is a Pi-th
root of I - 1+ ,-6"iel, so 1- 6 < lzlrllP' < 1+ 6' A consequence of this is

1- (26lPj) <lrlril < 1+ (26lPj) and, by considering arguments, we get

21, : r j exp {(z* + 1)"ilPi)

Dr,- {, : lz - zkl < 3, j6lPi} .

that

lc,(
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Thus, z must lie in the set

I
,z : t - (26 I Pj) < lrlril < 1 + (26 I Pj),

(zr - arctan 6)lPi < argz 1(zr f arctan »/pi\.

This region is a sector of an annulus containing z1 f ri, and we can compute the
maximum distance of a point w: z/rj in this region frorn zyf ri by moving first
along lzl : rj and then radially out from the origin. This calculation gives

lQ l,) - Q, l,)l < 26/ pj* (arctan 6)/ pi < s5 I pj.

Thus, l, * "rl < 36111P1, and Lemma 3 is proved.

Lernrna 4. If 0< s < 2, o -min{}s, å - år}, n ) ns, then

lf
I l_ U#Q))"drdy <rÄ/M;": o("*p(-2'-lo)),

J JE^

where W is a constant independent of n.

Proof. We define Enp : {, , " € .E,, and lC"1r1l > 1lZ} and assume that
n ) 3 and z € En,o. Then, by (13), lrl>_(ro +rr)12:718, since n ) 1, so

lC',1r11c"12)l: le,lzllrlr,lP" llt + 111r")." I < Bp,llzl < 24pn.

Using this estimate and the result (iii) of Lemma 2, we have

lf'(,)/f (,)l s lG'.(211c"(41 + lg'*Q)ls"Q)l < Q+ + B)p^

and also, lf Q)l: lG"(z)s,(z)l > u"lz from (i) of Lemma 2. Thus,

f#(,) <lf't4l/lfQ)l' : |f'(,)/f(")D Qtltt,ll) <z1z++ B)p.lM.
: 2zn+4 (48 + 2 B) / M " 

: 2u (2' -' )2 e8 + zB) I M. < c(log M,), / M,

where c : 26(48 + 2E) and the estimate 2'-r ( log Mn is contained. in
Lemma 2 (ii). The area of E, is less than zr, so

Next, we define
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for q) 1. Assume that z E En,t Again we have that both lrlr*l and lzf rnlP'
lie between !f2 and 2, so

lc'^(z) I G ,(z)l < zt+t lc'.(41 : )e*1 lP, I zllz / r,lP^

3zo+'(p"ll4)z < 2c+5 Pn (since lzl2 t/8)

and hence by the same reasoning as before,

(17) lf'Q)lf Q)l < 2c+5Pn * BPn <2c FPn,

where -F is a constant independent of g or n. Thus,

f# (,) < lt' t,l I lt @)' | 
: lf ' (,) / f1,1 | ) (r/ | /(,) I )

< 2sFp,l(2-q-r M.): (zry,a\palM* < e7 F)eq)QosM,)21M..

Since lGr(z)l < Z-t, we can use Lemma 3 to conclude that the area of -Er,o is

not more than P,zr(3r*l(2tP.))2 <9nf (4qP.). Thus,

I L U#Q))" d* dv. {{z'rx+oXlos u-12 1ru,} enl(4q P,)
v v Dn'q 

- 4ti-r)y(logM,)2, l(Mip*),
where V is a constant independenl of. n and g . Let Q1 be the largest integer
such that 4Q' < M,. Thus Qr < IogM,. AIso, if. h: max(0,s - 1), we have

that 4c('-1) <M*,7z-q(Q1. Thus

?. t t U#("))" dr dy sveJw*(tosM.)2" l(Måp*)
fiJJe"'o

< v(log M^)'"+'Ml-' < 1z(log Mn12"+t *-'" .

We note that, by Lemma 2 (i), lf (z)l < Mio for z e En. Let Qz b. the smallest
integer such that 2a' > Mlo. Then, for Q1 < q < Qz, *" have /#(z) <

It'{4/t{41 < 2cFPn from (17). (Note that 1/(1 + n2) < 1.f r for all positive r.)
It follows that

and thus

Qz Qz

» I l_ (f#(4)" a* ay < » err" pi-l l(zt1z-"
q:Qt*lJ J Ea,q q=Qt*L

< (9r'F")(Q, - 1)På-'/(zat1z-e < rB(log M,)Pi-r lMo-"/z)
< rB(log M,)(logM*)2h lM§-"12),
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where -E is a constant independen| of n. (We use here the fact that 2Qt < 141/z
and that (Q, - 1) log 2 < 30log Mn from the way that Q1 md Qz are defined.)

For g ) Q2, we have

f# (r) < lf'{r)l : lo,.e)G.(r) + s.(z)G,.(r)l
< lo"Q)l {lc'"(41 + lc"(z)lp,,(4/t"e)l}
< Mlo {(p"ll4lr/rnlP^ +zBp,-} s ulre*{16+zB}.

Here we use Lemma 2 (iii) and the basic estimates from the earlier part of the
proof of Lemma 4. We now define

Qz

E|:En_UE,,r.
<t=o

Then the area of El is less than

gPnr(Z-Qz /P,)' - nor-zQz fPn,

and

I l, trn f,))" dx dy < (ulo p,{16 + zB})" (etr)z-za" 1 
p*

< 0zr{16 + 2B}"(M30;s-2ps-1 < -[(log M;zh /(Mlo)r-"
where .t is a constant independent of n and Q2.

Combining all these four estimates, we obtain

I l r^ tfu fr))" d,r d.v ( 77 max {M ; " 
/', 14-Q - s /z) /' } : w M ; o,

where W is a constant independent of n. (In each case, we used estimates of the
form (log x)n ld < Af at/2, where ,4 is a constant depending only on p and q for
r ) 1.) This completes the proof of Lemma 4.

To complete the proof of Theorem 5, we give an upper bound for the integral
in (12). We can express the unit disk D by

Hence, the integral in (12) is equal to

/o'" /o''' k()(f+e))"r d,rr, * f !|"^*r,ltf#())'rdr d0.
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For n ) no and z € En, we have k(|il <k(r,+r) < k(R*+): exp{Z"-zo}.
Thus,

t t *e)$#(z))"rd,r d,0 l exp{2n-2o}wlMf
J Jo"

I W exp {(2"-' - zn-r )"} : W exp{-2'-2 o}.

Since f exp{-2"-zo} is a convergent series , the integral in (12) is finite, and

Theorem 5 is proved.

6. An example to illustrate Corollary 1

We shall prove the following result.

Theorem 6. Suppose that 0 < q < 7, that K is a positive integer satisfying
I{ > b2l" , and that

f(r):iK'@-r)zx^, z€D.
n:o

Then f €Ho(1;1-,p) if andonlyif p>1lO-a). Here,16 is thegroupgenerated
by the rotation z --+ zexp(2trilK), and H"(tx,p) is the classfrom corolla.ry 7.

In particular, the classes Ho(ly,p) for different p, ! < p < @, are aJl distinct.

Proof. We shall denote by Cr, Cz, .'. positive constants which depend on

1( and o only. Fot z € D, we have

(18) l/(r)l<ir.'t'-'):(1 -K.,-l)-L-ct-
n=O

Next we define

alogK*log5 1 ^ K(alog.I(-log5)u2: I{:T- anq v3: 
--7{---.

By hypothesis, I( ) 521" ) 3. Thus

otogr( ) 2los5, (+9F,
so that

/((alogK - 1og5) > ologK * log5,

that is, Cz 1 Cs.
For each positive integer N, we now define

rar : exP(- C|K-N) and rlv : exP(- CrK-N),
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and suppose that lrl: r, where

(19) r1,,(r<rfu.

We note that

,f'(r):i ynarKn:irr,
n=0 n=O

say. Here, lun+tlunl - 6arK"(K-t) .

Suppose first that n 1 N. Then

lun+r/r,l - exp (N"(N - 1)log, + alogK)
) exp 1- r<n-t(r - 1,)qK-N * alogK) :5.

Thus
N-1 m

! l""l < l"rul!r-" : lu7,7ll4.
n=0 u=7

Suppose next that n ) N. Then

lun+r/unl < exp (f'(ff - 1)logr * atog/()
( exp ( - .rfNlff - 7)C2K-N * alog I{) :1./b.

Thus
oo oo

» lr,l < l"rlI 5-v - l"Nl/a.
z=N*l v:7

We deduce that in the range (19) we have

(20)

In particular, when lrl - rry we have

lrf'@l < BKo* 12.

lrf'e)l q 37sa(N+t) 1z < cnlt - ,r)-o < C4(1- lrl)-" ,

where Cq : 3(I{Cz)" f 2. Hence, since 11 ) \f 2, we have for 11 < lrl < t,
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r lies in the range
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e now that p > 1l(1 - a) . Then

lrlr)e-, (fu (r))o d* dy * 2n(z."+t c+)p [' fr - ,')J,,

H"(f6,,P).
uppose that p a 1l(1 - ,) and that lrl - r, where
it follows from (20) that

(18), we deduce that

Suppos

ll"o
I l''r'"' (1

so that f e
Next, s

(19). Then

AIso, using

Thus

I I"t, - t,t')o-'(r#(4)o a* dv : *,
and the "if and only if" part of Theorem 6 is proved

Finally, if 1 < p < q ( oo, we define o: (p-t)lp. Then it follows that

f e H,(l x, q) - H"(l x,p), so the classes H,(t x,p) and äo(16, q) arc distinct.
This completes the proof of Theorem 6.
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