
Annales Academire Scientiarum Fennicre

Series A. I. Mathematica
Volumen 15, 1990 , 273-282

ON THE NUMBER OF ISOMETRY CLASSES OF

BILINEAR SPACES IN UNCOUNTABLE DIMENSIONS

Herbert Gross

1. Introduction

Of late efforts have been made to estimate the number of isometry classes

(similarity classes) of e-hermitean forms over division rings equipped with anti-

iro*orphi.ms *: K -+ K . (Refer to [B] for standard terminology.) A strong result

is the following

Theorem t-. [2, Theorem 2] For each regular uncountable cardinal a attd for
K *ry division ring (of arbitrary characteristic and cardinality) endowed with an

involutory anti-isomorpåism *, and for e a central element subject to e' €* : 7,

there are 2o pairwise non-similar, non-degenerate e-hermitea.n fotms in dimen-

sion a.

In [6] a special case of Theorem 1 is established by model theoretic methods:

Let a be any uncountable ca,rdinal and K a commutative field. If card(K) < a
then there are 2o pairwise non-similar non-degenerate trace-valued e-hermitean

.K-spaces of dimension a.
Here we shall prove the following complementary result:

Theorem 2. Let 1 < P 1a be (not necessarily regular) uncountable cardi-

naJs. If K is a commutative freld of any characteristic a^nd cardinality a then there

is asymmetricform(skew-symmetricform) Q: ExE --+ K witå dim.E - B such

that E contains 21 non-degenerate subspaces of dimension 1 that a,re pairwise

non-isometric.

The idea used in the proof of Theorem 2 is akin to that used in [5] for the

construction of spaces with small orthogonal group. Apparently, the relevance for

richness results of the constructions given in [5] have passed unnoticed' In our

proof of Theorem 2 just a little more work needs to be added in order to obtain
the following rather surprising result:
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Theorem 3. rf, in Theorem 2, the form o is symmetric and K is a purely
transcendental extension K I Ko of transcendence degree a over some subfield Ks
and if -L js a square in K and if char(K) l2 then the 2t subspaces F e E ca.n
be chosen such that in each one of them Witt's cancellation theorem holds (i.e. if
F: AOAI: B@Bt and A- B (isometric)then AL - B!)whereurilritt,,
exfension theorem invafiably fails to hold in fhese spaces (i.e., there always are
isomedries between subspaces that admit no extension to the whole space).

some of our results can be generalized to forms other than symmetric
symmetric. our reason for staying commutative here has been to give a
repouss6 pattern to our tricks.

In the last section we add a few short remarks concerning the
between the cancellation theorem, the extension theorem and, of all
modularity.

or skew-
sharper

interrelations
things, ortho-

2. A lemma on

L.fr K be a commutative field
dental extension and (*;i)oS ilj1n
that are algebraically independent
symmetric bilinear form

ftnite dimensional forms

of arbitrary characteristic, K I Ko a transcen-
a family of *(" + 1X" + 2) elements in K

over Ks. On yn*t x yn*r we consider the

v(*,y):- €;rriirli, x : (€0,...,(r),

with n jt '- nij when i < j (ro xij: nrs if and only if
Lemma 4. The form i[(*, y) is a square in K if

vector.

Proof ( [8]). We consider first the case
,Afo'?, where x - ((0, (t,. .., €r) and (; +
abbreviations: For i,j,k € {0, 1 ,,n}
Kn+t we set

Y- (qrr"',\")

{i, j} - {r, r} ).

and only if x is the zero

where char( K) * 2. Assume V(*, x) _
0 for all i . We shall use the followirrg
and e; the canonical basis vectors in

i
i,i:0

(no)ij '- nij (- v(",,"i))
(**+t);i :- (nx)*; . (r*)xi - @r)m . (rx)U

n1r:- (*r)*r, n-1 ::0.
Instead of investigating the equation

(1) i €;€irri- No'
i,i:0



(3)
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we shall study the solvability of equations that have nontrivial solutions provided

that (1) admits a nontrivial solutiån. More precisely, we ciaim that the equation

n

(2) I €,€r("0)t1 : Nf, - **-'N?-1*r*-to*-'Ni.-' - + - "'
i'j=k

+ (-1)ert- 7rk-2nk-3 ' ' ' rlxsN! 1

which reduces to (1) for k:0, entails the equation

i t;€i(*r+t);i:Ni*, -nkI'{? *xk,,k-tI''?-t- + - "
i,j:k+1

+ (-1)k+1 fiktk-tfr*-z ' ''f,tfro..n\I;

if. 4N:*+r is defined to be the discriminant of the quadratic equation (2) wiih

ur*rr#t (*. As €x e K we have N*+r € K ' By induction we find that we may

choose k:: n in (2):

t^*n: Nf; - x,-1Nl-1 * l,n-rl,n-rN3-r- + "'+ (-1)"r,-r '" roNå'

Thus, the following equation, with unknowns X' Xt'Xz''' ''

(4) X3: rnX2 + *n-rX'n-, - xn-Lxn-rX'.-r+ - " '- (-l)"*n-r "'xoX2o

admits a nontrivial (integral) solution (X : t, and all (l ur" nonzero). Next, we

define recursively u, ,"q,rå""'of equations thal admit nontrivial solutions provided

(4) possesses a nontrivial solution. In one case the contradiction will become plain'

Mor" pt""isely, we claim: If for k ( n the equation

(5) X2.-* : (rn-x)nnX2 + *,-(*+rlX'r-<x+rl - on-(k+\nn-(t'+z)XT-G+z)

+ - "' - (-1)"-k0n-(k*r) "' roXS

hasanontrivialsolution(thisisactuallythecaseif.k:0)thenthesameholds
true for /c + 1 in lieu of b. In order to prove this we first mention that for f ( s

the degree of the polynomial (c1);; in ih" ""k"o*rt 
*ss is precisely one if and

onlyifi:j:ru.,,d'"'ooth"'*ise;thisisreadilyestablishedbyinduction
on t. Furthermore, the degree of r88 in the polynomial (t"+{)nn is invariably

one, because s ( ," in this-case. Flrom this we recognize that the coefficients of

the'squares in (5) are linear, throughout, in the unknown x:: nn-(k*1)'n-('c*1)i

so ('n-x)nn: An-ka * Bn-x

tn-(k*r): An-$*l)x t B,r"-,Iat1

r n-gs1;t\n n-(k+z) : An-G*z)r * B n-G+z)

: ...
fin-(k*r)fin-(e+2) ' "' 'fil 'fro : Aor * Bo
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with all Ai rLoruzero. We therefore conclude that

f6) Ai: Ao-G+Dun-&+2)o,r-(e+s) "'oj+luj when j <n- (e + 1),\ / An-k : An-(k+t) (-(rr-(u*rl )"r).
The second relation follows by considering that

(* n - x) nn : (fr n - $ +tt )2,r- ( r+ r ),,, - o z - (,r*r ) ( e n - (x + r)) n n.

Now, the equation (5) can be written as follows:

fi\ x2,-* : r(A*-1,x2 * An-(e*r) x'*-<o+rl - + "' - (-r;"-r AoxZ)

i Bn-xxz * Bn-G+t)X1-<*+rl- +...- (-r;"-t BoxT.

By our assumption that (5) have a nontrivial solution we know that (Z) has a
nontrivial solution consisting of polynomials x , xo, xr , . . .. Let m be the
maximal degree of the unknown c occuring in the polynomials x, xo , xt, . . .

3nd ai (o, respectively) the coefficient of u* in xi (in x, respectively). Thus,
by definition, not all among aj) a are zero. On the other hand,

An-kaz * An-(k+ ta2*_(k+1) - +... - (-1)n-oAooZ - 0

because the left hand side in (S) is the coeff.cient of 12* in the bracket term of
(7) and this coefficient must vanish for, otherwise, the right hand side in (7) would
show the odd degree 2* + 1 in the unknown a, a possibility that is manifestly
ruled out by the left hand side of (7). Rewriting (S) by utilization of our relations
(6) the (nonzero) term ,4.,r-11+1) cancels and we obtain

0 : -(c,,-( k+D)nnaz * o?,_(o+r)- +... - (-r;"-r rn_(x+z)... a1asaf;.

By shifting o'n-1x+r1 to the left hand side we recognize that the a, oj provide
a nontrivial solution of (5) with å * 1 in lieu of &. We have thus shown that
the equations (5) have nontrivial solutions for all le I n. In particular, letting
k : n there is a nontrivial solution Xo,, X of the equation X3 : (rs)nnX2, i.el,
X3 : nnnXz. But this is a contradiction. Thereforell) has no nontrivial solution
when char( K) + 2.

FinallS if char(K) : 2 we have to discuss the equation DLo €?*;t = N&
instead of (1). Multiplication by a common denominator allows us to assume the
€,; ur,d No to be polynomials with coefficients in J(. Each c;1 shows up once on
the left hand side with an odd exponent. As the right hand side is . Jq,rur", *"
must have (i :0 for all i. Q.E.D.

(8)
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3. The setup (Deflnition of the form O in Theorem 2)

In this section K is a commutative field of any characteristic and with a ::
card(K) uncountable. Let Ko be the prime field of K and ) a transcendence

bu,.i, of K I Ro. Thus, card()) : o and K is an algebraic extension "f I(o()).
For B a fixed uncountable cardinal ( a we select some arbitrary injective

family X: (r,*)o<r1r1g with or^ € ).
i"i'1u, j,.p'Ue ttre basis of some fixed B-dimensional .K-vector space .8. We

look at symmetric forms (skew-symmetric forms) Q: .E x E -+ K that have

(e)

Notice that, in contrast to the form iU of Lemma 4, (9) does not require the

diagonal coefficients O(e,,e.) of Ö to belong to ).
Notation. If. Kt ) K is an arbitrary commutative overfield then 'E' ::

K' 8x-8, regarded as a K'-vector space' and O' is the form E' x E' -t K' with

o'(»r )r I x;, Di pi s yi) : Dii.\;o(x;, yi)pi for all \;, lti € K' and all x;,
y j e E (".I('-ificåtion").

The following facts are proved in [5]:

Propositio n 5. Let Q: .E x E ---+ K be a symmetric or skew-qrmmetric form

witå (9) . tt X' f ff is a,n arbitrary commutative overfield then the K' -ification

(E', O') enloys the following propetties:'(r' If F ii u,,y linear"rb"pr"" in Et and dimF2 No then dim'Fa ( N6 in E''
(i;1 rn. full group o(E') of isometries 9: E' + E' consists of aJl finite products

*O1oO2å. . . where tåe O; a,re symmetries about non-degenerate hyperplanes

of E' . In other words, for each isometry I e O(E') either Ker(P - 1) or

Ker(g * 1) is of finite codimension in E' .

In order to prove (i) quote [5, Theorem 1.1, p. 514]; in order to prove (ii)
quote [5, Theorem 2.3 (with n::1), Theorem 2.2, p.5].6 and Theorem 1.1, p. 514].

4. Proof of Theorem 2

Let E : K(e,),<p and the form Q be as in Proposition 5. Pick some subset

J g P with uncoutt"ft"'1 :: card(J) and set -Ev:: span{e,lr e Ji G E' The

next lemma shows that any isometric injection

(10) 9: E1+ E

can move E1 as a subspace of. E" only by a little bit:

Lemma 6. If (1) is an jsometric injection then there exisfs a finite subsef

M g P such that for'eaeh t e J we have ge, e Ke, * F where F :: span{erl

t e M\ e E. In pa,rticular dim(Ev *p0t)lEt ( dimF ( m.
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Proof. For all t e J we set ge,.: Darpe, e -E; the summation extends
overthefinitesets M(r.):: {ue Blo,*# O}. Let M:t)a.rltt(t)\{c}] . We

show that M is finite. Assume by way of contradiction that M is infinite. There
isadenumerablyinfinitesubset SCJ andamap rr that assignstoevery re ,5

a rc(t) € B with n(e)e U(r)\{a} and "(t)* n(u) forall tlu in S. There
is a countable subset A g y (the transcendence basis of $fl{9__as introduced
at the beginning of the previous section) such that ot,* € Ko(A) (the relative
algebraic closure ot Ks(A) in K) for all n e M(t), c e S. Let .lf :U,asMQ,),
card.l[ - No. Bythepigeonholingprinciplethereis au € J andforita ps e M(u)
such that po / N U.9 and

(11) {*,roexlteN}nA:A.
For ger:DlrEtrrt(r)aypltt and r €,9 we have (rp being an isometry) that

O(perrger): fitu - a,rx(t)ertrofrK(ipo + » etne.utrfrnp.
Kp

The sum in (12) extends over the ,.t IMQ)x M(u)l \ {("(r),ps)}. There is a
finite subset B e ) such that a,, e Ko(B) for all p' e M(u).

Since ^9isinfinite,thereis a,o€ Swith o*@)to/B. As *(")* o bythe
choiceof themap ,c andsince po * o (because p,s / NUS) wehave oo, l o*(o)r"0.
Let

c: AuBu {*o,,**rl@,p) elM(o)x M(u)] \ {("("),r,r)}}.
By (11) we have n*(r)r,o / A,hence r*(o)p, / C. ALL quantities in equation (12)

equated for t : q are contained in .If6(C) with the exception of c^1r;ro. The

coeffi.cient of r*6110 in (12) is not zero. Hence we should have a*61r" e Ks(C);
so orc(a)po is algebraically dependent over C which is a contradiction. We have
thus shown lhat M is finite. Q.E.D.

Proof of Theorem 2. In the power set P(B) we select a system E g P(B)
such that card(S) - 27 and, for each J' , J' e 5, card(./) : 1 : card("I') and
card((.r \ ./') u (/' \ /)) 2 No. Of the 21 subspaces Er(J € §) no two can be
isometric by Lemma 6.

5. Proof of Theorem 3

In this section the commutative field is a transcendental extension Kf Ks
of transcendence degree a ) Ns. Let ("r)r<, be the basis of some fixed 7-
dimensional l(-vector space .E and N6 17 I a. Let O: E x E --+ K be a
symmetric form such that

(12)

( 13) { ot€,, €, )
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Thus, in contrast to Sections 3 and 4 the diagonal elements O(e, er) of the form
are taken into consideration here. Fhom Lemma 4 we obtain:

(14) If O enjoys (13) then O is anisotropic, i.e., if ö(x,x):0 then x: O.

Lemma 7. If O enjoys (13) and if char(I() l2 and if -1 is a square in K
then Witt's cancellation theorem holds:

(15) If E:A@At -BO Bt and A- B (isometry) then At - Bt.
Proof. If E : A + At then by Proposition 5(i) either dim L or dim,4.r

is finite. Of course, if dim,4. is finite then (15) follows by the finite dimensional
cancellation theorem. We are left with the case that dim Aa is finite. We first
convince ourselves that dim,Af : dimBr. Assume by way of contradiction that
dimBa > dimAa. So there is a nonzero a e. BtoA. Fix an isometry gs: A3B.
Since gso € B we get a nonzero isotropic vector ),a I gsa if ,\2 : -1. But
this contradicts (14) whence we must have dimLr : dimBa. Let K,be the
algebraic closure of. K. We pass to the K'-ifications E' , At ,, B' , (A,)L : (AL), ,
(B')' : (8,)'. As -E' : At @ A,! : B, g g,t a[Id dim6,(A,r) : dim6(Ar) :
diml,'(Br) : dimr,(B'') it is clear that A'r and B'r are isometric and that
therefore gs induces an isometry g'o: A'38'that admits an extension g, to all
of. E' . Of course, the subset .E of the I('-space E' need not be invariant under
the metric automorphism g' of E' ,

By Proposition 5(ii) we may assume that .D :: Ker(p' - 1) is of finite codi-
mension in E'. (We may replace g' by -g' if necessary.)

Since g' and 1 are both a(O')-continuous (that is "weakly ortho-continuous,,,
cf. [3, p. 33f]) I is o(O)-closed in E' . Because E is non-degenerate (by(1a)) so
is E'; furthermore dimDtf L < oo; therefore dim(Inra) ( m. Ergo, there is
a non-degenerate Lo e L with Ifl : tro and with finite dilgnLl/,s (use a Witt
decomposition for L n LL in .E'). It follows that

E'- LsOtror, Ls g Ker(p'- 1).(16)

( 17)

We can find a finite dimensional non-degenerate subspace P e E such that P, ::
I{'8P )_ L*. Consequently, .E' : P'! OP'and E: (pt nE)CI p, pt g
Ker(gt -1). Set Q::PL O.4. Again QL:Qia E (beingtheintersectionof
two ortho-closed subspaces of E). Furthermore dimQ n 8l < oo because .E is
non-degenerate and dimElQ ( dimP *dimE/A ( oo. Thus, orlce more, we can
findasubspace Qse Q with

Now we readily see that gs also admits of an extension to the space E: Since
Qo C A, Qo : goQo e B we obtain

Qo e (Q* n B) : B : ?sA : po(Qo@ (Ad n,4)) : Qo a eo(e* n A).
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Therefore eo(Q* n A) : Q* n B and the restriction eolQ* o ä can be extended

to all of QoL by the classical finite dimensional case of Witt's theorem.

The following is a simple but nonetheless rather interesting observation (cf.

Theorem 9 below):

Lemma 8. We assume that char(K) + 2. If a,n anisotropic space (E,O)
safisfies Witt's extension theorem (i.e., each isometry 9s: F3G between sub-

spaces F, G e E extendstoametric automorphism g of E) tåen (E,O) is

orthomodular, i.e., aJI I-closed subspaces of E are splitting:

(18)

Proof. For
the subspace F
the extension of
have

for each X C E: Xll- O Xr : f,.

A@, x') : A(pr,?x') - O (vr, -x'),

so z+?z€Xx and

A@, *") - A(Pr,gx")- A(Pr,x"),

soz-9zeXL. Additionyields 2ze XL+XL hence Ee XrL+XL asz
was arbitrary.

Proof of Theorem 3. In Section 4 choose a symmetric form Q that has

{O(r,,r^) I 0 ( r ( " < P} algebraically independent over Ko (instead of
merely satisfying (9)). The spaces .87 selected in the proof of Theorem 2 are then
all of the kind described in Lemma 7. Norr as to the validity of the extension
theorem our argument is as follows. Recall that by Proposition 5(i) all splitting
subspaces X e Et have one among dimX, dimXr finite. Assume by way of
contradiction that the extension theorem holds. By Lemma 8 aJI l--closed sub-

spaces X (X : XL) of. E1 are splitting, hence dimX or dimXa is finite for
each J--closed subspace X of. .87. Therefore, the lattice Lt(Et) of all l--closed
subspaces in Et is modular; indeed the sum of two l--closed subspaces is again
I-closed since [/ * I/ is l-closed if U is l--closed and I/ is finite dimensional.
Ergo dimET is finite by a classical theorem of H.A. Keller [7]. Contradiction! We

have shown that none of the spaces .87 satisfy Witt's extension theorem.

The proof of Theorem 3 is complete.

X

9o

a fixed subspace of E let go be the metric automorphism of
X)L @ Xr with gylx)L - 1 and polxl - -1. Let g be

to E.If ze E, x' e XLrxtt €X[ aretypicalelementswe
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6. Remarks on orthomodularitg cancellation

and the extension theorem
The interrelation between orthomodular spaces and Witt's extension theorem

is much stronger than is apparent from Lemma 8. To delve into this matter here

would l.ave ,rs too far astray. However, it is appropriate to mention the following

result of ours:

Theorem 9. Assume that (E,O) is an infr.nite dimensional,non-degenerate

e-hermitean sesquilinear space over an involutorial division ring K of atbitra'ry

characteristic. (We make no assumptions on separability, i.e., on the existence of
Ne-dimensional subspaces F e E with -F'I : E). If Witt's extension theorem

holds in (E, o) theÅ A is a,nisotropic. Furthermore, if the subgroup e :: {( e

center(K)10 I { and (€* : 1} of K is not the trivial group {1} (tåus, in partic.

ular, when char(K) l2), tien the vaJidity of the extension theorem for (8,@)

implies that (8,Ö) is ortåomodula4 i.e. satisrtes (L8).

For several years we had been inclined to believe that there are no infinite
d.imensional spaces (8, O) in which Witt's extension theorem holds uncondition-

ally. But then I succeeded in giving a construction of such spaces, see [4, Remark

following Theorem 4]. Of course, such spaces are rather scarce in view of Theo-

rem 9 as orthomodular spaces are not exceedingly abundant. Nevertheless it may

be difficult lo prove that a specific space violates the extension theorem.

Here we have shown, among other things, that in sharp contrast to the finite
dimensional case, the cancellation theorem does not imply the extension theorem.

In [8] the cancellation property was investigatedl we have come across a gap

in the existence proof for infinite dimensional spaces with cancellation, a gap that
seems difficutt to closel for this reason I have given rather detailed proofs here.
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