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ON THE NUMBER OF ISOMETRY CLASSES OF
BILINEAR SPACES IN UNCOUNTABLE DIMENSIONS

Herbert Gross

1. Introduction

Of late efforts have been made to estimate the number of isometry classes
(similarity classes) of ¢-hermitean forms over division rings equipped with anti-
isomorphisms *: K — K. (Refer to [3] for standard terminology.) A strong result
is the following

Theorem 1. [2, Theorem 2] For each regular uncountable cardinal & and for
K any division ring (of arbitrary characteristic and cardinality) endowed with an
involutory anti-isomorphism *, and for ¢ a central element subject to € -¢* =1,
there are 2% pairwise non-similar, non-degenerate ¢-hermitean forms in dimen-
sion o.

In [6] a special case of Theorem 1 is established by model theoretic methods:
Let o be any uncountable cardinal and K a commutative field. If card(K) < a
then there are 2% pairwise non-similar non-degenerate trace-valued e-hermitean
K -spaces of dimension «.

Here we shall prove the following complementary result:

Theorem 2. Let v < B < a be (not necessarily regular) uncountable cardi-
nals. If K is a commutative field of any characteristic and cardinality o then there
is a symmetric form (skew-symmetric form) ®: E x E — K with dimE = 3 such
that E contains 27 non-degenerate subspaces of dimension « that are pairwise
non-isometric.

The idea used in the proof of Theorem 2 is akin to that used in [5] for the
construction of spaces with small orthogonal group. Apparently, the relevance for
richness results of the constructions given in [5] have passed unnoticed. In our
proof of Theorem 2 just a little more work needs to be added in order to obtain
the following rather surprising result:
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Theorem 3. If, in Theorem 2, the form ® is symmetric and K is a purely
transcendental extension K/Ky of transcendence degree o over some subfield K,
and if —1 is a square in K and if char(K) # 2 then the 27 subspaces F C E can
be chosen such that in each one of them Witt’s cancellation theorem holds (ie. if
F=A@A' =B®B* and A~ B (isometric) then AL ~ B1) whereas Witt’s
extension theorem invariably fails to hold in these spaces (i.e., there always are
isometries between subspaces that admit no extension to the whole space).

Some of our results can be generalized to forms other than symmetric or skew-
symmetric. Our reason for staying commutative here has been to give a sharper
repoussé pattern to our tricks.

In the last section we add a few short remarks concerning the interrelations
between the cancellation theorem, the extension theorem and, of all things, ortho-
modularity.

2. A lemma on finite dimensional forms

Let K be a commutative field of arbitrary characteristic, K/ K, a transcen-
dental extension and (z;j)o<i<j<n a family of 3(n+1)(n + 2) elements in K
that are algebraically independent over K. On K™*! x K™+! we consider the
symmetric bilinear form

\Ij(an) = Z éimijnj, X = (60’ cee vgn)y Y= (7707° . ’7711)

1,j=0
with z;; := z;; when ¢ < j (so ;j = r, if and only if {i,7} = {r, s}).

Lemma 4. The form ¥(x,y) is a square in K if and only if x is the zero
vector.

Proof ([8]). We consider first the case where char(K) # 2. Assume ¥(x,x) =
NZ, where x = (£0,&1,...,€n) and &; # 0 for all ;. We shall use the following
abbreviations: For 4,7,k € {0,1,...,n} and e; the canonical basis vectors in
K™ we set

(To)ij 1= aij (= ¥(ei,e)))
(Te41)ij = (@K)ki * (@1)ks — (@k)rk - (Th)ij
Tk = (Tk)kk, z_1:=0.

Instead of investigating the equation

(1) > &ikjzi = N2

1,j=0



On the number of isometry classes of bilinear spaces 275

we shall study the solvability of equations that have nontrivial solutions provided
that (1) admits a nontrivial solution. More precisely, we claim that the equation

(2) Z ¢:&i(z)ij = NE— zraNiy + eh_1Tp—2Ng g —+— -

i,j=k
k 2
+(=1) zp—1Tk—2Tk-3 """ z1z0Ng,

which reduces to (1) for k = 0, entails the equation

(3) S &ii(zen)ii = Niga = 2k N + zrakoa Njoy —+ =
i,j=k+1
+ (D) 1 zko2 - 2120 NG

if 4NZ,, is defined to be the discriminant of the quadratic equation (2) with
unknown &x. As & € K we have Niy1 € K. By induction we find that we may
choose k:=mn in (2):

5121:13,, = NTZL - IIZn_]N,,Zl_l + an_lilln_zNg_z -+t (—1)n$n_1 e IE()Ng
Thus, the following equation, with unknowns X, X1,X2,.. .,
(4) X121 = a:nX2 + wn-lXﬁ_l - xn—lxn—2X121_2 + == (—1)":Un_1 e Itng

admits a nontrivial (integral) solution (X = &n and all §; are nonzero). Next, we
define recursively a sequence of equations that admit nontrivial solutions provided
(4) possesses a nontrivial solution. In one case the contradiction will become plain.
More precisely, we claim: If for k < n the equation

(5) X2y = (En-i)nnX? + Ta () X2 (k1) = Enm(hr) Tnm(ir) Xn (i)
Fm (—l)n-kzn—(k+l) v $0X02

has a nontrivial solution (this is actually the case if k = 0) then the same holds
true for k + 1 in lieu of k. In order to prove this we first mention that for ¢ <s
the degree of the polynomial (z4)ij in the unknown x4, is precisely one if and
only if i = j = s and zero otherwise; this is readily established by induction
on t. Furthermore, the degree of z4s in the polynomial (Zs4+1)nn 1s invariably
one, because s < n in this case. From this we recognize that the coefficients of
the squares in (5) are linear, throughout, in the unknown z := Tn—(k+1),n—(k+1)}
so

(xn—k)nn =Anp_rz+ B,k

Tn-(k+1) = An—(k+1)T + Ba-(k4+1)

Tn—(k+1)Tn—(k+2) = An—(k+2)$ + Bn—(k+2)

Tn—(k+1)Tn—(k+2) """ " z1-z9 = Aoz + Bo
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with all A; nonzero. We therefore conclude that

() Aj = An—(k41)Tn—(k+2)Tn—(k+3) " Tj+17; when j <n — (k+1),
An—k = An_(k41) (—(Zn=(kt1) Jnn)-

The second relation follows by considering that

(mn—k)nn = (xn—(k+1))?z-(k+1),n - xn-—(k+1)($n—(k+1))nn~
Now, the equation (5) can be written as follows:

X?x—k = w(An—sz + An—(k+1)X§_(k+1) -+ = (—-l)n-kAng)

© + Bt X® + Bu_ ()X _(jp1y =+ — (-1)"F B X2,

By our assumption that (5) have a nontrivial solution we know that (7) has a
nontrivial solution consisting of polynomials X, Xy, X;, .... Let m be the
maximal degree of the unknown z occuring in the polynomials X , Xo, X1, ...
and a; (a, respectively) the coefficient of z™ in X; (in X, respectively). Thus,
by definition, not all among aj, a are zero. On the other hand,

(8) An—ka® + An_(k41)00 _(eg1) =+ = (=1)"FAgad = 0

because the left hand side in (8) is the coefficient of z2™ in the bracket term of
(7) and this coefficient must vanish for, otherwise, the right hand side in (7) would
show the odd degree 2m + 1 in the unknown z, a possibility that is manifestly
ruled out by the left hand side of (7). Rewriting (8) by utilization of our relations
(6) the (nonzero) term A,_(x41) cancels and we obtain

0= —(zn—(k+l))nna2 + ai_(k_'_l) -+ = (—1)n_k$n—(k+2) o -wlwoaﬁ.

By shifting ai_(k +1) to the left hand side we recognize that the a, a; provide
a nontrivial solution of (5) with k¥ + 1 in lieu of k. We have thus shown that
the equations (5) have nontrivial solutions for all ¥ < n. In particular, letting
k = n there is a nontrivial solution Xy, X of the equation X2 = (z0)nnX?, ie.,
X§ = znaX?. But this is a contradiction. Therefore (1) has no nontrivial solution
when char(K') # 2.

Finally, if char(K) = 2 we have to discuss the equation S o€z = N?
instead of (1). Multiplication by a common denominator allows us to assume the
i and Ny to be polynomials with coefficients in K. Each z;; shows up once on
the left hand side with an odd exponent. As the right hand side is a square, we
must have ¢; =0 for all . Q.E.D.
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3. The setup (Definition of the form & in Theorem 2)

In this section K is a commutative field of any characteristic and with a :=
card(K) uncountable. Let Ko be the prime field of K and Y a transcendence
basis of K/Kp. Thus, card(Y) = a and K is an algebraic extension of Ko(Y).

For 8 a fixed uncountable cardinal < a we select some arbitrary injective
family x = (Z.x)o<i<r<p With z.c € Y.

Let (e,).<p be the basis of some fixed §-dimensional K-vector space E. We
look at symmetric forms (skew-symmetric forms) ®: E x E — K that have

(9) d(e,,ex) = Tuk, foreach t,k: 0 <t < kK < B.

Notice that, in contrast to the form ¥ of Lemma 4, (9) does not require the
diagonal coefficients ®(e,,e,) of ® to belong to V.

Notation. If K' D K is an arbitrary commutative overfield then E' :=
K' @k E, regarded as a K'-vector space, and &' is the form E'x E' —» K' with
(D,(Ei A ® x,-,zj B ® yj) = Zij /\,’@(X,‘,)’j)p]’ for all A;, B € K' and all x;,
yj € E (“K'-ification”).

The following facts are proved in [5]:

Proposition 5. Let ®: Ex E — K be a symmetric or skew-symmetric form
with (9). If K' D K is an arbitrary commutative overfield then the K ' -ification
(E',®') enjoys the following properties:

(i) If F is any linear subspace in E' and dim F > Ro then dim F+ < ¥, in E'.
(ii) The full group O(E') of isometries ¥: E' — E' consists of all finite products
+Q, 00,0 - - where the §; are symmetries about non-degenerate hyperplanes
of E'. In other words, for each isometry ¢ € O(E') either Ker(p — 1) or
Ker(¢ + 1) is of finite codimension in E'.

In order to prove (i) quote [5, Theorem 1.1, p. 514]; in order to prove (i1)
quote [5, Theorem 2.3 (with n:=1), Theorem 2.2, p. 516 and Theorem 1.1, p. 514].
4. Proof of Theorem 2

Let E = K(e,).<p and the form & be as in Proposition 5. Pick some subset
J C B with uncountable v := card(J) and set Ej := span{e,|c € J} C E. The
next lemma shows that any isometric injection

(10) 0:E;— E

can move E as a subspace of E™ only by a little bit:

Lemma 6. If (1) is an isometric injection then there exists a finite subset
M C B such that for each « € J we have pe, € Ke, + F where F := spa,n{et|
L € M} C E. In particular dim(Ej+ ¢E;)/E; < dimF < oo.
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Proof. For all « € J we set pe, = Y a,,e, € E; the summation extends
over the finite sets M(:) := {p € B | auu # 0}. Let M = U,es[M()\ {c}]. We
show that M is finite. Assume by way of contradiction that M is infinite. There
is a denumerably infinite subset S C J and a map « that assigns to every ¢ € S
a x(¢) € B with x(¢) € M(¢)\ {:} and k() # k(v) for all ¢ # v in §. There
is a countable subset A C Y (the transcendence basis of K/K, as introduced
at the beginning of the previous section) such that a,. € Ko(A) (the relative
algebraic closure of Ky(A) in K) for all « € M(¢), ¢ € S. Let N = U,esM(e),
card N = X;. By the pigeonholing principle thereisa v € J and forit a yo € M(v)
such that go ¢ NUS and

(11) {zw Ex|teEN}NA=D.

For we, = 3, () @vuen and ¢ € S we have (¢ being an isometry) that

(12) q)(¢eta ‘Peu) =Ty = () Q%poTr()po T Z Ak OypTrp-
Kp
The sum in (12) extends over the set [M(:) x M(v)] \ {(s(¢),po)}. There is a

finite subset B C Y such that a,, € Ko(B) for all p € M(v).

Since S is infinite, there is a ¢ € S with z.(s)u, € B. As k(o) # o by the
choice of the map x andsince g # o (because o € NUS) we have o, # Ty(o)u, -
Let

C=AUBU{zo,zxy | (5,p) € [M(0) x M)\ {(k(a),10)}}-

By (11) we have z(),, & A, hence T, (), & C. All quantities in equation (12)
equated for ¢ = o are contained in Ko(C) with the exception of Z.(s)u,. The

coeflicient of T y(s)u, in (12) is not zero. Hence we should have .(),, € Ko(C);
SO Ty(s)u, 15 algebraically dependent over C which is a contradiction. We have
thus shown that M is finite. Q.E.D.

Proof of Theorem 2. In the power set P(8) we select a system S C P(f)
such that card(S) = 27 and, for each J, J' € §, card(J) = v = card(J') and
card((J \ J)U (J'\ J)) = Ro. Of the 27 subspaces E;(J € §) no two can be

isometric by Lemma 6.

5. Proof of Theorem 3

In this section the commutative field is a transcendental extension K/K,
of transcendence degree a > Ng. Let (e,),<y be the basis of some fixed -
dimensional K-vector space E and Rg < ¥ < a. Let : EXx E — K be a
symmetric form such that

(13) {<I>(et, e.) €K | 0<:<k< 7} is algebraically independent over Kj.
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Thus, in contrast to Sections 3 and 4 the diagonal elements ®(e,,e,) of the form
are taken into consideration here. From Lemma 4 we obtain:

(14)  If ® enjoys (13) then ® is anisotropic, i.e., if ®(x,x) = 0 then x = 0.

Lemma 7. If & enjoys (13) and if char(K) # 2 and if —1 is a square in K
then Witt’s cancellation theorem holds:

(15) If E= A® At = Bo® B* and A ~ B (isometry) then A* ~ BL.

Proof. If E = A+ Al then by Proposition 5(i) either dim A or dim A+
is finite. Of course, if dim A is finite then (15) follows by the finite dimensional
cancellation theorem. We are left with the case that dim A+ is finite. We first
convince ourselves that dim A+ = dim B+. Assume by way of contradiction that
dim B+ > dim AL . So there is a nonzero a € BLNA. Fix an isometry ¢o: ASB.
Since @oa € B we get a nonzero isotropic vector \a + pga if A2 = —1. But
this contradicts (14) whence we must have dim A+ = dim B+. Let K’ be the
algebraic closure of K. We pass to the K'-ifications E', A', B', (A")! = (A1),
(B =(BY). As E' = A'@ A" = B'® B'* and dimg(A'}) = dimg (A1) =
dimg(B1) = dimgs (B't) it is clear that A'* and B'l are isometric and that
therefore ¢, induces an isometry ¢p: A'SB’' that admits an extension ¢’ to all
of E'. Of course, the subset E of the K'-space E' need not be invariant under
the metric automorphism ¢’ of E'.

By Proposition 5(ii) we may assume that L := Ker(p' — 1) is of finite codi-
mension in E'. (We may replace ¢' by —¢' if necessary.)

Since ¢’ and 1 are both o(®')-continuous (that is “weakly ortho-continuous”,
cf. [3, p. 33f]) L is o(®)-closed in E'. Because E is non-degenerate (by(14)) so
is E'; furthermore dimE'/L < oo; therefore dim(L N Lt) < co. Ergo, there is
a non-degenerate Ly C L with Lg,“- = Ly and with finite dimL/L, (use a Witt
decomposition for L N L+ in E'). It follows that

(16) E'=Ly® Ly, dimLy <oo, Lo CKer(p' —1).

We can find a finite dimensional non-degenerate subspace P C E such that P’ :=
K'® P 2 Ly. Consequently, E' = P @ P' and E = (PLNE)® P, P* C
Ker(p' —1). Set Q@ := PL N A. Again Q* = Q in E (being the intersection o
two ortho-closed subspaces of E). Furthermore dimQ N Q1 < oo because E is
non-degenerate and dim E/Q < dim P 4+ dim E/A < co. Thus, once more, we can
find a subspace Q¢ C Q with

(17) E=Qo®Qy and Qp C Ker(py — 1), dim Q¢ < co.

Now we readily see that ¢ also admits of an extension to the space E: Since
Qo C A, Qo = ¢0Qo C B we obtain

Qo ® (Qy NB) =B = o4 = po(Qo & (Qr NA4)) = Qo & vo(Qx N A).

[
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Therefore po(QF N A) = Q¢ N B and the restriction ¢,|Qg N A can be extended
to all of Qi by the classical finite dimensional case of Witt’s theorem.

The following is a simple but nonetheless rather interesting observation (cf.
Theorem 9 below):

Lemma 8. We assume that char(K) # 2. If an anisotropic space (E,®)
satisfies Witt’s extension theorem (i.e., each isometry @o: F5G between sub-
spaces F, G C E extends to a metric automorphism ¢ of E) then (E,®) is
orthomodular, i.e., all 1 -closed subspaces of E are splitting:

(18) foreach X CE: X1t 9 X+ =E.

Proof. For X a fixed subspace of E let ¢y be the metric automorphism of
the subspace F := X @ X1 with ¢|X = 1 and ol X+ = —1. Let ¢ be
the extension of o to E. If z€ E, x' € X1, x" € X are typical elements we
have

®(z,x') = ®(pz, px') = B(pz, —x'),

so z+ ¢z € X and
®(z,x") = ®(pz,px") = B(pz,x"),

so z — pz € X*. Addition yields 2z € X + X+ hence E C XL 4+ Xt oasz
was arbitrary.

Proof of Theorem 3. In Section 4 choose a symmetric form @ that has
{®(e.,ex) I 0 < ¢ < k < B} algebraically independent over Ko (instead of
merely satisfying (9)). The spaces E; selected in the proof of Theorem 2 are then
all of the kind described in Lemma 7. Now as to the validity of the extension
theorem our argument is as follows. Recall that by Proposition 5(i) all splitting
subspaces X C E; have one among dimX, dim X 1 finite. Assume by way of
contradiction that the extension theorem holds. By Lemma 8 all 1 -closed sub-
spaces X (X = X*1) of E; are splitting, hence dim X or dim X is finite for
each L -closed subspace X of E;. Therefore, the lattice £, (Ey) of all L-closed
subspaces in E; is modular; indeed the sum of two L -closed subspaces is again
1 -closed since U + V is L-closed if U is L-closed and V is finite dimensional.
Ergo dim E; is finite by a classical theorem of H.A. Keller [7]. Contradiction! We
have shown that none of the spaces E; satisfy Witt’s extension theorem.

The proof of Theorem 3 is complete.
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6. Remarks on orthomodularity, cancellation

and the extension theorem
The interrelation between orthomodular spaces and Witt’s extension theorem
is much stronger than is apparent from Lemma 8. To delve into this matter here
would leave us too far astray. However, it is appropriate to mention the following
result of ours:

Theorem 9. Assume that (E,®) is an infinite dimensional, non-degenerate
¢ -hermitean sesquilinear space over an involutorial division ring K of arbitrary
characteristic. (We make no assumptions on separability, i.e., on the existence of
R, -dimensional subspaces F C E with F* = E). If Witt’s extension theorem
holds in (E,®) then & is anisotropic. Furthermore, if the subgroup ¢ := {¢ e
center(K)|0 # ¢ and £€* = 1} of K is not the trivial group {1} (thus, in partic-
ular, when char(K) # 2), then the validity of the extension theorem for (E,®)
implies that (E,®) is orthomodular, i.e. satisfies (18).

For several years we had been inclined to believe that there are no infinite
dimensional spaces (E,®) in which Witt’s extension theorem holds uncondition-
ally. But then I succeeded in giving a construction of such spaces, see [4, Remark
following Theorem 4]. Of course, such spaces are rather scarce in view of Theo-
rem 9 as orthomodular spaces are not exceedingly abundant. Nevertheless it may
be difficult to prove that a specific space violates the extension theorem.

Here we have shown, among other things, that in sharp contrast to the finite
dimensional case, the cancellation theorem does not imply the extension theorem.

In [8] the cancellation property was investigated; we have come across a gap
in the existence proof for infinite dimensional spaces with cancellation, a gap that
seems difficult to close; for this reason I have given rather detailed proofs here.
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