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THE ESSENTIAL STATE DIAGRAM
OF A LINEAR OPERATOR

R.W. Cross

Given an operator T: D(T) C X --+ I/ where X and Y are normed spaces, we

cal| T on tr,+ -operator [C2] if there exists a subspace .E of finite codimension in X
for which e lE)-' exists and is continuous. We investigate properties of 7 related
to the quantities o(T), Pg), p@) and the property T e .Fa and construct a
state diagram, called the essential state diagram, analogous to the Taylor-Halbert
model [TH] (see also [G1], [G2] and [G3]); the latter will be referred to as the
THG state diagram. A consequence is the following observation: 7 is an .F1-

operator if and only if its adjoint ?' is a g--operator (Corollary 1.17). Various
other state diagrams have appeared in the literature. The reader may consult the
survey monograph of V.M. Onieva [O] for further references.

Let X , ! , Z, ... denote normed linear spaces. The completion of X will be

denoted bV * . The class of linear transformations (henceforth called "operators")
? defined on a linear subspace D(T) of X with range contained in Y is denoted
by L(X,Y). The range and null space of T are denoted by ft(?) and nf(7)
respectively. The restriction of. T lo a linear subspace M of. X is denoted by
TIM; note that TIM :TlM aD(T).The operator 7 is called bounded if 7 is

continuous and D(") : X . T is called closedif its graph {@,f *1, o e D(")} is a

closed subset of. XxY . Let X7 be the space D(7) normed bV llrllr : llrll+ll?rll .

The graph operator Gr of.7 is the operator in L(X7,X) defined by G7r : r
(r € X7). W" write G - Gr. Clearly TG is a bounded operator in L(X7,Y).
Let E be a linear subspace of. X. Following Pietsch [P] we denote by J§ aÅ
Qf respectively the natural injection of .E into X and the natural quotient map

oiX onto XlE.The adjoint Tt of ? is defined by ?' : (f J§<r)' where the

righthand side is the conjugate defined in the usual sense [G3; 50]. Note that
T' e L(Y',D(T)'). We clearly have (/f)' : Q§,, and if .B is closed then

(q§)' : Jä:. It is evident that the state diagrams II.3.L4 and II.4.L1 of [G3]
are valid in the general case. Given two linear subspaces M, N of X auch that
MnN:0 we wrilte M @If for M +N. Let a(T): dim.nr("), 0(T):
codim.R(?) and FQ) : codimm ? is called a pq-operator if. o(?) < oo

and -B(") is closed, and a g--operator if .R(") is closed ar.d B(T) < oo. If 7
is closed and X and Y are Banach spaces then 7 € .F+ if and only if. T € p+
(Proposition 1.5). The -F'-.,.-operators retain the usual properties associated with
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the 9".-operators of Gohberg-Krein [GohK] (see [C3]). Other properties of tr'+-
operators relate to stability of complemented ranges and generalised inverses [C4],
and to the Tauberian property [C5].

We classify the operators 7 in L(X,Y) as follows:
Ie: E(T) is closed and B(7) < m;

IIe: \T) is not closed but p(") < m;
IIIe: B(T): ooi

\e: T is an .F-.-operator;
2e: T / .F.1 but a(7) < oo;
3e: a(7): oo.

It P(T) ( oo and .l?(7) is closed we say that ? is in the state .fe and write
T e Ie. If T is both in state IIIe andstate 2e then we write ? e III2e. The
other cases are treated similarly. It is clear that each of the sets {-[e, IIe,IIIe]
and {1e,2e,3e} are partitions of .D(x,Y). There are thus nine disjoint classes
1t,...,,11\e whose union is I(X,Y). The classes should be compared to the
classes I, II, III,1., 2, 3 in Goldberg [G3]. It is obvious that .I C Ie, II C IIe,
III ) IIIe ar.d 1C 1e,2C7eU2e and 3:3e.

A subspace M is called a principal subspace if M is closed and has finite
codimension. In such a case T lM is called a principal restriction of T.

1.1. Lernrna. If T has no principal restriction having a continuous inverse
then there exisfs an infinite dimensional subspace M of D(T) forwhich TIM is
precompact ([Ka], [G3]; see [G3; 80]).

L.2. Lemma. rf x:M@N whercM isaprincipalsubspacethenthe
projection of X onto M with nuLL space N is bounded.

1.3. Corollary. If M is a princtpal subspace of X and if T lM is continuous,
then T is continuous.

1.4. Lemma. Let T e Fq. Then fåere exjsts a principal subspace M of X
for which T/M has a continuous inverse.

Proof. There exists a finite codimensional subspace E of X such that T/E
has a continuous inverse. Suppose ? has no principal restriction having a contin-
uous inverse. Then by Lemma l.L there exists an infinite dimensional subspace
N of D(T) such that TIN is precompact. But then .Eolf is infinite dimen-
sional and T lE O .l[ is precompact with a continuous inverse, contradicting the
non-precompactness of the unit ball in an infinite dimensional normed space.

I-.5. Proposition. Let T be closed. Then
(a) if X is complete, we have T € .F,+ -- T e g+,
(b) if X andY arecomplete,wehaveTe p+ + T€F+.

Proof. (a) Let T e F1. Then by Lemma 1.4 there exists a principal subspace
M andafinitedimensionalsubspace Fof D(T) suchthat D(T): M@F@N(T),
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and such that (TlM)-' i. continuous. Let Tmn - y(M* € M). Then (m,) is
Cauchy and so mn ---+ c (for an r € X ) since X is complete. Thus (mn,Trn,.) ---+

(x,y)inXxY. But 7 isclosed;hence xeD(T) and y:Tr. Since Misclosed
in D(f), we have a e M. Therefore TM is closed and so R(T):TF+TM is
closed (see e.g. [GS; t6]). Hence T e g+.

(b) Let T e p+. Then D(T) : M @N(T) where M is principal in D(?) and
TM is closed. By the closed graph theorem e/M)-' is continuous. Therefore
TeFq.

1.6. Corollary. We have T' e F+ if a^nd only if Tt e g+.

1.7. Lemma. Let M be a principal subspace of D(T). Then (tfi)'f, :
(r4,)' '

Proof. write J : J#. we clearlv have D(T') c D(gD') and D(J.T'):
D(T') since ,/' is bounded. Let y' € D(94'). Then y,TJ is continuous on M,
and hence on D(T) sirce M is a principal subspace of D(T) by Corollary 1.8.
Hence y' e D(T') and the equality follows. o

1.8. Lemma. Let S e L(X, Z) be a restriction of T where Rg) C Z Cy .

Then R(St) : R(T').

Proof. We have T: JES, whence T, : S,eY.,- (since JI is bounded).
Since D(§') C A(QL',):Y'lZt it follows immediately that R(7,): E(.g,). o

The normed space x is called an operator range [C1] if it is the range of a
bounded operator defined on a Banach space.

1.9. Lemma [1]. rf R1 and R2 are disjoint complementa,ry operator ra;nges
in a Banach space X then Rr and R2 are closed.

1.10. Lemma. If T e Fa then T, e 9_.
Proof- Let T € r'+. By Lemma 1.4 there exists a principal subspace .E

of D(f) such that flff e t. Write J : J§. Then (TJ)t e 7 Uy tfr" THG
state diagram [G3;61]. Hence J'T' e -I by Lemmal.T. Norar let r, e X, and.
choose y' e Y' such that &' + Et - T,A, + EL. Select w e EL so that c, :
T'y'+ to. This shows that X' : R(T')+EL. But R(T,) is an operator range
(see e.g. [ct; 228]). Hence by Lemma 7.9, R(T') is closed (alternatively, apply
[G3; IV.1.12]). Therefore T' e s-.

1.11. Proposition.
(i) If T e Ie we have Tt e 1,e U 2e,
(ii) If T e IIe we have T' e teU2e,
(iii) If T e IIIe we have Tt e 3e,
(iv) If T e le we have Tt e f e,
(v) If T e 2e we have Tt e IIeU IIIe,
(vi) If T e 3e we have T' e IIIe.
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Proof.If dimD(?) < m all the statements (i)-(vi) are elementary or trivial.
We shall therefore suppose that dimD("): m. The statements (i), (ii) and (iii)
follow immediately from the equality N("') : R(T)r [G3; II.3.?], while (iv) is
a restatement of Lemma 1.10. To prove (v), assume T e2e. Then there exists

an infinite dimensional subspace .E of D(T) for which TJ§ is precompact by

Lemma1.1. Write J: J§. Then (TJ)t is compact [G3; III.1.11"]. Since (7"I)'is
an extensionof J'Tt, it follows lhal J'Tt is compact. Suppose (if possible) that
T' €. Ie. Let X' : R(T') O ltr/ where dim?tr/ ( oo. Then

J,(X,): J,(R(7,) @W) C R(J,T,) + J,W : J,(X,)

since ,.I' € /. Thus .E("I'T') + J'W : J'(X') : X'IEL. But rB(T') is an

operator rarlge and so therefore is its continuous linear image R(J'T'). Conse-

quently R(J'T') is closed by Lemma 1.9. Since J'Tt is compact it follows that
R(J'T') is finite dimensional. Therefore dimX'f Ea < oo. Hence dim-E :
dim.E' : dirnX'f Er < oo, a contradiction. Therefore T' / Ie g441") follows.
Finally to prove (vi) we have l[(?) c r.R(?') whence N(")r ) R(Tt). Hence if
T' € Ie U.I.[e then codimtrf(?)' < -, which implies dimN(?) < m and (vi)
follows. o

1.12. Proposition. If T € heU IIre we have Tt e I1e.

Proof. Let T € lteU f.[re. Then from Proposition 7.77, Tt e Iei(leu2e).
Thus a(?') ( oo and R(T') is closed, i.e., Tt is a closed p+-operator. Therefore
Tt € F* by Corollary 1.6 and the result follows. o

1.13. Lernrna. Let@OU :Y where dirnM ( oo. Tåen R((QYMT)') :
R(T').

Proof. Write Q : Qvt,t. Since dimM ( oo there exists a bounded projection

P of. Y onto -R(?) with null space M by Lemma 1.2. Now Let y' e D(f'). Then

T,y, : y,T- :WT :i,PAT : (eT),(y,p) € .B((0"),).

Thus .E(?') c R((Qf)t) . O" the other hand since Q is bounded, (QT)' - T'Q' .

Hence R((QT)',) c .B(?',). o

L.L4. Lemma. Let S e L(Y,Z) be aboundedoperator. Then ST e Fa
implies T e Frr.

Proof. Let ST € Fa and let M be a finite dimensional subspace of D(7) :
DG7.) for which STIM has a continuous inverse. Then llsll ll7-ll ) llSfrnll >

"ll-ll for some c ) 0 and all m € M. Hence T e Fr. o

1.15. Proposition.
(a) If T e IzeU IIze we have T' /.II1e.
(b) If Y is complete then T € lze implies Tt e IIhe.
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Proof. (a) Let T e I2eU II2e and suppose T' e fI1e. Since T, e le, T' is a
g+-operator by Corollary 1.6, and hence R(T') is closed contradictingT' e IIe.
Therefore T' / II1e.

(b) Let Y be complete and let ? € .[2e. Then there exists a finite dimensiona,l
subspace I/ of Y and a closed finite codimensional subspace E ot D(T) such that
E(?)O M:Y and -EOI[("): D(T). Write Q:QYt,t and..I: Jö. Itis
clear that aQJ) : 0 and since ..I is an isomorphism it follows that TJ e 2.
Moreover RQJ) : R(T). Hence QTJ e Iz. The state diagram [G3; 61] now
gives (Q-TJ)' e III, where by Lemma 1.7, (QTJ)' : (TJ)|Q, - J,T,e,. Since
Q' : 4i, we clearly have .R(J'?'Q') : R(J'T') by Lemma 1.18 and in particular
R(J'T') is closed. But since TJ e I2e, Proposition 1.11 gives

J'T' e IheU IIheU II2eU IIlze.

Itfollows that J'Tt € IIhe. Brfi JtT' € 1e implyingthat T'elebyLemma1.14,
and the finite dimensionality of Et implies immediately that T, e IIIe. There-
fore T' e III1e. a

1.16. Proposition. Let Y be complete. Then T e he impries T' e III1e.
Proof. Let T e he. Then y: R(T) OM where dimM < oo. Write

Q : QYr,t. Then QT e I fl 3e C 13. Since Y is complete the THG state diagram
[G3; 61] gives T'Q' : (QT)' e IIL. But Q, : 4,t, where codimMr ( oo.
Therefore Tt €7e. Hence by Lemma 7.1\, T, e IIII-å. o

The results of this section are summarized in the state diagram 2.7 of the
next section. Note that the resulting configuration is the same a"s II.3.14 of [GB].

1.17. Corollary. We have T e Fq if and only if T, e g_.

2. The essential state diagram for a closed operator
2.1. Lemma. Let T e L(x,Y) be closed and let e e L(x,y) be a quotient

map with frnite dimensional null space. Then QT is closed.

Proof. Let (xn,QTa") - (*,y +ÄI) where If : nf(O). Then there exists
a sequence u, e N such that Trn - ! * wn --+ g. The finite dimensionality
of N now implies that (to,) is bounded: indeed if (to,) is unbounded then for
some subsequence u)n)we have llu.,,r,ll * - and (Txn, *w^,)/llrr,ll + 0. Since
(**, I llr",ll) is bounded in the finite dimensional space .lf th"re exists a sub-
sequence (wn,,) of (ur,",) and /c € trf such lhat wn,,f lltrlr,,ll -+ la. But then
Trn,,f llto",,ll ---+ -& and ao,,f llr,,,ll -+ 0. Since ? is 

"lo."d, 
this implies thatb: 0, contradicting llell : 1. Therefore (ur,) is bounded. passing to a sub-

sequence if necessary we may suppose that urr. is convergent. Let ur : limtor..
Then 7c,, -+A- ur. Since ? isclosedwenowhave c eD(T) and ?o :y-;.
Therefore QTt: y, showing that QT is closed. o
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2.2. Theorem l2). Let T € F+(X,Y)
whenever ST * 0.

Proof. See lcz;2.72 and 2.13]. o

2.3. Lemma. Let T be closed and X
Then Rg) is closed.

and .S € F+(Y, Z). Then ST € F+

complete and let R(f') be closed.

Proof' Let x be complete and' let ?6 e t'(x'E(7» be an astriction of
T. Then ?o is closed, and rB(?.lj) : A(T') by Lemma 1.8' Thus {f has a
continuous inverse by the closed graph theorem. From the THG state diagram
for closed operat911§3; 66] we see that To e It U.Is. Thus 7s is surjective, i.e'

E(7) : R(To): E(7). "
2.4. Corollary. Let T be closed and let X be complete. Then T e IIe

implies Tt / Le.

Proof. Let T e IIe. Then .E(?) is not closed and hence R(T') is not closed

by Lemma 2.3. Consequently ?' (.1e. a

2.5. Proposition. Let T be closed and let x be complete. Then T e I2e

implies T' / 1.e.

Proof. Let T e I2e arld let the operators Q and ,.I be as in the proof of
Proposition 1.15. Then QTJ e 12 and QTJ e L(E,YIM) where .E is complete.

Moreover QTJ is closed by Lemma 2.1. By lhe THG state diagram for closed

operators [G3; 66], J'T'Q' : (QTJ)' e II2U IIIz. But R(J|T'Q'): R(J'T') by

Lemma 1.13 and therefore R(J'T') is not closed; in particular, J'T' / 1e which

implies by Theorem 2.2that Tt/1.e (since J'€le and J'T' :(TJ)' *0)."
2.6. Proposition. Let T be closed and let X be reflexive. Then T e 2e

implies Tt / IIIe.
Proof. Let T € 2e. There exists a closed finite codimensional subspace .E

suchthat EOlf(z):D(T). Write J:Jö' Then TJ e2 andhencefromthe
THG state diagram for closed operators and Lemma !.7, J'T' € IU IL It follows

immediately that B(T') < oo, i.e. T' /. IIIe. o

The results of this section are summarized in the diagram below. This con-

figuration is identical to that of II.4.1L of [G3].
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state diagram for closed operators.
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T,

2.7. Essen tial

IIIte

III e
2

III e
1

IIe
3

IIe
2

IIe
1

Ie
3

Ie
2

Ie
1

Ire lze Ise IIre IIre IIre IIIre IIIre IIIte
f ----+

Y: cannot occur if Y is comPlete,

X - c: cannot occur if X is complete and 7 is closed,

X - R - c: cannot occur if X is reflexive and 7 is closed'

3. Completeness of the essential state diagrarn

In this section we give examples of essential states which can occur and thus

show that the blank squares appearing in the diagram 2.7 all eventuate. We

do this by suitably modifying the examples in section II.5 of [G3]. To simplify

the notation we shall for example write (T,T') € (.f.f,, IIIl)e if. T e.[Ise and

Tt e I I he. Note that in atl the examples of this section ? is a bounded operator.

3.1. T bounded, with x :Y : lz. (It,I1)e: Let T be the identity operator

on X. (/r, III)e: Let T be defined bv 
"((c7,)) 

: (*r*)' Then 2. € Ise a,,d

Tt € IIIIe by 1.17. (IIIl,-t3)e: Define ? bv f((r*)) - (0,'r,0,n2," ')' Then

T e IIhe and ?,e rr, by 1.L7. (II2,/.I2): The sarne example as for (II2,II2)
in [G3], i.e., 

"((rp)):(nklk), 
using 2.7. (Ih,III)e: Theoperator 7: (r7,) --+

1*)n1i) is compact and has dense range. Therefore T e IIs, and then T' e III2
iv z.z .' (I I 12, I Is)e: Let T be the adjoint of the operator in the previous example.

ih"r, fi e IIse ty 2.7. (IIIs,IIIs)e: Let T be the zero operator. A nontrivial

example similar to the corresponding one in [G3] is also easily constructed'

3.2. T compact, with X: lz andY not complete' (I2,II2)e: The same

examples as thaf given for (I2,II2) in [G3] serves. (ft,III2)e: Let T be defined

Uy f((rr)) : @;klk) and let Y : R(T) C /2. Then T e h, and since 7' is

compact if, is clear that Tt / 7e. Hence Tt e III2e by 1"1'7'
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3.3. T bounded, with X not complete and y : lz. (I2,III)e: Let {r,} be
a Hamel basis for 12 and let x be the linear space /2 renormed uv llD,l*r.11 :
» lÅ.1 . Let T be the identity map from x onto 12. Then T e Ie and[bounåed.
Suppose T e F+. Let M be a principal subspace of X for which T/M e 1. Then
ll ll *a the Hilbert norm ll ll, are equivalent on M and hence also on rz: MiML
by the fact that any two norms are equivalent on the finite dimensional space Ma,
which is clearly impossible. Therefore T / F+. Consequently ? e Ize and the
essential state diagram for closed operators 2.7 rrow gives T, e III1e.

(IL,!r)", see [G3, 68). (II2,III)e: Similar to the example for (I12,III)
in [G3; 68]. (.r.r3, IIIl)e: similar to the example for (1.I3, III) in [G3]'us1ng the
operator (rr) -- (rt) * (c27.) in place of ihe left shift operator.

3.4. T compact, X complete but not reflexive, y :12. (II2,III2)e: The
same example in [G3] for (I12,II12) serves. (II12,IIIs)e: Similar to the example
for (III2,.I.I.I3) in [G3] but using the operator (*n) -- (0,or, 0,o2,...) ("" ll iin
place of the right shift operator.

3.5. T compact, x completebut not refl.exive, y not complete. (I2,III2)e:
The same example as for (Iz,III2) of [GB].

A construction of S. Goldberg [G2] reducees the THG diagram for closed
operators to the bounded case. A similar reduction using [G2] carries through for
the "essential" classification. Goldberg's construction has recåntly been extended
to arbitrary operators by L.E. Labuschagne [L].

4. Uniqueness character of the essential state diagram
The essential state diagram was achieved by partitioning the class {r: ae)

< m) into two subclasses, namely the F.. and. non .F'.,--operators. we do not
claim that our classification is the only one resulting in the same configuration as
the THG model. However, the following alternative classification seÄs worthy
of comment

1a: The class of operators ? for which (T/M)-, exists and is continuous on some
principle subspace M complementary b If (T).

2a: The complement of 1a in the class of {T: a(T) < m} .

The states we now consider are re, rre, Ilrer rar 2ar Sa. The example below
shows that this classification results in a different configuration to that of the
THG modei.

4.1. Example. There exists T e left2a such that Tt € lefjla.
Let Y be an infinite dimensional Banach space, let / be a discontinuous

linear functional on Y and let T: Yy ---+ Y be the graph operator associated with
/. .s:, x :_Yr. Then 7-1 is discontinuous. However T-t /N(f) is an isometry
and hence T e Fq. Thus ? is an injective and surjective F", -operator, anä
T e I i2a. The essential state diagram 2.7 now gives T, e Ie while THG gives
Tt e 7. Therefore Tt e lefila.
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