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THE ESSENTIAL STATE DIAGRAM
OF A LINEAR OPERATOR

R.W. Cross

Given an operator T: D(T) C X — Y where X and Y are normed spaces, we
call T on F -operator [C2] if there exists a subspace E of finite codimension in X
for which (T/E)™! exists and is continuous. We investigate properties of T related
to the quantities a(T), B(T), B(T) and the property T € Fy and construct a
state diagram, called the essential state diagram, analogous to the Taylor-Halbert
model [TH] (see also [G1], [G2] and [G3]); the latter will be referred to as the
THG state diagram. A consequence is the following observation: T' is an Fl-
operator if and only if its adjoint T" is a ¢_-operator (Corollary 1.17). Various
other state diagrams have appeared in the literature. The reader may consult the
survey monograph of V.M. Onieva [O] for further references.

Let X, Y, Z, ... denote normed linear spaces. The completion of X will be
denoted by X . The class of linear transformations (henceforth called “operators”)
T defined on a linear subspace D(T) of X with range contained in Y is denoted
by L(X,Y). The range and null space of T are denoted by R(T) and N(T)
respectively. The restriction of T to a linear subspace M of X is denoted by
T/M ; note that T/M = T/M N D(T). The operator T is called bounded if T is
continuous and D(T) = X . T is called closed if its graph {(z,Tz): z € D(T)} isa
closed subset of X XY . Let X1 be the space D(T') normed by ||z|; = ||z||+||Tz]|.
The graph operator Gr of T is the operator in L(X7,X) defined by Grz =z
(z € X1). We write G = Gp. Clearly TG is a bounded operator in L(X7,Y).
Let E be a linear subspace of X. Following Pietsch [P] we denote by Ja and

X respectively the natural injection of E into X and the natural quotient map
of X onto X/E. The adjoint T' of T is defined by T" = (TJI)){(T))' where the
righthand side is the conjugate defined in the usual sense [G3; 50]. Note that
T' € L(Y',D(T)"). We clearly have (Jg()l = )E(l, and if F is closed then
(Qg)' = Jgi It is evident that the state diagrams I1.3.14 and I1.4.11 of [G3]
are valid in the general case. Given two linear subspaces M, N of X auch that
MNN =0 we write M ® N for M + N. Let o(T) = dim N(T), A(T) =
codim R(T) and B(T) = codim R(T). T is called a ¢ -operator if a(T) < oo
and R(T) is closed, and a ¢_-operator if R(T) is closed and B(T) < co. If T
is closed and X and Y are Banach spaces then T € Fy if and only if T € ¢4
(Proposition 1.5). The F, -operators retain the usual properties as=ociated with
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the ¢, -operators of Gohberg-Krein [GohK] (see [C3]). Other properties of F -
operators relate to stability of complemented ranges and generalised inverses [C4],
and to the Tauberian property [C5].
We classify the operators T' in L(X,Y") as follows:
Ie: R(T) is closed and B(T) < oo;
ITe: R(T) is not closed but B(T) < oo;
IITe: B(T) = oo;
le: T is an F, -operator;
2e: T ¢ Fy but a(T) < oo;
3e: oT) = 0.
If B(T) < oo and R(T) is closed we say that T is in the state I'e and write
T € Ie. If T is both in state II]e and state 2e then we write T € III;e. The
other cases are treated similarly. It is clear that each of the sets {Ie,ITe, IT]e}
and {le,2e,3e} are partitions of L(X,Y). There are thus nine disjoint classes
I,...,IIIze whose union is L(X,Y). The classes should be compared to the
classes I, II, III, 1, 2, 3 in Goldberg [G3]. It is obvious that I C Ie, IT C IIe,
IIT D> IIle and 1 C le, 2 C 1leU2e and 3 D 3e.
A subspace M is called a principal subspace if M is closed and has finite
codimension. In such a case T/M is called a principal restriction of T.

1.1. Lemma. If T has no principal restriction having a continuous inverse
then there exists an infinite dimensional subspace M of D(T) for which T/M is
precompact ([Ka], [G3]; see [G3; 80]).

1.2. Lemma. If X = M & N where M is a principal subspace then the
projection of X onto M with null space N is bounded.

1.3. Corollary. If M is a principal subspace of X and if T/M is continuous,
then T is continuous.

1.4. Lemma. Let T € F. Then there exists a principal subspace M of X
for which T/M has a continuous inverse.

Proof. There exists a finite codimensional subspace E of X such that T/E
has a continuous inverse. Suppose T has no principal restriction having a contin-
uous inverse. Then by Lemma 1.1 there exists an infinite dimensional subspace
N of D(T) such that T/N is precompact. But then E N N is infinite dimen-
sional and T/E N N is precompact with a continuous inverse, contradicting the
non-precompactness of the unit ball in an infinite dimensional normed space.

1.5. Proposition. Let T be closed. Then
(a) if X is complete, we have T € Fy = T € ¢,
(b) if X and Y are complete, we have T € ¢4 = T € Fy.

Proof. (a) Let T € Fy. Then by Lemma 1.4 there exists a principal subspace
M and afinite dimensional subspace F of D(T) such that D(T) = M®F@®N(T),



The essential state diagram of a linear operator 285

and such that (T/M)~! is continuous. Let Tm, — y(M, € M). Then (m,) is
Cauchy, and so m, — z (for an z € X ) since X is complete. Thus (m,,Tm,) —
(z,y) in X xY. But T is closed; hence z € D(T) and y = Tx. Since M is closed
in D(T), we have z € M. Therefore TM is closed and so R(T) = TF + TM is
closed (see e.g. [G3; 16]). Hence T € ¢

(b) Let T € 4. Then D(T) = M@&N(T) where M is principal in D(T) and
TM is closed. By the closed graph theorem (7/M)~! is continuous. Therefore
TeFy.

1.6. Corollary. We have T' € Fy if and only if T' € ¢ .

1.7. Lemma. Let M be a principal subspace of D(T). Then (Jﬁ)’T' =
(r73)

Proof. Write J = J3. We clearly have D(T') C D((TJ)') and D(J'T") =
D(T') since J' is bounded. Let y' € D((TJ)'). Then y'TJ is continuous on M,

and hence on D(T) since M is a principal subspace of D(T) by Corollary 1.3.
Hence y' € D(T") and the equality follows. o

1.8. Lemma. Let S € L(X, Z) be a restriction of T where R(T)C Z C Y.
Then R(S') = R(T").

Proof. We have T = J}S, whence T' = §' ?L (since J¥ is bounded).
Since D(S') C R(QY.) = Y'/Z* it follows immediately that R(T") = R(S"). o

The normed space X is called an operator range [C1] if it is the range of a
bounded operator defined on a Banach space.

1.9. Lemma [1]. If R; and R, are disjoint complementary operator ranges
in a Banach space X then R, and R, are closed.

1.10. Lemma. If T € F; then T' € p_.

Proof. Let T € F,. By Lemma 1.4 there exists a principal subspace E
of D(T) such that TJX € 1. Write J = JX. Then (TJ) € I by the THG
state diagram [G3; 61]. Hence J'T” € I by Lemma 1.7. Now let ' € X' and
choose y' € Y’ such that 2’ + E+ = T'y' + EL. Select w € EL so that o' =
T'y' + w. This shows that X' = R(T") + E+. But R(T") is an operator range
(see e.g. [C1; 228]). Hence by Lemma 1.9, R(T") is closed (alternatively, apply
[G3; IV.1.12]). Therefore T' € ¢_.

1.11. Proposition.

(i) If T € Ie we have T' € le U 2e,
(ii) If T € IIe we have T' € 1leU 2e,
(iii) If T € IIIe we have T' € 3e,

(iv) If T € 1e we have T' € Ie,

(v) If T € 2e we have T' € ITeU IIIe,

(vi) If T € 3e we have T" € IIle.
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Proof. If dim D(T) < co all the statements (i)-(vi) are elementary or trivial.
We shall therefore suppose that dim D(T) = co. The statements (i), (ii) and (iii)
follow immediately from the equality N(T") = R(T)* [G3; I11.3.7], while (iv) is
a restatement of Lemma 1.10. To prove (v), assume T € 2e. Then there exists
an infinite dimensional subspace E of D(T) for which T'J§ is precompact by
Lemma 1.1. Write J = Ja . Then (TJ)' is compact [G3; II1.1.11]. Since (TJ)' is
an extension of J'T', it follows that J'T' is compact. Suppose (if possible) that
T' € Ie. Let X' = R(T") ® W where dimW < co. Then

J'(XY=J(RITY®W)CRUJT)+J'W=J(X")
since J' € I. Thus R(J'T") + JW = J(X') = X'/EL. But R(T') is an

operator range and so therefore is its continuous linear image R(J'T'). Conse-
quently R(J'T') is closed by Lemma 1.9. Since J'T’ is compact it follows that
R(J'T") is finite dimensional. Therefore dimX'/El < oco. Hence dimE =
dimE' = dim X'/E+ < oo, a contradiction. Therefore T' ¢ Ie and (v) follows.
Finally to prove (vi) we have N(T) C *R(T") whence N(T)*+ D R(T"). Hence if
T' € IeU IIe then codim N(T)! < oo, which implies dim N(T) < oo and (vi)
follows. o

1.12. Proposition. If T € Iye U Il e we have T' € I e.

Proof. Let T € I1e U I e. Then from Proposition 1.11, T" € Ie N (le U 2¢).
Thus a(T") < co and R(T") is closed, i.e., T' is a closed ¢ -operator. Therefore
T' € F; by Corollary 1.6 and the result follows. o

1.13. Lemma. Let R(T)®M =Y where dim M < co. Then R((Q},T)') =
R(T").
Proof. Write @ = Q. Since dim M < oo there exists a bounded projection

P of Y onto R(T) with null space M by Lemma 1.2. Now let y' € D(T"). Then

T'y' =y'T = y'PT =y'PQT = (QT)'(y'P) € R((QT)').

Thus R(T") C R((QT)"). On the other hand since Q is bounded, (QT)' =T'Q".
Hence R((QT)') C R(T"). o

1.14. Lemma. Let S € L(Y,Z) be a bounded operator. Then ST € F
implies T € Fy .
Proof. Let ST € F; and let M be a finite dimensional subspace of D(T) =

D(ST) for which ST/M has a continuous inverse. Then ||S||||Tm|| > ||STm|| >
c||m|| for some ¢ >0 and all m € M. Hence T € Fy. o

1.15. Proposition.
(a) If T € IeU IL,e we have T' ¢ I e.
(b) If'Y is complete then T € I e implies T' € Il e.
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Proof. (a) Let T € I;eU ILe and suppose T" € II e. Since T' € le, T' is a
¢+ -operator by Corollary 1.6, and hence R(T") is closed contradicting T' € ITe.
Therefore T' ¢ I1;e.

(b) Let Y be complete and let T' € I e. Then there exists a finite dimensional
subspace N of ¥ and a closed finite codimensional subspace E of D(T') such that
RT)®o M =Y and E® N(T) = D(T). Write Q = Q}; and J = J¥. It is
clear that a(TJ) = 0 and since J is an isomorphism it follows that TJ € 2.
Moreover R(TJ) = R(T). Hence QTJ € I,. The state diagram [G3; 61] now
gives (QTJ)" € III; where by Lemma 1.7, (QTJ)' = (TJ)Q' = J'T'Q’'. Since
Q = JA)fIIL we clearly have R(J'T'Q") = R(J'T") by Lemma 1.13 and in particular
R(J'T") is closed. But since TJ € Ize, Proposition 1.11 gives

J'T € IheUIlLteU ILeUIILe.

It follows that J'T" € IITye. But J'T' € le implying that 7" € le by Lemma 1.14,
and the finite dimensionality of EX implies immediately that 7" € IITe. There-
fore T' € III e. o

1.16. Proposition. Let Y be complete. Then T € Ize implies T' € I e.

Proof. Let T € Ize. Then Y = R(T)® M where dimM < oco. Write
Q=Q). Then QT € IN3e C I;. Since Y is complete the THG state diagram
[G3; 61] gives T'Q' = (QT)' € III;. But Q' = JA}//IIL where codim M+ < oo.
Therefore T' € 1e. Hence by Lemma 1.11, T' € II]je. o

The results of this section are summarized in the state diagram 2.7 of the
next section. Note that the resulting configuration is the same as I1.3.14 of [G3].

1.17. Corollary. We have T € F if and only if T' € ¢_.

2. The essential state diagram for a closed operator

2.1. Lemma. Let T € L(X,Y) be closed and let Q € L(X,Y) be a quotient
map with finite dimensional null space. Then QT is closed.

Proof. Let (zn,QTz,) — (2,y + N) where N = N(Q). Then there exists
a sequence w, € N such that Tz, — y + w, — 0. The finite dimensionality
of N now implies that (w,) is bounded: indeed if (w,) is unbounded then for
some subsequence wy,, we have |[wn|| — 0o and (Tzp + wps)/ ||wa || — 0. Since
(wn'/ ||lwar]]) is bounded in the finite dimensional space N there exists a sub-
sequence (wn#) of (wn/) and k € N such that wpn/||wpr| — k. But then
Tann/ ||wpr]| — —k and zpn/|lwpe|| — 0. Since T is closed, this implies that
k = 0, contradicting ||k|| = 1. Therefore (w,) is bounded. Passing to a sub-
sequence if necessary we may suppose that w,, is convergent. Let w = limw,.
Then Tz, — y — w. Since T is closed we now have z € D(T) and Tr =y — w.
Therefore QT'z = y, showing that QT is closed. o
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2.2. Theorem [2]. Let T € F1(X,Y) and S € F(Y,Z). Then ST € F,
whenever ST # 0.

Proof. See [C2; 2.12 and 2.13]. o

2.3. Lemma. Let T be closed and X complete and let R(T') be closed.
Then R(T) is closed.

Proof. Let X be complete and let T, € L(X, m) be an astriction of
T. Then T, is closed, and R(T)) = R(T') by Lemma 1.8. Thus T has a
continuous inverse by the closed graph theorem. From the THG state diagram
for closed operatgg[QS; 66] we see that Tp € I; U I3. Thus Tp is surjective, i.e.
R(T)=R(Ty) = R(T). o

2.4. Corollary. Let T be closed and let X be complete. Then T € Ile
implies T' ¢ le.

Proof. Let T € ITe. Then R(T) is not closed and hence R(T") is not closed
by Lemma 2.3. Consequently 7" ¢ le. o

2.5. Proposition. Let T be closed and let X be complete. Then T € Lye
implies T' ¢ 1le.

Proof. Let T € I,e and let the operators Q and J be as in the proof of
Proposition 1.15. Then QTJ € I, and QTJ € L(E,Y/M) where E is complete.
Moreover QTJ is closed by Lemma 2.1. By the THG state diagram for closed
operators [G3; 66], J'T'Q' = (QTJ)' € II; UIIL,. But R(J'T'Q") = R(J'T") by
Lemma 1.13 and therefore R(J'T") is not closed; in particular, J'T" ¢ le which
implies by Theorem 2.2 that T' ¢ le (since J' € le and J'T' = (TJ) #0). o

2.6. Proposition. Let T be closed and let X be reflexive. Then T € 2e
implies T' & IIIe.

Proof. Let T € 2¢. There exists a closed finite codimensional subspace E
such that E @ N(T) = D(T). Write J = J5 . Then TJ € 2 and hence from the
THG state diagram for closed operators and Lemma 1.7, J'T" € TUII. It follows
immediately that B(T') < oo, i.e. T' ¢ IIle. o

The results of this section are summarized in the diagram below. This con-
figuration is identical to that of 11.4.11 of [G3].
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2.7. Essential state diagram for closed operators.

IHse oo A S
e M| el ¥ (0| o\ 0\
IIIle Y| x— | x— |¥< VAV /7

1 Ie v v W\ %%
T’ Ie W\ | X || 0| O\ 002\ %%

Ie Ie Ie Ile ILe ILe Ille Ille Ile

T —

Y: cannot occur if Y is complete,
X — ¢: cannot occur if X is complete and T is closed,
X — R — c: cannot occur if X is reflexive and T is closed.

3. Completeness of the essential state diagram

In this section we give examples of essential states which can occur and thus
show that the blank squares appearing in the diagram 2.7 all eventuate. We
do this by suitably modifying the examples in Section IL.5 of [G3]. To simplify
the notation we shall for example write (T,T") € (II3,IIL)e if T € Ilze and
T' € IIIe. Note that in all the examples of this section T' is a bounded operator.

3.1. T bounded, with X =Y =1l. (I1,I1)e: Let T be the identity operator
on X. (I3,III)e: Let T be defined by T((zx)) = (z2x). Then T € Ize and
T' € IILe by 1.17. (IIL,I3)e: Define T by T((xk)) = (0,z1,0,22,...). Then
T € IIT;e and T' € Ise by 1.17. (II;,II;): The same example as for (I1,,11,)
in [G3], i.e., T((zx)) = (xx/k), using 2.7. (I3, III)e: The operator T: (zx) —
(z21/k) is compact and has dense range. Therefore T € II;, and then T' € II],
by 2.7. (II1Iy,II3)e: Let T be the adjoint of the operator in the previous example.
Then T' € IIze by 2.7. (IIL;,I1I3)e: Let T be the zero operator. A nontrivial
example similar to the corresponding one in [G3] is also easily constructed.

3.2. T compact, with X = Il and Y not complete. (Iy,1I;)e: The same
examples as that given for (Iz,II;) in [G3] serves. (I3,III)e: Let T be defined
by T((zx)) = (z21/k) and let ¥ = R(T) C l;. Then T € I3, and since T" is
compact it is clear that 7" ¢ le. Hence T' € IIlze by 1.17.
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3.3. T bounded, with X not complete and ¥ = I,. (I, II)e: Let {z,} be
a Hamel basis for I; and let X be the linear space I, renormed by ||3° AaZall =
>~ |Aal. Let T be the identity map from X onto l. Then T € Ie and is bounded.
Suppose T € F . Let M be a principal subspace of X for which T/M € 1. Then
|l and the Hilbert norm |||, are equivalent on M and hence also on I, = M@ML
by the fact that any two norms are equivalent on the finite dimensional space M1,
which is clearly impossible. Therefore T' ¢ F,. Consequently T € I e and the
essential state diagram for closed operators 2.7 now gives T" € I e.

(I5, I )e: see [G3, 68]. (II,III)e: Similar to the example for (IL,II1})
in [G3; 68]. (II3,II)e: Similar to the example for (II3,III;) in [G3] using the
operator (zx) — (zx) — (z2x) in place of the left shift operator.

3.4. T compact, X complete but not reflexive, ¥ = I,. (II;,III)e: The
same example in [G3] for (11, I1I;) serves. (III,III;)e: Similar to the example
for (IIy,1113) in [G3] but using the operator (z,,) — (0, 21,0, z2, .. .) (on ly)in
place of the right shift operator.

3.5. T compact, X complete but not reflexive, Y not complete. (I, I1L,)e:
The same example as for (I, II1,) of [G3].

A construction of S. Goldberg [G2] reducees the THG diagram for closed
operators to the bounded case. A similar reduction using [G2] carries through for
the “essential” classification. Goldberg’s construction has recently been extended
to arbitrary operators by L.E. Labuschagne [L].

4. Uniqueness character of the essential state diagram

The essential state diagram was achieved by partitioning the class { T: o(T)
< oo} into two subclasses, namely the F} and non F,-operators. We do not
claim that our classification is the only one resulting in the same configuration as
the THG model. However, the following alternative classification seems worthy
of comment.

la: The class of operators T for which (T/M)~! exists and is continuous on some
principle subspace M complementary to N(T).

2a: The complement of 1a in the class of {T: (T < co}.

The states we now consider are Ie, ITe, IIle, la, 2a, 3a. The example below

shows that this classification results in a different configuration to that of the

THG model.

4.1. Example. There exists T' € Ie N 2a such that 7" € Ie N la.

Let Y be an infinite dimensional Banach space, let f be a discontinuous
linear functional on Y and let T: Yy — Y be the graph operator associated with
f. Set X =Y. Then T7! is discontinuous. However T~'/N(f) is an isometry
and hence T € Fy. Thus T is an injective and surjective F, -operator, and
T € IN2a. The essential state diagram 2.7 now gives T' € Ie while THG gives
T' € 1. Therefore T' € IeN la.
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