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A CECH TYPE CONSTRUCTION FOR
EQUIVARIANT COHOMOLOGY

Hannu Honkasalo

Introduction

A classical result of Dowker [D] states that non-equivariant Alexander—Spanier
cohomology is isomorphic to Cech cohomology on arbitrary spaces. In [H] we
constructed an equivariant version of Alexander—Spanier cohomology, defined for
all G-pairs, G a finite group. The purpose of this paper is to give a suitable
equivariant generalization of Cech cohomology, and then to prove the appropriate
generalization of the above mentioned result of Dowker.

The contents of the paper are as follows: In Section 1 we present the construc-
tion of the equivariant Cech cohomology groups and state the main result about
the isomorphism between equivariant Alexander—Spanier and Cech cohomology.
The proof of this result generalizes the method outlined in [S], exercises 6 D 1-3,
for proving the theorem of Dowker. Our proof occupies Sections 2 and 3 below: in
Section 2 we show that it is enough to find chain homotopy equivalences between
certain chain complexes of contravariant coefficient systems, and in Section 3 we
carry out the construction of such homotopy equivalences by the method of acyclic
models. In this paper we have to use a slightly different definition of equivariant
Alexander—Spanier cohomology than the one we used in [H]. We ponder this dif-
ference in an appendix.

1. The construction and main result

Let G be a finite group; this hypothesis holds in all that follows. As in [B],
let Og denote the category of the canonical G-orbits G/H, H < G, and Cg the
category of contravariant coeficient systems, i.e. contravariant functors Og — Ab.

Let X be a G-space and A C X a G-subspace; we use the convention that
the definition of a G-space includes the Hausdorff condition. In the following, a
G -covering of X means an open covering U = {UI |z € X } of X satisfying

zeU, foreachz € X, gU, =Uy, foreachz€e X, g€ G

(here we follow an idea of Godement, cf. [G], p. 223). Given such a U, we form
the G-covering U' = {U, N A|z € A} of A.

doi:10.5186/aasfm.1990.1515


koskenoj
Typewritten text
doi:10.5186/aasfm.1990.1515


308 Hannu Honkasalo

Let U be a G-covering of X , as above. For each n € N we define a coefficient
system C,(U) € Cg by

Cr(U): G/H — free abelian group with basis
{(@o,...,z0) € (XY | Ugen - NTU,, N XH #£0)
for H < G. Cn(U) has obvious values on morphisms of Og. Namely, a morphism

¢: G/K — G/H has the form ¢gK — gaH, where a™'Ka < H, and we set
Cr(U)(p): (zg,...,24) — (azg,...,axy,); this is well-defined, because

Uszo N NUae, NXE D Uupy N+ NU,,, N X2H
=a- (U, N---NU,, NXFH)

is non-empty, if Uzo N---NU,;, N XH # §. There are obvious boundary mor-
phisms 8: Cn(U) — Crn1(U) in Cg (n > 1) determined by (zo,...,2,) —
S o(=1)i(zoy. .., &iy. .., Tp), and hence C,(U) is a chain complex in Cg.

The preceding construction applied to the G-covering U' of A yields the
chain complex C.(U'). Because C.(U')(G/H) C C.(U)(G/H) for each H < G,
there is canonical monomorphism C.(U') — C.(U). We define a chain complex
C.(U,U") in Ce by

Cu(U,U") = coker [Cy(U') — C.(U)].

We call a G-covering V of X a refinement of U provided that V, C U,
for each z € X. If V is a refinement of ¥, there is a canonical monomorphism
C.(V,V") = C.(U,U"), which induces a cochain map Home,, (Q*(U,U'),m) —
Home,, (Q*(V,V'),m) for any m € Cg (here it is essential that we use only G-
coverings of the particular kind specified above).

Definition 1.1. Let m € Cg be a contravariant coefficient system. The
equivariant Cech cochain complex of (X, A) with coefficients m is

CL(X, 4; m) = 1_}3 Home,, (_C_'*(U,U'), m).
u

The equivariant Cech cohomology groups of (X, A) with coefficients m are
HE(X,A;m) = H*(CE(X, 4;m)), neN.

Next we give a description of the equivariant Alexander-Spanier cohomology
of (X,A), which differs slightly from the definition given in [H]. If U/ is a G-
covering of X', we can define chain complexes D,(U), Di(U') and D.(U,U') in
Cs such that

D,(U): G/H — free abelian group with basis
{®o,---,yn) € (X" | {30,...,yn} C U, for some & € X#},
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D.(U,U") = coker [ Du(U') — D.(U)].

Proposition 1.2. For any coeffcient system m € Cg,

lim Home, (D.(U,U"), m)

—
12

is isomorphic to the equivariant Alexander—Spanier cochain complex C'_Z;(X ,A;m)

as defined in [H].

Proof. Cf. the appendix. o
The main result of this paper is the following theorem which will be proved
in Sections 2 and 3, as promised in the Introduction:

Theorem 1.3. There is a natural isomorphism HY (X, A;ym) = FE(X, A;m)
between the equivariant Cech and Alexander—Spanier cohomology of (X, A) with
arbitrary coefficients m € Cq .

2. Subdivision

Let (X,A) be a G-pair and U = {U,[x € X} a G-covering of X, as
above. If H < G, we denote Uy = {U, N X |z € XH}, an open covering
of XH . Let K(Uy) be the nerve of Uy, i.e., K(Upy) is a simplicial complex, a
simplex of K (Uy) being a finite subset {zo,...,z,} C X satisfying U, N---N
Uy, NXH #£ (. Also, let L(Uy) be the simplicial complex, whose simplexes are
those finite subsets {yo,...,ym} C X which satisfy {yo,...,ym} C U, for some
z € XH . We remark that a G-map G/H; — G/H, induces obvious simplicial
maps K(Uy,) - K(Up,) and L(Uy,) — L(Uy, ). In this notation we have

C.(U):G/H — C.(K(Un))
C.(U'):G/H — Cu(K(Uy))
(2.1) C.(U,U"): G/H — Cu(K(Unr), K(Uy))
D.(U):G/H — C.(L(Un))
D.(U'"):G/H — C.(L(Uy))
D.(U,U"):G/H — Cu(L(Un), LUy))

for any H < G, where C,(K) means the ordered chain complex of the simplicial
complex K.

We recall briefly the definition of the barycentric subdivision Sd K of an
abstract simplicial complex K. The vertexes of Sd K are the simplexes of K,
and a finite set of simplexes of K is a simplex of Sd K if it is linearly ordered by
inclusion. Recall also that there is a natural subdivision chain map Sd: C«(K) —
C4«(Sd K), which is a chain homotopy equivalence for any K (cf. [E-St], VI 8).
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We write K'(Uy) = SdK(Un), L'(Uy) = SAL(Uy) etc. (H < G). We can
now define the following new chain complexes of Cq':

CiU):G/H — C.(K'(Un))
Ci(U"): G/H — C.(K'(Uy))
(2.2) CLU,U'"):G/H — Cu(K'(Un), K'Uy))
DiU):G/H — C.(L'Un))
DiU'): G/H — Ci(L'(Uy))
DIU,U'"):G/H — Cu(L'(Un), L' Uy))

with obvious values on morphisms of Og. The above mentioned subdivision chain
maps, being natural, define the following chain maps in Cg: sd : Cu(U) — Ci(U),
sd : Cu(U") - CLU'), sd : C.(U,U") - CL(U,U"), and similarly with C.
replaced by D,.

If U is a refinement of a G-covering V = {V, |z € X}, there are evident
chain maps CL(U,U') — C\(V,V') and D,(U,U') — Di(V,V").

Lemma 2.3. The subdivision chain maps are compatible with refinement,
ie., if U is a refinement of V, then the squares

sd s
cuuy = cuuu DUy = pruu
v,V = aiw,v) D.v,v) =L piv, v
commute.

Proof. Taking values at G/H (H < G) we obtain two squares, where
the vertical arrows are induced by certain simplicial maps (K (Ug), K(Uy)) —
(KE(Vu),K(Vy)) and (L(Ug),L(Uy)) = (L(Va),L(Vy)). The commutativity
thus follows from the naturality of sd with respect to simplicial maps. o

The next two results, to be proved in Section 3, are main ingredients in the
proof of Theorem 1.3:

Proposition 2.4. The chain maps
sd: C.(UU") - Ch(U,U")

and

sd: D.(U,U") — DL(U,U")

are chain homotopy equivalences for any G -covering U of X .
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Proposition 2.5. For each G-covering U of X there is a chain homotopy
equivalence a: C\(U,U") — Di(U,U") in Cg. The equivalences a for various U
can be chosen in such a way that the square

cluU) —— DiUU")

! !

CiV,V') —— DI(V,V")

commutes up to chain homotopy, whenever U is a refinement of V (ie. « is
compatible with refinement up to chain homotopy).

The proof of Theorem 1.3 is immediate, once we have proved 2.4 and 2.5.
Namely, 2.4 implies that, for n € N,

HE(X, A;m) = lim H™ (Home, (CL(U,U'),m)),
u

HE(X,A;m) = lim H"(Home, (Di(U,U'"),m))
u

and the chain homotopy equivalences a of 2.5 induce the required isomorphism
between these groups.

3. Construction of the chain maps and homotopies

Let U be a covering of X as before. We define the following four categories:

category objects
Cy  subcomplexes K of K(Uy) or K(Uy), H <G,
(3.1) Cu subcomplexes K' of K'(Uy) or K'(U};), H <G,

Dy subcomplexes L of L(Uy) or LUy), H <G,
Cy  subcomplexes L' of L'(Uy) or L'(Uy), H <G,

here subcomplexes of K(Uy) and K(Uy ), as well as those of K(Up,) and K(Ug,)
for Hy # H,, are considered distinct, and similarly in the other three cases. In
each of the four categories, a morphism is a simplicial embedding induced by some
a € G (for example, a morphism of Cy is given by z — az on vertexes).

Let C%(Ab) be the category of augmented chain complexes of abelian groups.
Next we define the functors appearing in the diagram below:
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Cu # Dy
> .
(32) C*(Ab) Sde{‘P , ’ PJ{Sd C*(Ab)
A m 4‘
Cu Dy

Each of the functors ®, ®', ¥ and ¥’ associates to a simplicial complex
its ordered chain complex (for example, if K € Cy, then ®(K) = C.(K)). The
functors Sd associate to a simplicial complex its barycentric subdivision.

(The alert reader may notice that for example the chain complex ®(K) is
augmented over Z only if K # (. It is, however, easy to see that this slight
ambiguity does not affect the use of the acyclic model theorem in what follows.)

To define P:C;, — Cu, let s be a vertex of K'(Uy) (or K'(Uy)), H < G,
ie. s is a simplex of K(Uy) (or K(Uy)). We set P(s) = §, the subcomplex
of K(Ug) (or K(Uy)) consisting of the faces of s. If K' € C;, ie. K' isa
subcomplex of K'(Uy) (or K'(Uy)), we let

P(K') = U{P(s)|s € K' vertex } = U{§|s € K' vertex }.

The values of P: D, — Dy are defined similarly.

If s ={zo,...,25} is again a simplex of K(Uy) (or K(U};)), i.e. a vertex of
K'(Ug) (or K'(Uy)), H < G, let A(s) be the subcomplex of L(Up) (or L(Uy))
consisting of all simplexes t C Uz, N---NU,,. If K € Cy and K' € C};, define

MK) = | J{\=) |z € K vertex },
N(K') = U{)\(s)|s € K' vertex }.
This defines A and X' in 3.2.
If ¢ is a simplex of L(Uy) (or L(Uy)), i.e. a vertex of L'(Uy) (or L'(Uy)),

H < @G, let p(t) be the subcomplex of K(Uy) (or K(Up)) consisting of all
simplexes {zg,...,2n} such that t CU,,N---NU,,. If L € Dy and L' € Dy,

define
w(L) = J{n@) |y € L vertex },
p'(L") = U{,u(t) |t € L' vertex }.

This completes the construction of diagram 3.2.
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Subdivision chain maps determine natural transformations
(3.3) sd: @ — &' 0 Sd, sd: ¥ — ¥'0Sd.

Furthermore, because every vertex of a simplicial complex K is also a vertex of
Sd K, we see that

(3.4) XN oSd=)\, @' oSd = p.

In the sequel we shall construct several natural transformations by aid of the
acyclic model theorem, [S] 4.3.3. To this end, we fix some more notation. Let
My C ObCy be a set of representatives for the Cy -isomorphism classes of the
complexes 3, s asimplex of K(Uy) or K(Uy), H < G. Further, let M;, C Ob(,,
be a set of representatives for the Cj,-isomorphism classes of the complexes 7, o
a simplex of K'(Uy) or K'(Uy), H < G. Also, choose the sets My C Ob Dy and
vy, C Ob D, analogously.

Proposition 3.5. There are natural transformations p: ® — ® o P and
p: ¥ — VoP.

Proof. By the acyclic model theorem, it is enough to show that the functors
®' and ¥’ are free with models M}, and N, respectively, and the functors ®o P
and ¥ o P are acyclic on the models Mj, and A}, respectively.

The freeness of ' and ¥’ is clear by construction. To prove the acyclicity of
®oP,let € My. If s € o is the largest vertex of o (with respect to inclusion),
then (® o P)(G) = C.(5) € C*(Ab) which is, of course, acyclic. The acyclicity of
¥ o P is proved similarly. o

We can form the following composite natural transformations:

o (Sd)* (p)
9" 6Sd—— " B oPoSd

. P P*(sd) ,
0] do P »® 0 Sdo P

o (54)* ()
U0 0Sd—— " ,yoPoSd

P P*(sd)
o’ y U o P —U'0SdoP.

Further, if K € Cy, then K C P(Sd K), and this defines a natural transformation
I: ® - ® 0 PoSd. In the same way we obtain natural transformations I: &' —
®' 0SdoP, I: ¥ - PoPoSd and I: ¥' — ¥' 0 SdoP.

Proposition 3.6. There are natural chain homotopies
(Sd)*(p) osd ~ I, P*(sd)op~1.

Proof. For example, the assertion concerning the natural transformations
between ¢ and ® o Po Sd follows from the trivial observation that @ is free with
models My and ® o P o Sd is acyclic on the same models. o




314 Hannu Honkasalo

Proof of Proposition 2.4. We prove that the chain map sd: C.(U,U") —
CLU,U'") is a chain homotopy; the case of sd: D.(U,U') — Di(U,U") is similar.

To construct a homotopy inverse p: Cu(U,U') — C,(U,U") of sd, we observe
that the chain maps

p (K'Un) — O(P(K'Un))) =2(KUn))

I |
CLU)G/H) C.(U)(G/H)

for H < G are compatible with G-maps G/H; — G/H, and hence determine a
chain map p: C4(U) — C«(U). In the same way we get a chain map p: CL(U') —
C.(U"), and the left hand square in the diagram

0— Q) — GU — auu) -0

e e
0— C.U) — CU) — CUU) =0

commutes, because the horizontal arrows are induced by morphisms of Cj,. Thus
the required p: C4W(U,U") — C.(U,U") exists. Proposition 3.6 then allows us to
construct chain homotopies posd ~ id and sdop =~ id, proving that p is a
homotopy inverse of sd. o

Proposition 3.7. There are natural transformations a: ® — ¥' o Sdo)’
and f: ¥' — @' o Sdoy'.

Proof. Because ®' and ¥’ are free with models M}, and N}, respectively,
it is sufficient to show that ¥' o Sdo)’ and @' o Sdoy' are acyclic on the same
models. We consider only ¥’ o Sdo)'.

Let o be a simplex of K'(Uy), H < G (the case 0 € K'(Uy) is sim-
ilar). Then A'(¢) = A(s), where s is the smallest vertex of o. Write s =
{zo,...,zn} and pick z € Uy, N---NU,, N XH. Because {yo,...,ym} C X
is a simplex of A(s) if and only if {yo,...,ym} C Uze N -+~ NU,,, the formula
(Yo,---»Ym) — (2,90, ..,Ym) defines a chain contraction of C.(A(s)) € C*(Ab).
Because sd: Cy (A(s)) — Cy(SdA(s)) = (¥' 0 SdoN')(F) is a chain homotopy
equivalence, (¥’ o SdoX')(a) is acyclic. o

Now we can form the following natural transformations:

! I(Sd A) (ﬁ) ! ! ! !
&' 0 0 SdoN ——— & 0Sdou' 0SdoX' = &' oSdouo A

(Sdopu')*(a)

8 0 Sdop' o g 6 Sdo) 0 Sd o’ = T o Sd o o 4.
Further, let I: ® — ®' 0Sdouo X' and I: ¥' — ¥' o Sdol o i’ be the natural
transformations determined by the inclusions K’ — Sd(u(X(K'))) and L' —
Sd(A(¢'(L"))) for K' € C}; and L' € Dy,.
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Proposition 3.8. There are natural chain homotopies
(SdoX)*(B)oa ~ I, (Sdou')Y*(a)o B~ I.

Proof. It is enough to show that the functors ' o0Sdopo )’ and ¥'oSdodoy'
are acyclic on the models Mj, and N, respectively. We consider only ®'o0Sdopo
)\, and leave the (similar) other case to the reader.

Let o be a simplex of K'(Uy), H < G, and s = {z¢,...,z,} the small-
est vertex of . Then A (d) = A(s), as noted in the proof of 3.7. Now t =
{20,...,24} C X is a simplex of u(A(s)), if and only if there is a vertex y € A(s)
(ie. y € UgyN---NU;, NXH) such that y € U,, N---NU,, N XFH; this is clearly
equivalent to the condition sUt € K(Uy) (i.e. Uzo,N---NU,, NU,N---NU, NnxH
# 0). Hence the formula (z,...,z4) = (o, 20,...,%,) defines a chain contrac-
tion of C,(k(A(s))) € C*(Ab), and so (®' o Sdop o X')(5) = Cu(Sd(1(A(s)))) ~
Ci(p(A(s))) is acyclic. o

Assume now that U is a refinement of another G-covering Vof X. If H < G,
then every subcomplex K' of K'(Uy) (or K'(Uy)) can also be regarded as a
subcomplex of K'(Vy) (or K'(Vy)). This defines a functor j: C;, — Cj,, and
there is an analogous functor j: D, — Dj,, too. There are also obvious natural
transformations

0: @y — B}, 07, Uy — U, 05;

for example, if K' € Cj;, then p(K') is simply the identity of Cu(K').
We consider the following composite natural transformations:

e ,(Sdex) ()
&' ——¥j,0SdoN ————— T, 05 0Sdo)

* (o)
@&——g-ﬁq)'v ojj—a—nIl'v 0SdoX 0j =T} 0j50Sdol.

Proposition 3.9. There is a natural chain homotopy
(SdoA)Y*(r) o ~ j*(a) 0 o.

Proof. The functor ®;, is free with models M;,, and ¥),050Sd o)’ is acyclic
on the same models. o

Proof of Proposition 2.5. The natural transformations o and f# of 3.7 al-
low us to construct chain maps a: CW(U,U') — Di(U,U") and B: Di(U,U") —
C.(U,U") in the same way as the chain map p: C\(U,U") — C.(U,U") was con-
tructed in the proof of 2.4. From 3.9 it then follows that « is compatible with
refinement up to chain homotopy, and 3.8. shows that f is a chain homotopy
inverse of «. o
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Appendix

In this appendix we prove Proposition 1.2. Let (X,A) be a G-pair and
m € Cg a coefficient system. There are exact sequences

0 — lim Home, (DU, U"),m) — lim Home, (Du(U), m)
u u
— lim Home, (D(U"),m),
u

0 — C&(X,A;m) = CE(X;m) — C&(A;m);
the former is a consequence of the left exactness of Home, and exactness of h_m) u

while the latter follows from Definition 1.1 in [H]. Therefore it is enough to show
that ~
Co(X;m) = lim, Homeg (D (), m)
u

and B
C&(A;m) =lim Home, (D (U"),m)
u
(provided that the isomorphisms are functorial enough). In fact it suffices to prove
the first isomorphism, for the second is a special case of the first by the next lemma:

Lemma A.l. Any G-covering V of A is of the form U’ for some G -covering
U of X.

Proof. Given V, a desired U can be constructed as follows: Pick a represen-
tative £ € A for each G-orbit of A and choose an open U, C X for every z so
that U, is G,-invariant and U, NA=V,. f y=gx € A, g€ G, let Uy, = gU,.
In this way U, is defined for every y € A. For y € X \ A, choose U, arbitrarily
to satisfy y € Uy and gU, =Ugy, g € G. O

In [H] we defined C&(X;m) = C&(X;m)/C& o(X;m), where CG ((X;m) C
C2Z(X;m) is the subgroup of locally zero cochains; a cochain ¢ € Cg(X;m) is
locally zero, if there is a G-covering U of X such that

(4.2) c(p) =0 for ¢ € V,(X), t(p) = H,
if {po(eH),...,pn(eH)} CU, forsomez e X

(here we have used the notation of [H]).

Remark A.3. When defining locally zero cochains in [H], we used a more
general notion of a G-covering than in this paper. These different notions lead to
the same concept of locally zero cochains, however, because any open G-covering
W of X in the sense of [H] has a refining G-covering # = {U, |z € X} in the
sense of this paper; such a U can be obtained by an orbitwise construction as in

Al
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Let us also consider the following condition for a cochain ¢ € CZ(X;m) and
a G-covering U of X:

(A4) c(p)=0 for p € Vo (X), t(p) = H,
if {¢o(eH),...,on(eH)} CU, forsomez € X*.

Denote 'C% ((X;m) = {c € C&(X;m)|c satisfies A.4 for some U } .
Lemma A.5. We have

lim Homcg (Da(U), m) = C&(X;m)/'C& o(X;m).
u

Proof. Any ¢ = (¢o,...,¢n) € Vp(X) determines an (n + 1)-tuple
(Zoy---y2n) € (XH)"*1 H = t(p), by z; = ¢i(eH), and conversely. From
this it follows that if U is a G-covering of X and we denote

V(X U) = { € Va(X) | {o(cH), ..., pn(eH))}
C U, for some z € X¥, H = t(c,o)}

and C},(U) = free abelian group with basis V!(X,U), then
n g n

Home,, (D,(U), m)

{u: CLU) — EB m(G/H) | u is a homomorphism;
H<G
u(p) € m(G/t(p)) for each ¢ € Vo (X,U);

if a: G/K — G/t(¢) is a G—map, then u(poa)= m(a)(u(cp))}.

The assertion of the lemma is then verified in the same way as Lemma 4.1 in [H]. o
The proof of the identity CG(X;m) 2 lim Home, (Dn(U),m) is now com-
pleted by the lemma below:

Lemma A.6. Let c € C&(X;m) and let U be a G-covering of X .

1) If ¢ satisfies A.2 for U, then c satisfies A.4 for U;

i1) if ¢ satisfles A.4 for U, then there is a refinement V of U such that c satisfies
A2for V.

Proof. Part i) is trivial. As forii), a required V can be constructed as follows:
Pick a representative z € X from every G-orbit of X ; for each such an z choose
an open G, -invariant neighborhood V, such that V, C U, and V, N X¥ = §,
if H <G and ¢ ¢ X (recall that X is closed, because X is Hausdorff); if
y=gzr,g€G,let Uy=9gU,. 0
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