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A CECH TYPE CONSTRUCTION FOR
EQUIVARIANT COHOMOLO GY

flannu Honkasalo

Introduction

A classical result of Dowker [D] states that non-equivariant Alexander-Spanier
cohomology is isomorphic to Cech cohomology on arbitrary spaces. In [H] we

constructed an equivariant version of Alexander-Spanier cohomology, defined for
all G-pairs, G u finite group. The purpose of this paper is to give a suitable
equivariant generalization of Öech cohomology, and then to prove the appropriate
generaiization of the above mentioned result of Dowker.

The contents of the paper a,re as follows: In Section 1 we present the construc-
tion of the equivariant Öech cohomology groups and state the main result about
the isomorphism between equivariant Alexander-spanier and Öech cohomology.
The proof of this result generalizes the method outlined in [S], exercises 6 D l--3,
for proving the theorem of Dowker. Our proof occupies Sections 2 and 3 below: in
Section 2 we show that it is enough to find chain homotopy equivalences between

certain chain complexes of contravariant coefficient systems, and in Section 3 we

carry out the construction of such homotopy equivalences by the method of acyclic
models. In this paper we have to use a slightly different definition of equivariant
Alexander-spanier cohomology than the one we used in [H]. We ponder this dif-
ference in an appendix.

1. The construction and main result

Let G be a finite group; this hypothesis holds in all that follows. As in [B],
Iet Oc denote the category of the canonical G-orbits GIH , H I G, and C6 the
category of contravariant coeffi.cient systems, i.e. contravariant functors Oc ---+ Ab.

Let X be a G-space and A C X a G-subspace; we use the convention that
the definition of a G-space includes the Hausdorff condition. In the following, a
G-covering of X means an open covering tl: {U,lx e X} of X satisfying

r € [J, for each r e X, g[Jr: Un, for each r e X, g € G

(here we follow an idea of Godement, cf. [G], p. 223). Given such a U, weform
the G-covefing l,lt : {U, n Alr e A} of. A.
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Let U be a G-covering of X, as above. For each n € N we define a coeffi.cient
system 9."@) e C6 by

Q"(U): GIH *+ free abelian group with basis

{("0,...,tn) € (xH)'+t lu,on...n(r,-nxH *0}
for H < G . g"(U) has obvious values on morphisms of 05,. Namely, a morphism
g:GlK --+ GIH has the form gK s--+ gaff, where a-LKa I H, and we set
C."(U)(p), (rr, . . . , r,) - (o*o, . . . , a&n); this is well-defined, because

u""':; 
?X:"";:::;^';iir 

r1(r"n n YaHa-'

is non-empty if [/ro n...n tJrnffX' + 0. There are obvious boundary mor-
phisms O:.e"(U) - 9"-t(U) in C6 (r 2 1) determined by (rg,...,c,,) *
»Lo(-l)c(n0t...,fii,...,&n), and hence g-(U) is a chain complex h C6. 

'

The preceding construction applied to the G-covering l,l' of A yields the
chain complex Q*(Ut). Because Q..(U')(G|H) C g.(U)(GlH) for each H 1G,
there is canonical monomorphism Q *(tlt) ,- g"(u). We define a chain complex
g*(U,U') in C6 by

C."(t/,t l'1 : coker lg.(U')''. C.(U)).

We call a G-covering V of X a refrnement of ?,/ provided thal V, C U,
for each r € X. rf v is a refinement of l,l , therc is a canonical monomorphism
Q.*(V,V.') - C.*(U,C/'), which induces a coc"hain map Homgo (9.(U,U,),m) --+

Homso (9..(V,V'),*) for any m e C6 (here it is essential that we use only G-
coverings of the particular kind specified above).

Deflnition 1.1. Let m € cc be a contravariant coefficient system. The
equivariant Öech cochain complex of (X,.4) with coeffi.cients rn is

ö6(x,A;m) - Homs o(e*(t/,1/'), m).

The equivariant Öech cohomologygroups of (x,c) with coefficients rn are

Eå(x,A;*): H.(Cä(X,A;*)), n e N.

Next we give a description of the equivariant Alexander-Spanier cohomology
of (x,A), which differs slightty from the definition given in [H]. If tl is a C-
covering of X, we can define chain complexes p*(&/),, D*1U,1 wÅ D*(Lt,U,) in
C6 such that

D_"(U), G/H ,+ free abelian group with basis

{(y0,. -.,un) € (xa;'+t | {y0,. ..,un} CI},for some o e xH},

lim
u
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D*(t/,t/')
Proposition L.2. For any

- cok"r[J|. (u') + D*@]
coeffcient system m e Cc ,

Homs o(D.(t/,t/'),m)

'* c"(Klud)
H c.(K(uD)
H c.(K(uru), K(uD)
H c.(L(ud)
H c.(L(uD)

c.(L(ua), L(uD)

lim
-)u

is isomorphic to the equivariant Alexander-Spanier cochain complexd"@,, A;*)
as defined i" [H].

Proof. Cf. the appendix. o

The main result of this paper is the following theorem which will be proved
in Sections 2 and 3, as promised in the Introduction:

Theorern L.3. There is a natural isomorphism E6(X, A;*) onL6, A;*)
between the equiva.riant Öech and Alexander-Spanier cohomology of (X, A) with
arbitrary coeffi.cients m e Cc.

2. Subdivision

Let (X,,4) be a G-pair and ?,1 : {U,lc e X} a G-covering of X, as

above. If. H < G, we denote l,ta - {U,nX'l* e X'}, an open covering
of. XH . Let K(ttp) be the nerve of l,ls, i.e., K(Uu) is a simplicial complex, a
simplex of K(Us) being a finite subset {ro, ...,o,.} C XH satisfying t/,0 n...n
[J,. I XH * 0. Also, let L(t/p) be the simplicial complex, whose simplexes are
those finite subsets {y0,. . .,A*} C XH which satisfy {y0,. . . ,U*} C [/, for some
a e XH. \Me remark that a G-map GlHl --+ GlH, induces obvious simplicial
rnaps K(Uru,) - K(Un,) and L(Usr) --+ L(Usr). In this notation we have

(2.7)

Q.(u)t GIH

Q*(t/'): G I H

Q"(u,U'): GIH

D.(u)t GIH

D*(U'): G lH
D*(t/,1/'): G I H

for any H I G, where C-(K) means the ordered chain complex of the simplicial
complex .K.

We recall briefly the definition of the barycentric subdivision Sd K of an
abstract simplicial complex .K. The vertexes of Sd K are the simplexes of K,
and a finite set of simplexes of K is a simplex of Sd/( if it is linearly ordered by
inclusion. Recall also that there is a natural subdivision chain map Sd: C.(K) --
C.(Sd-I(), which is a chain homotopy equivalence for any K (cf. [E-St], VI 8).
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We write K' (Un) : Sd K(Un) , L'(Ua) : Sd L(Ua) etc. ( ff < G ). We can
now define the following new chain complexes of C6:

Ql(u),GlH a c.(K'(uH))
Ql(u'): G I H a C"(K' (uh))

(2.2) Ql(t/,t/'):G/H = c.(I{'(un),K'(uh))
Dl(u),GlH e C.(L'(*H))

DI(U' ): G I H r+ C.(Lt (uh))

Dl(t/,t/' ): G I H = C *(t' (t/p1, L' (uD)

with obvious values on morphisms of Os. The above mentioned subdivision chain
maps, being natural, define the following chain maps in Cc: sd : 9"(U) -- OL(U),
sd: 9*(Ut) - C'-(U'), sd : Q*(U,,U') + C|(U,U'), and similarly with e*
replaced by _2*.

If. ?,1 is a refinement of a G-covering V : {V,lr e X}, there are evident
chain maps C.'-(U,U'1 -, g'*(V,V') and DL(U,U') --. DL(V,V').

Lemma 2.3. The subdivision chain maps axe compatible with refinement,
i.e., if U is a refinement of V, then tåe squares

Q*(t'l,u'1 i- Q{(u,u',) D--(u,,u') g Dl(u,u')

lltrJJJJ
Q*(V,V') -L* QXV,V) D*(V,V') -1- D1(Y,V')

commute.
Proof. Taking values al GIH (I/ < G) we obtain two squares, where

the vertical arrows are induced by certain simplicial maps (K(tlp),K(Uh» --
(N(vr),K(vD) afi (L(up),L(uD) -» (L(vH),L(vil). The commurativity
thus follows from the naturality of sd with respect to simplicial maps. o

The next two results, to be proved in Section 3, are main ingredients in the
proof of Theorem 1.3:

Proposition 2.4. The chain maps

sd: C.*(t/ ,t/') - C'.(t/ ,l/')

and
sd: D*(t/,t/') * DL(II,t{')

are chain homotopy equivalences for any G -covering U of X .
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Proposition 2.5. For each G-covering U of X there is a chain homotopy
equivalence o, 9.'*(U,U') - DL(U,U') in Cc. The equivalences a for various l,l
can be chosen in sucå a way that the square

Ql(u,U') o , D](U,U')

Ql(v,v') o , Dl(v,v')

commutes up to ehain homotopy, whenever U is a refinement of V (i.e. a js
compatible with refinement up to chain homotopy).

The proof of Theorem l-.3 is immediate, once we have proved 2.4 ard 2.5.
Namely, 2.4 implies that, for n € N,

U36, A; *) = l4 H" (Homg. (Ql1U,U' 1, *11,
u

IIå(x, A; *) = lq H" (Homso (D!,(u,u, ), m))
u

and the chain homotopy equivalences ot of.2.5 induce the required isomorphism
between these groups.

3. Construction of the chain maps and homotopies

Let U be a covering of X as before. We define the following four categories:

category objects

Cu subcomplexes K of K(Un) or K(t/fu), H 1G,
(3.1) CL subcomplexes K' of K'(Uru) or K'(t/fu),, H < G,

D4 subcomplexes Z of L(Un) or L(U's), H 1G,
Ci subcomplexes .L' of L'(Us) or L'(t/fu), H < G;

here subcomplexes of K(Up) ar,,d K(Ufi), as well as those of. K(l/s,) and K(t/17,)
for f{ * Hz, are considered distinct, and similarly in the other three cases. In
each of the four categories, a morphism is a simplicial embedding induced by some
a Q. G (for example, a morphism of Cu is given by a r-+ ao on vertexes).

Lef C"(Ab) be the category of augmented chain complexes of abelian groups.
Next we define the functors appearing in the diagram below:
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(3.2)
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Cu

"y
c"(Ab) 

x "11"

ci

Each of the functors O, O', i[ and {r' associates to a simplicial complex
its ordered chain complex (for example, if K € Cy, l}r,en O(.[() : C-(K)). The
functors Sd associate to a simplicial complex its barycentric subdivision.

(The alert reader may notice that for example the chain complex O(I{) is
augmented over Z only if I< * 0. It is, however, easy to see that this slight
ambiguity does not affect the use of the acyclic model theorem in what follows.)

To define P:C!1 --+Cu, let s be avertex of. K'(Us) (or Kt(Ul1)), H aG,
i.e. s is a simplex of K(Un) (or K(Ulq)). We set P(s) : 5, the subcomplex
of K(Un) (or I<(Ufu)) consisting of the faces of s. If. I{t e Cfi, i.e. K' is a
subcomplex of. Kt(Us) (or K'(U's)), we let

P(K') - U {e(r) l, € K' vertex } - Uts l, € K' vertex }.

The values of. P: Dty --+ Du are defined similarly.
If s : {r0,. . ., o,,} is again a simplex of K(Us) (or K(Ufu)), i.e. a vertex of

K'(Ua) (or K'(Ufu)), H < G,let.\(s) be the subcomplex of L(Uu) (or L(U'p))
consisting of all simplexes t qU,on...nU,..lf. K eCu and .I(' eCll, define

.\(/() _ Ut)(") l" e K vertex )r

^'(K')_ Ut)(r) Ir e K' vertex ).

This defines .\ and .\' in 3.2.
If J is a simplex of. L(Us) (or L(Uh)), i.e. a vertex of. L'(Up) (or L'(U'p)),

H 1 G, let p,(t) be the subcomplex ot K(Us) (or K(U's)) consisting of all
simplexes {r0,...,rr} suchthat t qUron...nUr^.\f LeDu and Lte D'r,
define

p(L): U{rfrl lv e r, vertex },
p'(L'): U{r(r) lt e L'vertex }.

This completes the construction of diagram 3.2.

Du

IrxPl I saf;
/ ,V,

Dtu

c" (Ab)
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Subdivision chain maps determine natural transformations

sd: O + ö' o Sd, sd: iI/ V' o Sd.

Furthermore, because every vertex of a simplicial complex K is also a vertex of
Sd.K, we see that

)'o Sd: ), [r' o Sd: F.

(3 3)

(3.4)

In the sequel we shall construct several natural transformations by aid of the
acyclic model theorem, [S] 4.3.3. To this end, we fix some more notation. Let
Mu C ObCu be a set of representatives for the Cy-isomorphism classes of the
complexes §, s a simplex of K(Uu) or I{(Uts), H 1G. Further,let Ml1 c ObCi,
be a set of representatives for the Cj1-isomorphism classes of the complexes E, o
a simplex of. K'(Us) or K'| (Uts) , H 1 G. Also, choose the sets Nu C ObDy ar.d
ul c Ob2l, analogously.

Proposition 3.5. There are natural transformations p; ö' -* Q o P a,nd
p: ![r' ---+ itrr o P.

Proof. By the acyclic model theorem, it is enough to show that the functors
ö' and V' are free with models M's and I(1, respectivelg and the functors O o P
and iP o P are acyclic on the models M'y and ltQ, rcspectively.

The freeness of O' and ![r' is clear by construction. To prove the acyclicity of
OoP, let ä € M'u. If s € o is the largest vertex of a (with respect to inclusion),
then (Q o P)(a) : C.(5) € C"(Ab) which is, of course, acyclic. The acyclicity of
ilr o P is proved similarly. o

We can form the following composite natural transformations:

(D =d , 6' o go (sd).(P) 
,o o p o sd

o, ---i--, o o p t-("u),(D, 
o sdop

iu "d , v' o sd 
(to).(') 

,ip o p o sd

,I,-i---*v op "-("u),ilr, oSdop.

Further, if K € Cy , then lf C P(Sd /{), and this defines a natural transformation
.I: o ---+ o o P o Sd. In the same way we obtain natural transformations .r: o' --+

O'oSdoP, f: i[ ---+ VoPoSd and 1: V'---+ {r'oSdoP.
Proposition 3.6. There a,re natural chain homotopies

(Sd).(p)osd -.[, P.(sd) op- I.
Proof. For example, the assertion concerning the natural transformations

between Q and (D o P o Sd follows from the trivial observation that O is free with
models Mu and O o P o Sd is acyclic on the same models. o
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Proof of Proposition 2.4. We prove that the chain map sd:9"(U,Ut) -'+

gL(U,U') is a chain homotopy; the case of sd: D*(U,U') --. DL(U',U') is similar.
To construct a homotopy inverse p: gL(U,U') - C.*(U,U') of. sd, we observe

that the chain maps

----+ a(P (n'1ud)) : o(/((un))

il

Q.(u)(GlH)

pi o'(K'(uru))

il

Ql(u)(GlH)
for H 1G are compatible with G-maps GlHr -'+ GlH2 and hence determine a

chain map p, g'.(U) - 9*(U). In the same way we get a chain map p: g'.(U') -
9..(U'), and the left hand square in the diagram

-) Q!,(U,U') -» o

+ Q.(u,u') -» o

commutes, because the horizontal arrows are induced by morphisms of Cfi. Thus
the required p: Q|*(U,U') - C.*(U,U'1 exists. Proposition 3.6 then allows us to
construct chain homotopies p o sd - id and sdop :: id, proving that p is a
homotopy inverse of sd. o

Proposition 3.7, There are natural transformations q: O' -- \[r'o Sdo)'
and B: i[' ---+ (D' o Sd opr' .

Proof. Because O' and i[' are free with models M'y ar..d Alfi, respectively,
it is sufficient to show that ilr' o Sd o,\' and O' o Sd opr' are acyclic on the same
models. We consider only ilr' o Sd o)'.

Let o be a simplex of. I(t(Up), H < G (the case o e K'(Uh) is sim-
ilar). Then Å'(a): )("), where s is the smallest vertex of o. Write s:
{r0,...,r,r} and pick z E [.Iro n.'. n (Jr^lXH. Because {ys, ...,U*} C XH
is a simplex of Å(s) if and only if {y0,...,A*} a U,o n'..n U,^, the formula
(y0,.'.,a*) - (r,a0,...,g-) defines a chain contraction of C-(Å(s)) € C"(Ab).
Because sd: C*(f(r)) -+ C*(Sa.l1s1) : (V'o SdoÄ/)(a) is a chain homotopy
equivalence, (V' o Sd o)')(a) is acyclic. o

Now we can form the following natural transformations:

o'-i-r\tr,' o ,, o^' 
(sd or').(p) 

o' o Sd o;z' o Sd o,\' : ö' o Sd op o )'

E' -!---o'o Sdor'§d'{I$v' o Sdo.\' o Sd op' : v'o Sd o) o pr'.

Further, let .[: O' --+ O'o Sdotr"r o Å' and I:V' --+ iU'o Sdo,\ o p,' be the natural
transformations determined by the inclusions K' .-* Sd(p(Å'(/('))) and L' ,--+

Sd()(p'(I'))) r"' I( eCil and. Lte Dr.

o -+ Q!r(u'\ -» e{u)
rlIn lr

0 --+ Q.(U') -+ Q.(U)
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Proposition 3.8 . There are natural chain homotopies

(SdoÄ').(B) o a - .f, (Sdop').(o) o § - I.

Proof. It is enough to show that the functors O'o Sd opr o,\' a,nd i['o Sd o).o prt

are acyclic on the models MIl ar..d I(|, respectively. We consider only O' o Sd opr o

)', and leave the (similar) other case to the reader.
Let, o be a simplexof. Kt(Up), H < G, and ": {r0,...,on} the small-

est vertex of o. Then ,\'(a) : Å(s), as noted in the proof of 3.7. Now I :
{r0,. . ., zc} CXH is a simplex of p(,\(s)), if and only if there is a vertex y e f(s)
(i.". y eU,on...n(J,*fiXH ) such that y eu,on...nUztnXH;this is clearly
equivalent to the condition sUt € X(Un) (i.e. U,on...n(J,^n(J,on...n[J,rnXH
* A). Hence the formula (ro,...,rc) * (*o,ro,...,zc) defines a chain contrac-
tion of C.(p(.11s;)) e C"(Ab), and so (O' o Sd opr o .\')(a) : C.(Sd(p(f(r)))) =
C.(p(.11s;)) is acyclic. o

Assume now that U is arefinement of another G-covering V of. X . If H < G,
then every subcomplex K' of K'(Uu) (or K'(Ulq)) ca"n also be regarded as a
subcomplex of. K'(Vp) (or K'(Ufu)). This defines a functor j:C!, -+ C'y, and
there is an analogous functor j, D'u -. D'v, too. There are also obvious natural
transformations

Q: atu oi o i, r: V'u * \ei o i;
for example, if K' e Cfi,lhen e(K') is simply the identity of. C*(K').

We consider the following composite natural transformations:

e, o 
, v,uo sd o), 

(sd o'\')'(r)r\ri 
o j oSd oÅ,

ai- n ,a'vo ' i*(o) »urioSdo,\'o7-vi ojoSdo)'

Proposition 3.9 , There is a natural chain homotopy

(Sdo)').(r) o * - i*(o) o p.

Proof. The functor O!, is free with models M'y, and V'v" j o Sd o)' is acyclic
on the same models. o

Proof of Proposition 2.5. The natural transformations c and B of. 3.7 aJ-

low us to construct chain maps a: g|(U,U') + pt-(U,U') and B: p'*(U,U') ---+

Q.L(U,U') in the sarne way as the chain map p, C'.(U,U') - C*(U,U'1 was con-
tructed in the proof of 2.4. Fbom 3.9 it then follows that a is compatible with
refinement up to chain homotopy, and 3.8. shows fhaf B is a chain homotopy
inverse of o. o
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Appendix

In this appendix we prove Proposition L.2. Let (X,,4) be a G-pair and
m e Cc a coefficient system. There are exact sequences

0 - !!g Hom6o (0.(u,u')',*) ' lim, Homco (p-(u),*)
uu

---+ lim Homso (D-(U'),*),
u

0-- efi(X,A;*)'- e[(x;m) - 1f,(A;m);

the former is a consequence of the left exactness of Homgo and exactness of lim, , ,

while the latter follows from Definition l..L in [H]. Therefore it is enough to show

that
eå(x;*) = Homg 

"(D*(U),m)

and
eåQq;-) = l4 Hom6o (D.1U'1,*)

u

(provided that the isomorphisms are functorial enough). In fact it suffices to prove
the first isomorphism, for the second is a special case of the first by the next lemma:

Lemma A.L. Any G -covering V of A is of the form Ut for some G -covering
U of X.

Proof. Given )/, a desired U call be constructed as follows: Pick a represen-
tative r e A for each G-orbit of A and choose an open U, c X for every c so

lhat U, is G,-invariant and U,l A - Vr. If y : gr € A, 9 e G,let Un : 9U,.
In this way (Jo is defined for every y e A.For y € X \L, choose U, arbitrarily
to satisfy U € Us and gUn : Ucs t I e G. o

In [H] we defined C36;m) : Cå(X;m)lCft,o(X; rn), where Cft,o(X;m) c
Cä(X;m) is the subgroup of locally zero cochainsl a cochain c € Cå(X; rn) is
locally zero, if there is a G-covering U of X such that

(A.2) ,(p)-0 for?€V"(X), t(v)-H,,
if {po("H),.. .)?"("H)} c u, for some tr e x

(here we have used the notation of [H]).

Remark 4.3. When defining locally zero cochains in [H], we used a more
general notion of a G-covering than in this paper. These different notions lead to
the same concept of locally zero cochains, however, because any open G-covering
W of. X in the sense of [H] has a refining G-covering tl: {tl,lr e X} in the
sense of this paper; such a U can be obtained by an orbitwise construction as in
4.1.

lim
u
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Let us also consider the following condition for a cochain c e C$X;rn) and
a G-covering U of X:

(A.4) "(p): o for e ev"(x), t(p): H,
if. {gs@H),. . . ,pn(e[)} c U, for some r e XH -

Denote 'C&,0(X;m) : {c e C36;rn) lc satisfies A.4 for some ä}.
Lemma A.5. We have

Lrg Ho*ro (D"(u),m) * C31x;m)l'C3,0(x;*).
u

Proof. Arry g : (g0,...,p*) € V"(X) determines an (n * 1)-tuple
(s0,...,tn) € (Xa;"+t, H -- t(V),by r;: g;(eil), and conversely. From
this it follows that if U is a G-covering of X and we denote

v;(x,u) : {r, v"(x) I {po("u),. . ., p.("H)}

C[J, for some, e XH, U :t@)]

alad Ct"(U): free abelian group with basis V;(X,tl),then

Homso (D.(u),r") =

{", C;1U1-- O m@l H)l u is a homomorphisml
H<G

u(p) e *(e 1tg\ for each e eV,j,(x,U);

if a: G/K -+ G/t(9) is a G-map, then u(9 o a): rn(a)(u(p))).

The assertion of the lemma is then verified in the same way as Lemma 4.1 in [H]. o
The proof of the identity 0å(X;*) = l4 Homs. (D"(U),rn) is now com-

pleted by the lemma below:

Lemma A.6. Let c € Cft(X;m) a,nd let U be a G-covering of X .

i) If c satisrfes A.2 for U, then c satisfres A.4 for l,l;
ii) if c satisfies A.4 for U , then there is a refi.nement V of l,l such that c satisfies

4.2 for V.

Proof. Part i) is trivial. As for ii), a required V can be constructed as follows:
Pick a representative r € X from every G-orbit of X; for each such an r choose
an open Gr-invariant neighborhood V, such that V, C tJ, and VrnXH :0,
if. H < G and * / XH (recall that XH is closed, because X is Hausdorff); if
y:gr, ge G,letUn:gUr.a
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